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We find a class of solutions to the Einstein field equations with constant vacuum energy
density ("cosmological constant") that has a similarity symmetry of the second kind. We
show this symmetry to be a global conformal symmetry. Nontrivial analytic solutions are
given and one in particular (exhibiting intrinsic symmetry) is shown to evolve to a nonempty
Robertson-Walker space-tine with "steady-state" metric. This is found to be due to particle
production associated with the negative matter pressure that is required by the assumed

symmetry. These models can describe, classically, an origin of the Universe in terms of par-
ticle production from the vacuum, driving an exponential (de Sitter) expansion. This solu-

tion is inhomogeneous and anisotropic, but tends to homogeneity and isotropy at early times
and large distances, and at late times and small distances. The solution therefore corre-
sponds to the outward motion of a spherical disturbance which distorts the local homogenei-

ty and isotropy in an asymptotically homogeneous and isotropic universe. The limiting

homogeneous and isotropic forms are discussed.

I. INTRODUCTION

The homothetic' or similarity symmetries ' of
Einstein's field equations with zero cosmological
constant A (i.e., vacuum energy density) are known
to define an elegant and useful class of solutions.
The recent intense interest in gauge theories of
elementary particles with spontaneous symmetry
breaking has, however, led to a better understanding
of the cosmological term in the field equations, as
being proportional to the ground-state energy densi-

ty of the vacuum. Although this term is tempera-
ture and therefore time dependent, one view is that
the variation proceeds through a series of
symmetry-breaking phase changes with the vacuum
energy remaining constant in each phase. We there-
fore consider it to be of more than academic interest
to extend the similarity symmetry to the case of
nonzero cosmological constant.

This is particularly true because a large constant
vacuum energy density can drive a de Sitter expan-
sion in the early Universe, which removes many of
the celebrated cosmological difficulties. If such re-
gions were in fact to be localized in a Robertson-
Walker background, then solutions that are locally

inhomogeneous but which tend to a homogeneous
limit at large scales are of considerable interest.
They might also be used to consider the effect of the
vacuum energy on the horizon structure of black
holes embedded in a homogeneous background. '

We proceed then to find a class of inhomogeneous,
spherically symmetric solutions which possess
"similarity" symmetry. On purely dimensional
grounds, we do not expect this symmetry to have the
same form when A&0 (however small) as when
A —=0, and in fact we shall find it to be'o a "similari-
ty of the second kind" and a conformal symmetry of
the metric.

The symmetry is achieved at the cost of con-
straining the equation of state to a specific form. At
large scale factors for the Universe this required
form is rather conventional, but at small scale fac-
tors the pressure becomes negative. This behavior is
not necessarily unphysical in the particle-production
phases of some symmetry-breaking particle
theories" and it is interesting that we find the sim-
plest inhomogeneous symmetry in the presence of a
vacuum term to require it (cf. also Ref. 12).

In Sec. II we present the basic symmetry and the
form of the reduced field equations. In Sec. III we
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give analytic solutions in special cases and in Sec. IV
we discuss the general integrations numerically.
Section V is a summary discussion.

II. SELF-SIMILAR SYMMETRY, CANONICAL
COORDINATES, AND THE REDUCED FIELD

EQUATIONS

A. General formulation

P:Pm+tv ~

p:pm+pv ~

A
pv = —pv~ pv =

Sm.

so that (1) becomes simply the standard form

(2)

G~b = —8m[(p+p)unsub —pub], (3)

but with the vacuum and the normal excited states
of matter given their separate equations of state as
in (2). When p, is held constant the formal
correspondence is exact, but should pv be varying
with the temperature (and hence epoch) of the
Universe, the distinction between it and any true
cosmological constant should be retained. Here we
interpret A freely in terms of a vacuum state, but we
treat it mathematically as a strict constant.

