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Spectator-based pole model for three-body nonleptonic decays of D and F mesons
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The spectator model of charmed-particle decays has failed to reproduce the two-body
decay data. Soft-pion/kaon arguments have led to the belief that it is equally condemned
to fail for three-body decays. However, avoiding soft-pion/kaon analyses we are led to a
pole model of three-body decay which is in good agreement with the branching-ratio data,
and the observed ~(D+)/~(D ) ratio.

I. INTRODUCTION

One of the earliest, simplest, and most appealing
models of charmed-meson decays is the spectator
model' in which the charmed quark is assumed to
decay, and the other constituent quark of the
meson behaves as an independent spectator, as in
Fig. 1(A). Two of the predictions of this model

(i) r(D+)=r(D'),

Partly because of these difficulties with the
description of what one would expect to be the
simplest charmed-meson decays, very little work
has been done on the three-body decay modes. '

In particular from soft-pion and soft-kaon
theorems one would expect to relate the K2~
modes to the Em modes —which is not much en-

couragement to proceed when the En. modes are
not well understood.

Nevertheless in this paper we adapt the simple
spectator model to attempt a description of the
three-body decay modes. We are undeterred by the

are in marked disagreement with the experimental
daia2

(i') r(D+)lr(D )=3.1+i 4,

This disagreement has prompted many modifica-
tions of the spectator model, which may be re-

viewed in Leveille and Pakvasa. These include:
(a) dominance of nonspectator graphs, (b) in-

clusion of perturbative gluon effects, (c) inclusion
of nonperturbative gluon effects, ' (d) phenomeno-
logical modification of the spectator model, (e) in-
clusion of final-state interactions, ' "and (fl even
more exotic possibilities, ' in part generated by fur-
ther difficulties in understanding the Cabibbo-
suppressed decays. However none of these modifi-
cations are totally convincing, and their number in-
dicates that we are a long way from understanding
the two-body decays of the charmed mesons.
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FIG. 1. (A) Spectator diagrams of charm decay per-
mitted by Eq. (3). As usual the four-body weak vertex
is drawn so as to indicate color flow. (B) Macroscopic
view of spectator diagrams. represents the weak ver-
tex.
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failure of the model for the two-body modes, not-

ing that two-body modes are parity violating, and
the three-body modes are parity conserving. A
successful simultaneous understanding of parity-
violating and parity-conserving strange-particle de-
cays proved elusive for many years, ' ' and not
everybody is convinced that the problem is yet
solved. " Moreover, sufficient structure is observed
in the Dalitz plot of the three-body decays that
one would not expect the soft-pion and soft-kaon
results to give a good description of the overall
three-body rate. And furthermore it has been sug-
gested that the spectator model need not necessari-
ly lead to the equality of D+ and D lifetimes.
For all of these reasons it is desirable to approach
the study of the three-body decay modes free of in-
hibitions generated by the study of the two-body
decays.

We develop a simple pole model of the three-
body decays, in which the basic charm-changing
weak process is the parity-conserving decay
P,~VP or P, +SP of —the charmed pseudoscalar
meson P, to uncharmed vector and pseudoscalar or
scalar and pseudoscalar. Subsequent decay of the
vector or scalar meson produces the three-
pseudoscalar final state. The pole graphs
representing our model are shown in Fig. 2. We
should emphasize that, although Sezgin' has con-
sidered a few of the dominant three-body decay
modes in a pole model, his pole model differs
essentially from ours.

In Sec. II we will show how the spectator model
for P,~VP and P,~SP implicates our pole
model, dominated by uncharmed vector- and
scalar-meson poles. Our model has two free
parameters, the absolute magnitude of the weak in-

teraction and the relative strength of scalar and
vector terms. In view of the well known difficul-
ties in calculating the two-body modes, we have

D,F
P2

D. F
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FIG. 2. The spectator-derived pole model of three-
body decays of charmed mesons. Either the strong ver-
tex () occurs before the weak vertex ( |3j ) leading to a
charmed-meson pole-(case A), or the weak vertex occurs
before the strong leading to a noncharmed meson pole
(case B).

II. FROM THE SPECTATOR TO THE POLE
MODEL

A. Foundations

We base our work on the same basic QCD-
renormalized Hamiltonian as used by Cabibbo and
Maiani, '

confined ourselves to calculating ratios of three-
body rates, eliminating one of the parameters. It
then turns out that the branching ratios observed
at present are insensitive to the relative strength of
the vector and scalar poles and are reasonably well
described by our model. Certain F decay modes
and some kinematically suppressed D decay modes
are sensitive to the strength of the scalar pole, and
could be used to measure this parameter. Our
model is also consistent with present data on the
lifetimes of D+ and D, which is contrary to one' s
naive expectations for a spectator model. These re-
sults are presented in Sec. III, and we make some
concluding remarks in Sec. IV.

G f++f f+ f-
(Cabibbo favored) =cos Hceff

2 2
(sc)i.(iTd)r, + (sd)i, («)1.

2

X~ ———,(2f++f )=1.17,

X = , (2f+ f ) =—0.26—. —
(2a)

(2b)

with their choice of parameters f+ ——0.68,
f =2.15, which is a sufficiently good approxima-
tion to the six-quark Hamiltonian for our present
purposes. ' After Fierz rearrangement the parame-
ters which enter the amplitudes are

In comparing the effective Hamiltonian (1) with
the data we must somehow face the problem of
converting the quark-level Hamiltonian of Eq. (1)
into a Hamiltonian that refers to mesons. The
spectator graphs of Fig. 1(A) can be viewed macro-
scopically as providing a basic weak three-body
vertex illustrated in Fig. 1(B). On the other hand
annihilation and 8' exchange graphs lead to mac-
roscopic weak two-body vertices. At the mesonic
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level we thus regard spectator dominance as imply-
ing that three-body weak vertices will dominate
over two-body weak vertices.

