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Is SU(2)z, XSU(2)Ii XUg L, (1)a viable symmetry at low energy?
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We consider the gauge groups SU(2)L, XSU(2)& &(U& I.(1) with low-energy parity res-

toration and SU(2)L )( T3~ XU~ L, (1) as alternatives to the standard model at low energies,

and fit their parameters to the neutral-current data. It is shown that if present phenomeno-

logical fits to data are taken seriously, the left-right-symmetric model is disfavored because

it requires either too small a value of sin 8+ to be consistent with grand unification or if
sin 0~ is chosen at a reasonable value, it then requires an imaginary mass for one of the Z
bosons. The second gauge group is consistent with data, and the best fits yield sin28&-0. 24

and Mz, =88+8 GeV, Mz -230 GeV,

I. INTRODUCTION

There has been a lot of recent interest' in alter-
natives to the standard Weinberg-Salam-Glashow
model for electroweak unification within the frame-
work of grand unification. One motivation is to
look for experimental tests of grand unification
besides proton decay. This would also signal
the existence of other intermediate mass scales
and populate the desert of SU(5}. One pop-
ular model is the left-right-symmetric model, '
SU(2)L, XSU(2)tt XUtt I, (1), which could restore
parity conservation at energies as low as 100 to 200
GeV. We also consider in this paper a model based
on the gauge group SU(2)L X TM XUit L (1), where

T3tt is the third component of the SU(2)tt group,
first suggested by Deshpande and Iskandar. Both
these models can emerge from grand unification
groups such as SO(10},chiral SU(8) XSU(8), SU(16),
and groups of which these are subgroups. The cru-
cial difference between the two groups is in the
value of gtt and sin |}ii as determined by the renor-
malization group. Both these models can provide
for departure from the predictions of the standard
model. A feature they share is the existence of two
Z bosons, and consequently a different mass for the
lower Z boson from the standard model, a prospect
which can soon be experimentally tested. In this pa-
per we subject these models to a thorough examina-
tion by confronting them with low-energy data.
Many authors have already studied the low-

energy phenomenology to see if consistent parame-
ters can be found for the left-right-symmetric model
which will fit all the data reasonably. Here we
adopt a different philosophy. We look for the best
fit to the data and see what it dictates for the
parameters of the models. An unacceptable value of
a parameter is then interpreted as a failure of the

model; the number of standard deviations away
from an acceptable value is a measure of the degree
of failure. With this in mind, the data we used was
chosen for its accuracy and reliability.

In Sec. II of this paper we present parametrization
of the two models, and discuss the restrictions on
these parameters that arise from positivity of Mz
as well as from grand unification. Section III is de-

voted to fitting the parameters of the model to data.
The failure of the left-right-symmetric model can be
clearly seen. Our conclusions are presented in Sec.
IV.

II. PARAMETRIZATION OF THE MODELS

In this section we present a brief review of the
phenomenological analysis of the neutral-current
sector that is applicable to the two models under
consideration. We begin by writing the interactions
in the symmetric but undiagonalized basis:

~tnt =gL.L t Jf+gttrt t.4+gtt&t 4 (2.1)

J~ =
6 (uy~u +dy~d) —

2 (vy~v+eyt e) (2.3)

and gL, gz, and git are the coupling constants for
the groups SU(2)L, , Utt L, (1), and SU(2)it or T3tt,
respectively. We note the essential difference be-

tween the two models is in the value of the g~. We
define a new basis to factor out electromagnetic in-

teractions. The new currents are

Here L„, R„, and B„are the gauge bosons; the
currents are given by

Jq' , [uyq——(1—+yg}u —dy„(1+yq )d

+&yt (1+y5}&'eyi (I+y—s}el (2 2}
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Q„=J„+J„+J„
=electromagnetic current,

Z I.
Jq -——Jq —xgq

=Weinberg —Salam current,

R

(2.4)

2
gL, GI;