It is convenient when seeking spherically sym-
metric solutions to write Eqs. (3) in the form' '

U2 —1 (4a)

We use the metric signature (1,—1, —1,—1) and
the sign convention for the Ricci tensor as in
Robertson and Noonan. ' Then the Einstein field
equations with an ideal fluid model of matter are
(c=G=1)

G.b+Aab = 8~i(p—+p)u. ub pg.b
—j

where A is the cosmological constant, p and p
represent the total pressure and energy density of the
matter (quantum fields), latin indices run from 0 to
3, and the other notations are standard. It is by now
usual to include the cosmological term on the
right-hand side of Eq. (1) in the stress-energy tensor
of the true vacuum (ground state) by writing

The metric is taken in the spherically symmetric
form

d&2 ea(r)d, t2 em(r, dr2 R—2(r t)dII2 (6)

where dQ:—sin 8dg +de and r is a Lagrangian
coordinate comoving with the matter. The general-
ized Lorentz factor I', and the invariant radial
four-velocity U, are given by

I =e R„, U=e R, . (7)

These equations are complete when p (p ) is given
in Eq. (2).

These equations have been studied extensively in
terms of their self-similarity of the first kind (invari-
ance under a simple "stretching" or "scaling" group,
e.g. , Bluman and Cole' ) by Cahill and Taub and by
Bicknell and Henriksen, ' when the vacuum or
cosmological term is absent. The presence of A or
p„destroys this simple symmetry by introducing a
fundamental scale. However, we can hope in this
case to find a self-similarity of the second kind'
corresponding to a more complex invariance group.
We do this by transforming to canonical' coordi-
nates t', r' in which the symmetry group is just the
stretching group so that the appropriate self-similar
variable is again g=t'/r'. This proves to be always
possible provided that the equation of state p~(p~ )

is allowed to be found as part of the solution, rather
than being given. This is the same constraint found
by Demianski and Grishchuk' in their rotating,
homogeneous, cosmologies when flat spacelike sec-
tions were imposed.

The transformation to the canonical coordinates
is taken in the form

ebo(t')l2dti dr ebe(r')/2d (8)

under which o'=a+ho(t') and co'=co+Aco(r') in
(6) and (7). In these coordinates we may take the
similarity variable to be g =t'/r' and make the usual
ansatz' ' in Eqs. (4)—(7), namely,

R =r'S(g), 8irp =rt(g)/(r')

8rrp =&(g)/(r'),

m~ =—m —(4ir/3)R p„=(r'/2)M(g),

(r=o(g), co=to(g) .

mt 4~R pRt ~

2

m, =4mB pR, ,

(4b)

(4c)

This gives (4b), (4c), and Eqs. (5) as (a prime denotes
d/dg)

with the Bianchi identities

o, = —2p„/(p+p),

co, =—4R, /R —2p, /(p+p) .

M'= —I'S S',
M —gM'=r)S (S—gS'),

0
2

(g &),
g'(p+~) 4

(10)

(12)
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co' = 4S—'/S 2—r]'/(P+ ri);
while (4a) and (7) together give

~" (ri)2S2 e
—[cu(g)+aco(r')](S gSi)2

8m „
S 3

(13)

(19)

for which the Lie derivative of the metric is

and we recall that 8'„=A when the vacuum ener-

gy density is constant. The generator of the corre-
sponding Lie group symmetry may be taken as

g+ e —— '(V3/A, r, 0,0),

e
—[a(f)+aa(t')](S~)2 (14)

~g+gab =2e gab
'b/A/3t

(20)

and Aco, 60 must be chosen so that the assumed
symmetry holds in these coordinates. We find the
symmetry to have a quite different character de-

pending on whether p„&0 and we proceed now to
discuss these cases separately.

e =, hco=O,
A(t')

3
(15)

whence (14) is uniquely separated into the two equa-
tions

and

=.-"(s—gs')'= r'(g)S (16)

S =e (gS') (17a)

B. Positive vacuum energy density

When 8'„=A& 0, an inspection of the signs and
coefficients of the various terms in (14) shows that
the only way to maintain the assumed symmetry is
to set

and the symmetry is thereby seen to be conformal.
This constitutes an extention to inhomogeneous
space-times of the de Sitter space conformal symme-
try, namely,

~gdsgab =2e gab i
+A/3t

gs ——e '( v'3/A, O, O, O),

when the equation of state of the "matter" is deter-
mined from the equations above.

Thus, in summary, we have found that the Ein-
stein field equations with spherical symmetry, a
fluid description of matter, and a nonzero cosmolog-
ical constant (equivalently, a constant vacuum ener-

gy density) possess solutions having the conformal
symmetry (19) and (20). This is so provided that
Eqs. (10)—(13) and (16) and (17a) are satisfied and (
is given by Eq. (18) in arbitrary comoving coordi-
nates. The physical variables are found from Eqs.
(7) and (9) with r'=r. We will explore these solu-
tions further below, but we may note that in general
from (16) that

which may also be written as

3
(17b)

M(S,
or dimensionally,

2Gm
&1

(21a)

(21b)
which is a Hubble law.

It is noteworthy that this separation of Eq. (4a) is
closely analogous to that achieved by the spatially
fiat de Sitter solution. In that case, I =1 and
U =AR /3, just as above except that the mass-

energy of the matter is zero for the de Sitter case.
In these canonical coordinates, Eqs. (10)—(13)

plus (16) and (17a) are complete for M, S, P, g, a, e)
as functions of g=t'/r'. We can now discover the
similarity variable in arbitrary comoving coordinates
t, r by transforming back to these coordinates using
Eq. (8). This gives r'=r, and

in such solutions.

b(r=O, e "= ' (r')(A/
3

(22)

which leads to (14) becoming separated as

e "(S—gS') =S (23a)

C. Negative vacuum energy density

When 8mp„=A&0 inspection of Eq. (14) again
reveals a unique separation if

t'=const Xe

so that the simi. larity variable is conveniently taken
as

or equivalently

3

and

(23b)

~
"]/ A/3t

g=v 3/A (18) —cTSr2

S (24a)
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or its equivalent

U =M/S —1. (24b)

(M +P$3)~

e =
S'(S M—)(P+ ri)'

(29)

This separation is quite different from that in Sec.
IIA, as here the "Hubble" variation is in space rath-
er than in time and by Eq. (26b) it represents a com-
plementary solution with

and

3gS —M
e =

S'(P+ ri}
(30)

or

M/S& 1 (25a) Substituting these last equations into the Bianchi
identities (12) and (13) gives, after a tedious calcula-
tion,

26mm
2

&1. (25b)
dq 3(P+g)
S S (31a)

The relation between this solution and that of Sec.
II A is then much like that between solutions inside
and outside an "apparent horizon. "

We again return to the original coordinates from
the canonical coordinates using the transformation
(8) which in this case yields t'= t and

r'= const)(e

We therefore fmd the similarity variable in the origi-
nal coordinates to be

and

P =—ri —(S/3)d g/dS

dP (P+ri)
2S(S—M)(qS' —M)

X[(M+PS ) 4PS (S M—)]l, —

(3 lb)

(32)

0=«IAI/3e &j~~r3. (26)

D. Reduced Geld equations

We proceed to find the equations to be solved in
their simplest form in the cases where A&0 and
A & 0, respectively.