P=
I

8Mz cos Og v 2

a =Mz c /detM

(g~ +ga ) Mz2 2 1/2 2

p=—
(gL 'sec'e~)

Y (gL tan~A/gR )

(2.10)

where x, y, and the electric charge are defined as

e =gl slnogr,

x =sin2e~

gR gB /(gB gi. +gB gR +gL gR
2 2 2 2 2 2 2 2

X =x(gt, '/gR

The interaction Lagrangian now becomes

W;„,= eA„Q"+ (gL /cos8s )Z„J)

(2.5)

(g2+g2)1/2C
2

gL tan8p J+J
(2.6)

Mz' Mz-c'
2M =

Mz-c ~c (2.7)

The photon field A„, as well as the fields Z& and

C&, are linear combinations of Lz, R&, and 8&. Ad-
ditional details of these transformations are found in
Ref. 8. The advantage of the representation equa-
tion (2.6) is that the first two terms correspond to
the standard model, while the last term is the correc-
tion arising from the additional group. The fields Z
and C are not mass eigenstates, and we allow an ar-
bitrary mixing among them. The general mass ma-
trix is defined by

In the most general case there are five independent
parameters in Eq. (2.8). These are x, y, r)l, biz,
and gR which can be traced to three unknowns in
the mass matrix and two unknown coupling con-
stants (since e is determined). However, for either of
the two models we shall consider there is one more
constraint among the coupling constants arising
from grand unification and the renormalization
group. In the case of SU(2)L, X SU(2)~ X Ug L, (l), if
this is a low-energy symmetry, by which we mean
that all gauge bosons are lighter than 1 TeV, then
the coupling gL and gR should evolve in the same
way. This implies their equality. In the second
model we shall assume that the grand uni-
fied group breaks at —10" GeV leaving
SU(2) X T3& XUs 1(1) as the gauge group. Here

T3R is the third component of the SU(2)z. Now the
two U(1) groups evolve in the same way. Since the
currents are normalized differently we shall have

gz ——gs( —, )' . After some simple algebra we have

y =x for SU(2)1 XSU(2)z XUs I (1) (2.11)

and (g~ /gI ) =5 tan Os /3, which in turn implies

y=3(1 —x)/5 for SU(2)L XT3ItXUg L, (1) .
(2.12)

There are additional constraints on the parame-
ters. From positivity of the diagonalized masses M&
and M2 of the neutral gauge bosons, as well as from
definition in Eq. (2.9), we have

We can then write an effective interaction at low q
as

('91 JpJ5 2riiz JpJ'P+ '9w J—
qJF)

—46@ F
2

YfL )0, 'QR )0,
2

38.6 GeV

M1

38.6 GeV

M2

(2.13)

(2.8)
38.6 QeV

M1

=x t(1—)(ni+V~ )+2xni~ j,
38.6 QeV

M2

(2. 14)

rIL, pal+a (1+pl )——),
ns.a = p& 'P(1+P1'»—
'r)z =po' ~2 2

and

(2.9)
=x'(1 2x)(rlL, r)g rjl g '), (2—.15)—

where we have used

xM~ ——u(M~ )m/v 2GF ——(38.6 GeV) (2.16)

with the value of a '(Ms, ) = 128 from
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1 3

6 &~(8 (2.18)

renormalization-group analysis. We shall show that
SU(2)L XSU(2)~XU~ L, (1) has great difficulty in
satisfying these constraints. There are further
constraints on allowed values of the
parameters x =sin (9~. In the model
SU(2)L, X SU(2)~ XU~ 1(1) with minimal Higgs
structure there is strict inequality:

4 (X( (2.17)

while for SU(2)L, XTs(&)XUg 1.(1) the restriction
is the same as in SU(5):

A detailed study by Rizzo in which effects of
Higgs bosons and fermions are taken into account
shows that the preferred value of x is

x =0.27—0.28 for SU(2)L, XSU(2)a XUs 1.(1) .