(i) A &0. Equations (10) and (11) are easily rear-
ranged to give

S —MgS'= (27)
S (P+ri)

gM'= — (gS —M) .I'+ g
Moreover, Eqs. (16) and (17a) may now be used with
(27) and (28) to express the metric coefficients as

(28)

The generator of the corresponding Lie group is say

g =(t,v'3/
~

A [,0,0)e

but this time the conformal symmetry

Wg, b
——2e r "g,s holds only in the subspace with

d8=d$=0. This is then a partially spatially con-
formal space-time in the sense of the partially self-
similar space-times of Tomita. '

We note in summary that Eqs. (10)—(13), (23a),
and (24a) now constitute a complete set for P(g),
ri(g}, M(g}, S(g), 0 (g), and co(g) where g is given by
Eq. (26), and A=8np„&0. Equations (7) and (9)
continue to hold in the arbitrary coordinates r, t.

where we have used (27) to change the independent
variable from g to S. Equation (31b) is the "equa-
tion of state" for this solution. The ratio of Eqs.
(28) and (27) may be written as

P= —(1/S )dM/dS, (33)

and Eqs. (31), (32), and (33) are complete for P(S),
q(S), and M(S). Equation (27) must be solved ulti-
mately for S(g) to complete the solution in terms of
arbitrary coordinates.

In fact Eqs. (31b) and (33) are easily combined to
give the integral

SM=g
3

(34!

where b, is an arbitrary constant. This proves useful
in finding our analytic solution below and serves as
a check on the numerical integration of Eqs. (27),
(31), (32), and (33) (Sec. IV). If we rewrite this in-

tegral using the ansatz (9) we find

4m 3 rh
mm —

3
Pm~ = (35)

so that with 6=0 we can expect the density of
matter and spatial sections of the manifold to be
homogeneous although the spatial sections may not
be flat, as we are not dealing with dust. We shall see
below that nevertheless the resulting space-time is
not homogeneous.

(ii) A ~0. For this case Eqs. (27) and (28) contin-
ue to apply and can be used with (23a} and (24a) to
write
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and

3
2

M+PS
(P+ rI)S

(36)

S gS —M
(M —S) gS'(P+ rt)

(37)

These in turn combine with the Bianchi identities to
yield

and

(riS +3M —4S)
dS 2S S—M

(3g)

dP P+rt M PS'—
S ris'-M (39)

These last two equations in combination with (27)
and (33}form a complete set for numerical analysis.
We have, however, been unable to discover an in-

tegral analogous to (34) for this case. Although we
include the A &0 solutions formally here for corn-
pleteness, we will not study it much in this paper as
it seems the unphysical case (see, e.g., Sec. II E).

The intrinsic geometry of the (flat) spacelike hyper-
surfaces is interesting in that the radial proper
separation of particles is small at large r (small g)
and increases as r decreases, while proper distances
on the two-spheres are independent of r

When A&0 and M=S, (24) shows immediately
that S=const, while (23) shows e =1. Equation
(11}gives g= 1/S =const, Eq. (10) is an identity,
and Eq. (13) is an identity. We have then only to
solve (12) when an expression for P is given. With P
also constant, we find e =const)&g "i' +"' where

g is given by Eq. (26). Thus we have (making an ap-
propriate choice of the t variable) a static space-time
wherein there is a blue-shift in all directions from
r=0. Such solutions do not seem to have much
physical significance, and so subsequently we will
concentrate on the A & 0 solutions.

III. ANALYTIC SOLUTIONS FOR A=8mp„&0

A. 6,=0

We find first a solution that we expect to be
homogeneous in the energy density. We define

y—:gS, a =P/ri, — (43)

E. Singular solution with M =S

We have seen above that the A&0 solution re-
quires M &S and conversely for the A &0 solution.
In this section we ask whether a special solution ex-
ists with M=S everywhere. When A&0, Eq. (10)
requires P = —1/S, (16) requires S=g (an arbitrary
multiplicative constant can be absorbed in r), (17)
gives e =1, (11) is an identity, (12) is an identity,
and only (13) need be solved as

so that Eqs. (31b) and (33) may be written as [using
(34)]

l d lny

3 d lnS
(44)

P =ya/S (45)

A direct substitution into Eq. (32) and changing the
independent variable from S toy gives

co' = (4/g) 2'�'/(P—+rt), — (40}

for which an equation of state for the matter must
be given [P(rl)]. Such an exercise is somewhat fu-
tile in the absence of a definite field-theory model, "
but we note that a homogeneous model is obtained if
we use rt=P/a, (a, may be negative). With this
equation of state, the solution of (40) is e =P,
where y= —4a, /(1+a, ) (and where we have ab-
sorbed another constant into t). The metric is thus

da 1 (a+1)(3a+1)
dy 4 (3-y)

which integrates to

C(1—y/3)'i ——,

1 —C(1—y/3)'i
(46)

ds =dt Pdr rg dQ— — (41)

which, with a redefinition of the radial coordinate
(dr, =r rdr ), reduces to a Kantowski-Sachs
metric of closed form. In the special case
a, = ——,, the metric assumes the isotropic form

on recalling that M &S requires y &3 in the present
case, and writing C as an arbitrary constant of in-
tegration. From Eq. (27)

= —,(1+a),d In(

ds =dt g(dr +r d Q—~) . (42) which can be combined with (44) to give
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= —2C(1 —y/3)' '
d ln(

or on quadrature

—=sech (Clng+D),
3

(47}

= 1 —C tanh(C in(),d lnS
din

so that

S=Kg sech(C in/), (49)

which completes the solution (E is an arbitrary posi-
tive constant).

The metric coefficients are given by (30) and (29)
as

e~= [1—C tanh(C in/)]

and

e"=C S (51}

We see from (SO) that there is no apparent horizon
in the solution if

~

C
~

&1. The sign of C may be
taken positive as the solution is invariant under
C~ —C.

Equations (34) and (47)—(Sl) give the complete
general solution for the case A &0, b =0 (these re-
sults are summarized in Sec. V). The spatial sec-
tions of the space-time have a line element given by

3E
dl = exp(2i/A/3t)(dX +cos XdQ ),

A

where cosX =sech( C in/), and are thus homogeneous
closed spaces of constant curvature. This constancy
of three-space curvature follows naturally from the
assumed symmetry, i.e., it is due to the absence of
any further dimensional scales in the problem other
than A ' and c.

Asymptotically, as g~ l„one finds easily that

S=Kg, rl =3/S

P= 1/S, M=S—
and

where D is another constant of integration. By (18)
this corresponds to an arbitrary scaling radar and
thus may be set equal to zero with no loss of gen-
erality. With (47) there follows from (46)

C tanh(C in') ——,

Q= (48)
1 —C tanh(C in))

and hence

3E drds2 dt2 e2v h j3t C2 r +dII2 (54)A' r 2

S 2Eg' M 8Eg'

at~3/E g, P~ 3C —1

3(1—C)

The metric becomes

(55)

ds2 (1 C)2dt2 4+2(2(1—c)(C2dr2+r2dII2)

(56)

For C & 1 the scale factor S approaches ao as g~ oo

corresponding to an open universe. With
t=(1—C)t and r=2E(3/A)" ' r, the metric

Here = means "asymptotically equal. " We recall
that our solutions are restricted to the region M &S
[Eq. (21a)], so that g= 1 is a natural starting hyper-
surface for the solution. The metric (54) is again a
Kantowski-Sachs space-time (cf Sec. IIE). Indeed,
setting

dr~ .dr=C
r'tt„ r

renders it in the "isotropic" form (42), and a scaling
in time removes E. Our solution can then be
matched onto the M =S solution of Sec. IIE at g= 1

(with a, = ——,) and continued to S=O ((=0) to
obatin a global solution in 0&(& ao. We show
below that the solution tends to de Sitter space as
g-+ co. Thus, the patched global solution described
a thin region of inhomogeneity and anisotropy (a
"bubble" ) near (=1, which propagates into the
vacuum-dominated M =S region and leaves behind
de Sitter space-time. In this sense it may have appli-
cation to a "phase changing" instability of the vac-
uum. We also observe that the numerical calcula-
tions of Sec. IV indicate that there may be a family
of solutions with this behavior in the vicinity of the
analytic solution.