For the SU(2)L XTs(R)XUs 1(1) the preferred
value is the same as SU(5), ' namely, x &0.216 for
SU(2)L, XTs(R)XU~ L, (1). Determined values of x
also can be used to test the plausibility of a model.

As is well known, low energy data can be
described by ten modd-independent parameters. We
adopt the following convention for these parameters.

(a) Quark-neutrino interaction:

Gp
W„q —— [vy„(1+ys)v][ut uy„(1+ys)u +u~uy„(1 —ys)u+di dy„(1+y, )d+dgdy„(1 —ys)d] .V-lj

(b) Electron-neutrino interaction:

GF
[vy„(1+ys)v][ey&(gv+g~ys)e] .

'V2

(c) Quark-electron interactions:

GF~ -q = — jey"e[ev~(u)uy~ysu+~v~(d)dyqysd]+eyi'yse[e„v(u)uy„u +e~v(d)dyqd] I ~e-q

(2.20)

(2.21)

The relationship between the model parameters
and the model-independent parameters is summa-
rized in Table I.

III. DETERMINATION OF MODEL
PARAMETERS

The parameters x, qL, gL,R, and gR were evaluat-
ed for both the models using a least-squares fit to
the neutral-current data. The values we used for the

I

neutrino couplings to quarks and leptons, ul. , uR,
dL, , dR, g~, and gq, were those obtained in the
analysis of Langacker er al. ' Unfortunately such
an analysis is not available for the parity-violating
electron-quark couplings evq (u), evq (d), ez v(u), and
gv(d). W'e use instead some linear combinations of

these couplings that are determined from electron-
deuteron asymmetry, and from atomic-physics ex-
periments on bismuth. Hung and Sakurai' have
analyzed the SLAC (Ref. 13) data on electron-

TABLE I. Relations between model-independent neutral-current couplings and model
parameters. To recover the standard-model expressions, set gL ——1 and gR ——gLR

——0.

Parameters

dL

e&v(u)

e„v(d)

&v~(u)

~v~{d)

SU(2)L XSU(2)R XUg L {1)

1 2—gL ——X{gL—gLR )

1 2

1 1—
2 gL+ —,X (gL —gLR )

1 1—2nLR+ —,X (nL —nLR )

1

2 (gL+QLR)
1

(2x ——)(gL —gLR )

4 1

{—,x ——)(r]L —gR )

1 2
{—,——3X)(gL —gR )

1

2 +2X){ IL QR )

—evg(u)

SU(2)L X T3R X Ug L(1)

1 2 2 3

2 tL+ g ILR 3X{QL+ g ILR)
1 2 3

10 QLR 3
X {QL+ 5 QLR)

1 1 1 3

2 gL 5 gLR+ 3 {QL+ 5 gLR)
3 1 3

1o ILR+ 3X{IL+ 5 ILR)
1——2(nL+gLR )

1 7 3

2 QL 10 ILR +2X{ IL + 5 ILR )

4 1 8 3
{—X ——)(gL+ —,gLR+ —,gR )

2 1 2 8 3

3 {QL+ gLR ) { 6 + 3
){ IL+ 5 ILR + 5 IR )

2 7 8 3

3 {gL+ gLR ) 6 2X)(9L+ S 9LR+ 5 QR )

ev„(u)
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deuteron scattering and found
2 1

A )
=

3 egg(u) ——,@~y(d) = —0.30+0.08,

~2= 3 &Av(u) 3 eAv(d)+ 3 evA(u) 6 svA(d)

= —0.53+0.05 .