The analytic solution in fact only touches the
point M =S, as may be seen by observing M/S [see,
e.g., (60)] to have a maximum at )=1, equal to uni-

ty. It actually passes this critical or bifurcation
point with dP/dS=lim(0/0) and e"=lim(0/0) [see
(29) and (32)]. Hence it may be continued to /=0 to
give another global solution. In that limit the solu-
tion is given also by (55), (56), and (57) provided the
formal substitution C~ —C (new C&0) is made
everywhere. This solution therefore describes a
(nonempty) spherical wave of inhomogeneity near
g= 1, which propagates into a (nonempty) de Sitter
universe ((& 1) and leaves behind a (nonempty) de
Sitter universe (g & 1).

As g-~ oo we have
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may be written

ds2 dr 2 e2VA/3t(dr 2+r—2dQ2) (57)

(=exp —tanh
1 ) 1

C C

and. is
' 1/2

S=E 1—1

C2
exp —tanh

1 $ 1

C C

If C=l, S approaches the limiting value 2E as
00 ~

The (dimensional) matter density is given exactly
by (9), (43), (47), and (49) as

which corresponds to the Robertson-Walker de Si-
tter metric. It is remarkable that this is achieved
here for a nonempty space-time, which is therefore a
self-consistent madel of a steady-state cosmology.

If C&1, S-+0 as g—+ oo, corresponding to a
closed universe. The maximum value of S is
achieved when

the analytic curve numerically by starting at So ——1,
C in' ——1, gp

——3 sech (1), Mp ——sech (1}, and
Pp ——[tanh(1) ——,]/[1 —tanh(1) ], and integrating
forwards and backwards in S. The choice for Pp re-
quires C=0.9522, and is serendipitously in the in-
teresting range ( —, &C&1). This curve is labeled

Mp in Fig. 1, which is the P Spla-ne of the solution
space. The curve continues smoothly to touch at
M=S at small S (ln(=0) as expected. As S in-
creases, P rises to a positive maximum, declines rap-
idly, and then asymptotically as g

The other curves in Fig. 1 were generated by vary-
ing M about its analytic solution Mo as indicated,
while holding other quantities at S= 1 fixed. The
curves generated by taking M &Mo led to negative
M at large S and so we discarded them for our pur-
poses. For MD&M &MD+-0.08, a dense stable
family of solutions was found, of which the analytic
curve is clearly a typical member (they all terminate
at M =S at small S and display similar behavior at
large S}. When M was increased to Mp+0. 08 and
beyond, the singularity farmed in the P Sand-
)—S planes when r)S —M =0 was encountered.

—2+4/3ePm= 2e (58)
V. SUMMARY AND DISCUSSION

so that the solution is matter homogeneous. By (9),
(43), and (49), p is not in general homogeneous;
however, in the limit g—+ ao, a [Eq. (48)] tends to
the constant value (3C—1)/3(1 —C) so that the ma-
terial pressure is also homogeneous in this limit. As
remarked above if the solution is continued to (=0
with or without patching to the M =S solution, then
it is also homogeneous in this limit.

S'~ = —g&/24+constXg ~ . (59}

The metric coefficients are easily found from (29)
and (30). This solution is not homogeneous and has
(for g»0) a singularity at a finite value of g, so we
shall not discuss it further here.

IV. NUMERICAL INTEGRATIONS

We have integrated Eqs. (27), (31a), (32), and (33)
numerically to investigate whether or not the analyt-
ic solution of Sec. IIIA is typical. We calculated

B. 5&0

The only analytic solution of the type P=a, ri
which is independent of the previous discussions
is with a, = ——,. Equation (31a) gives g =g,S
(ri& a constant), (34) gives M=(g&/3)S'~ +6, and
(33) is satisfied with P= —(qt/6)S . Substitu-
tion into (32) yields a compatibility condition which
determines b, = —

g& /36. Finally we may solve Eq.
(27) to obtain

We have succeeded in this paper in finding a class
af nonempty, spherically symmetric (although the
hypersurfaces are anisotropic), inhomogeneous solu-
tions to the Einstein field equations with a finite
"cosmological constant" (constant vacuum energy
density}. Those with a positive constant possess a
conformal symmetry also found in the de Sitter
universe, but the group generators are not purely
timelike for these space-times as they are in the de
Sitter case.

A family of analytic solutions has been found for
A&0 and a homogeneous matter energy density.
The asymptatically open members of this family
describe a region of inhomogeneity near )= 1 propa-
gating into the nonempty spatially flat, Robertson-
Walker region at g & 1 and leaving behind another at
g & 1. An apen solution in g & 1 may also be
patched to the M=S solution for /&1. This may
describe the transformation of a vacuum-dominated
universe into a (nonempty) de Sitter universe. This
exact classical solution, which has a conformal Kil-
ling vector and allows negative pressure, imitates re-
markably the quantum, canformal field-theory
description of the origin of the Universe given by
Brout, Englert, and Gunzig" and by Brout, Englert,
and Spindel. ' One can hope also that this solution
may eventually shed light on the degree of homo-
geneity attainable after a phase change in the vacu-
um.

Because of its potential importance, we summa-
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0.7 0.8 0.9 'I.O 1.2 1.4

FIG. 1. Numerically computed solutions of the reduced field equations in the P-S plane. The curve labeled Mo is the
analytic solution of Sec. III [6=0 in Eq. (34)]. Other curves are labeled by the value of their mass excess over the analytic
solution. The curves for mass excesses )0.08 exhibit a singularity at some value of S, at which dP/dS~ 00 as

qS —M~ 0. Solutions with mass defects relative to the analytic solution encounter negative M at large S.

rize the results of Sec. IIIA here. The solution is
explicitly (in terms of the conformally invariant
variables)

geneous matter density, (4c) and (4b) may be com-
bined to give the first law as

S=Kg sech(C In(), R p~ = —4' R,p~,
dt

(61)

and

r)=3/(E g ),

22
3C tanh( C In() —1

E2/x[1 —C tanh( C lug) ]
M=Kgsech (Clng),

e =[1—C tanh(C In()],

e"~ =CKg sech( C In/) .

(60)

The arbitrary constant E may, if desired, be ab-
sorbed into g, and the significance of C has been dis-
cussed in Sec. III.

It may seem strange that the above behavior is ob-
tained with no apparent coupling between p and p„
(p„ is held constant throughout). However, there is
a kind of coupling through the matter equation of
state that is required as part of the assumed symme-
try [Eq. (31b)]. Thus, for a solution with a homo-

from which we see that p &0 is synonymous with a
nonadiabatic increase in the matter energy in the
Universe. Moreover, Fig. 1 shows that this epoch
terminates (p~ )0) in a relatively rapid transition,
just as in Ref. 21.

Similar behavior has been found by Henriksen'
for a vacuum energy p„~ t in a Robertson-Walker
universe, the solution of which is also based on a
homothetic symmetry. Of course in the present
solution, a detailed numerical correspondence would
require an enormous A (by the standards of the
present epoch, say p„-10 ergcm ) which cer-
tainly cannot be extrapolated to late epochs. Thus,
as we suggested in the Introduction to this paper,
the constant p„phase must be very transitory, last-

ing perhaps only until the epoch of positive p, after
which it must undergo one or more phase transi-
tions. Our patched solutions might be useful in
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describing "bubbles" where the new vacuum is
forming in the midst of the false vacuum. 9 Such
fluctuations associated with phase transitions can be
relevant to theories of galaxy formation.

We have also given for completeness the class of
solutions found when p, &0, although what, if any,
physical significance they have is not clear. Formal-
ly, they have only a partial conformal symmetry
which may suggest an interesting mathematical
class of solutions to investigate (see, e.g., Tomita' ).
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