The value of Qs from the most recent Seattle exper-
iment' yields the value

A 3 =Eg p (u ) + 1.1 5' y(d) =0.20+0.03 (3.2)

To make the least-squares fit more tractable, we
first linearized the equations in Table I so matrix
methods' could be used to find the four model
parameters and their uncertainties. This was done
by considering the parameters as a zeroth-order ap-
proximation plus a small correction term and then
expanding the equations to first order in these
corrections. The zeroth-order approximations were
determined by analyzing the neutrino scattering data
and the parity-violating electron-quark data
separately. This was possible to do because, treated
separately, both sectors could be linearized without
expanding parameters. We used the average of the
two values for our zeroth-order approximation. As
a check on our procedure we noted that after linear-
izing all the equations and treating them together,
the corrections to the parameters were indeed small.

The experimental values used in our analysis as
well as our best fits to either model are listed in
Table II. Here we also list the best fits found by
Sehgal and Bajaj and Rajasekaran.

From the least-squares fit for the gauge model
SUI. (2)XT3gXUs 1.(1) we find the four parame-
ters to be

One can then calculate the masses of the two neutral
bosons from Eqs. (2.14) and (2.15) and we find

Mz, ——88+8 GeV, Mz, & 230 GeV . (3.4)

The uncertainty for the heavier mass is quite large
due to its sensitive dependence on gz.

For the gauge model SUL, (2) XSU+(2) XUs I (1)
the situation is not so encouraging. We obtain for
the model parameters

x =0.246+0.013, gL, ——1.03+0.06,

gg g
———0.01+0.07, gg ———0.06+0.11 .

(3.5)

The value of x is several standard deviations below
the predicted value from the renormalization-group
equations, i.e., x =0.27—0.28. What is even worse is
that there is a correlation between the values of x
and rl~ such that if we take the upper range for x,
we are forced into the lower range for ga, which
violates the positivity constraint on it. Further, as x
becomes larger, there is no way to reconcile the data
from electron-deuteron scattering and atomic-
physics experiments on bismuth. We therefore as-
sumed for the sake of argument that the atomic-
physics data was in error since it tends to favor
small x and since there may still be some atomic ef-
fects not treated properly in calculating Qs (Bi). We
then fixed the value of x at 0.27 and 0.28 and fitted
the rest of the parameters to the data without using
the value for A3 from Qs (Bi). (We display the best
fit for x=0.27 in Table II.) In both cases, however,
we found that the parameter gg was negative by
more than two standard deviations, which is in gross
disagreement with the positivity constraint on it:

x =0.243+0.015, ql ——1.08+0.08

gl g ———0.057+0.09, q g
——0.15+0.14 .

(3.3)
x =0.27, qg ———0.32+0.14,

x =0.28, gg ———0.43+0.15 .
(3.6)

TABLE II. Experimental values of model-independent parameters used by us, with best fits to both

SU&(2) XSU~(2) XU(1) and SUL, (2) X T3q XU(1) models. We also present the fits obtained by Sehgal (S) (Ref. 6), and Bajaj
and Rajasekaran (BR) (Ref. 7) for the left-right-symmetric model as well as a second fit made by us without using Q3 as
input and fixing sin 0~——0.27. For completeness we include a fit to the Weinberg-Salam (WS) standard model,
SU(2) XU(1).

Experiment Best fit
SU (2)XSU (2)XU(1)

x=0.27 S (Ref. 6) BR (Ref. 7)
SUI. (2)X T3g XU(1)

Best fit
WS

x=0.234

ul. ——0.340+0.033
&, = -0.179+0.019
d .=—0.424+0.026
dg ———0.017+0.058
gg ———0.52+0.06
g v ——0.06+0.08
A, = —0.30+0.08
A 2

———0,53+0.05
A 3

——0.20+0.03

0.344
—0.166
—0.430

0.08
—0.51
—0.008
—0.25
—0.50

0.23

0.330
—0.17
—0.436

0.066
—0.50

0.046
—0.28
—0.53

(0.32)

0.325
—0.15
—0.421

0.054
—0.48

0
—0.27
—0.53

(0.26)

0.347
—0.143

0 AHA

0.046
—0.49
—0.012
—0.25
—0.50

0.23

0.348
—0.164
—0.444

0.068
—0.51

0.008
—0.24
—0.50

0.19

0.343
—0.157
—0.422

0.078
—0.50
—0.03
—0.24
—0.50

0.21
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Once again we are faced with the prediction of an
unphysical parameter (which would this time re-
quire an imaginary mass for one of the neutral bo-
sons). The data seem to clearly disfavor the left-
right-symmetric model with a low-mass right-
handed boson.

It should be pointed out that several authors have
made fits for the left-right-symmetric model using
parameter-search methods. Rizzo and Senjanovic
have fit the data to within 1.5 standard deviations
for several values of the parameters; however, they
appear not to have imposed the most stringent re-
quirement from electron-deuteron scattering, namely
the linear combination we call A2, which is deter-
mined more precisely than individual e parameters.
Since gR depends solely on the e parameters, it is
crucial to use the most precise experimental values
to determine its magnitude. Sehgal has given the
following set of parameters without using A3 from
Qw(&i):

x =0.25+0.02, gl ——1.0+0.06

gLg ———0.05+0.06, gg ———0.2+0.2 .
(3.7)

Here x is again too small by one standard deviation
and gz is also negative by one standard deviation.
In addition, Eq. (2.15) for the mass eigenvalues is
negative unless one takes both gz and pi~ to be
equal to zero. This would then make one of the bo-
sons infinitely heavy while the lighter one would
have a mass of 86+3 GeV. We are essentially back
to the standard model. An earlier fit was done by
Bajaj and Rajasekaran using numbers obtained by
Ecker. ' Their results, which use the positivity of
g~, also support our conclusion.

Recently, Fogelman and Rizzo' have pointed out
that the value of x in the SU(2)L, X T3(R) XUii L, (1)
model is higher than expected, if this group emerges
from SO(10). The proton lifetime would then be less
than the experimental limit. However, this argu-
ment is not too compelling because this model could
arise from other models of grand unification, like
the chiral SU(8) model, ' where the proton is stable.
Another way of raising the value of x theoretically
is to put an intermediate scale at Mx, where SU(2)x
gets broken to T&(R), with Mti between Mii and the
unification scale M„. This possibility will be con-
sidered in a forthcoming publication. ' Making

IV. CONCLUSIONS

We have examined alternatives to the standard
model which could well arise from grand unified
models which are larger than SU(5). The two most
plausible structures at low energy are
SU(2)L XT&(R)XUii L, (1) and SU(2)L XSU(2)ti
XUii L, (l). The former yields an excellent fit to all
low-energy phenomena, and the values of sin Hii are
consistent with grand unification. The masses of
the two Z bosons of the theory are

Mz, ——88+8 GeV,

Mz &230 GeV.
(4.1)

Since the mass of the lighter Z boson differs from
that in the Weinberg-Salarn model, it will be possi-
ble to detect this in the near future.

We have carried out a least-squares fit to the data
for SU(2)L, XSU(2)g XUz t (1) model, and found
that the data require either too small a value for
sin 0~, or if atomic-physics experiments are disre-
garded and sin Oir is chosen from grand unification,
the value of i)z was negative by two standard devia-
tions, forcing one of the Z bosons to have an imag-
inary mass. We therefore find this model rather un-
likely to be a low-energy symmetry of the theory.
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SO(10) supersymmetric can also change the value of
x and proton lifetime in the correct direction as in
the case of SU(5). This effect on the left-right-
symmetric model would, however, make x even
larger thus forcing riz even more negative.

A related observation made recently ' is that if
one implements Dine-Fischler-Srednicki mechan-
ism2 in SO(10) to resolve the strong CP problem
with an invisible axion, then certain patterns of sym-
metry breaking are not allowed. In particular
SO(10)~SO(6)XSO(4) necessary to obtain SU(2)L
XSU(2)RXUii L(1) as a low-energy group seems
not to be allowed, while SO(10)~SU(5) XU(1)~SU(3) XSU(2) XU(l) XU(1) is allowed.
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