We make the connection by regarding the stand-
ard Cabibbo-Maiani analysis' as supplying us with
the relative vertex factor, which we will call the
CM factor, for the weak three-body vertex. An
overall normalization constant, which may depend
on the Lorentz-tensor character of the mesons in-

volved, and the momentum dependence, which is
determined by the Lorentz-tensor character of the
mesons, may be included phenomenologically (the
procedure we adopt) or calculated from the quark
wave functions.

Given the basic three-body weak vertex, we are
led to consider the three-body decays of the
charmed mesons as proceeding through the pole
graphs of Fig. 2. The two pole terms differ in
whether the weak interaction appears first or
second, and thus in Fig. 2(A) the intermediate par-
ticle is charmed, while in Fig. 2(B) it is un-

charmed. Restricting our consideration to three
pseudoscalars in the final state, we see that C and

Lorentz invariance of the strong vertex restricts the
intermediate meson to be a scalar, vector, or ten-

sor.
In principle we should consider a very large

number of possible pole diagrams. We reduce the
calculation to manageable proportions by the fol-
lowing observations. In Fig. 3 we illustrate the
phase space for D+~E m+m+. The peaks of
the resonance poles will appear as straight lines on
this plot, as we have indicated for the E*,the ~,
and the uncharmed tensor resonance. The nearest
charmed pole, the D, lies outside the allowed
phase space and we therefore do not include the

~ K -1 ~ It.'{1400)

is '(

6

C (1540)

g'(1270)
1 3

==I

Mixing

=I
S (980)

FIG. 4. Our choice of the 0++ nonet.

charmed intermediate states in our calculation.
We have verified by an explicit calculation that the
correction generated by including them is indeed
small. Even the uncharmed tensor meson is near
the edge of the phase space. For this reason, and
because the tensor mesons preferentially couple via
the strong interaction to pseudoscalar and vector,
rather than two pseudoscalars, we have also
neglected tensor meson contributions.

Vector resonances are well inside the phase space
and have been observed in the Dalitz plot of the
decays, so we must retain them to have a reason-
able model. Scalar mesons are also well inside the
phase space, are broad, and couple strongly to two
pseudoscalars. We therefore also retain them in
our model.

In summary, we have argued that the spectator
dominance model at the quark level implicates a
pole model of charmed-meson decay to three
mesons. When the final mesons are three pseudo-
scalars, the poles of Fig. 2(B) with uncharmed vec-
tor and scalar intermediaries will dominate and are
retained in our model.

.835
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nce Line
=1.731 GeV
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.335

.235

.1 35
.49 .54 .59 .64 .69 .74 .79 .84 .89 .94 .97

FIG. 3. The kinematically allowed region for
D+~E m +n. +. Resonance poles occur along the lines
indicated, as discussed in the text.

B. Phenomenology

Since we are going to include scalar-meson poles
in our model we must make a choice of the 0++
scalar nonet. Estabrooks offers two viable alter-
natives, and we have chosen, the one in which
S (980) is the mostly SU(3)-singlet member of the
0++ nonet (see Fig. 4). The reason for this choice
is that it permits an explanation of the coupling ra-
tiog, zz/g, through mixing effects. We

recognize that other possible assignments of the
S'(980) as a qqqq state or as a glueball state have
been proposed, but the evidence for these cannot be
regarded as convincing. However at least one of
the 0++ mesons in this mass range must be other
than a qq state, as there are too many to fit into a
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TABLE I. Strong VPP coupling constants g~p p
1 2

which enter the pole-model calculation P,—+Pi P2P3.
The gyp p are defined in Eq. (4) in the text, and are an-

tisymmetric in P1 and P2. Only those coefficients for
which m 2 & m 1 are listed. The others are given by

gVP1P2 gVP2
1

V P1

p+
p+

p
p
p
E
E
E

P2

x'

m+

ac+
K
E+
sc'

x'
x+

j:+

gVP1 P2

W2g„,
2gpPP

2g pPP

gpPP

p~'

K PP

gs*pp
—Vzg, ,

gK PP

K PP

v 2gpw

We assume ideal mixing for the co and P, regarding
the P as a pure ss state, whereas we assume that
the i) and i)' are pure SU(3) octet and singlet,
respectively. Small deviations from this assump-
tion do not alter our results significantly.

The phenomenology of the strong-interaction
vertices is straightforward. C invariance, SU(3) in-

variance, and Hermiticity show that the strong
vector-pseudoscalar-pseudoscalar vertex may be
written as

~vpp igvp p V Pl~pP2

gvp p are real dimensionless coupling constants
1 2

which contain Clebsch-Gordan coefficients and the

TABLE II. Numerical values of gvpp coupling con-
stants used in our calculations.

V g VPP

3.05
3.22
3.26

Source

experimental
experimental
experimental

nonet.
With our choice of nonet the quadratic mixing

angle for the 0++ nonet is given by

(3)

ro-P (ideal) mixing angle. They are antisymmetric
in P~ and P2. gvp p may be related to a single

flavor-SU(3)-invariant coupling gvpp. This is
essentially what is done in Table I. However we
account for SU(3) breaking by using the experi-
mental values of gv pp ( V =K',p, P) obtained

from full-width data (see Table II). The approxi-
mation thus reduces to one of exact SU(2) rather
than SU(3) flavor symmetry.

Constructing A spp in a similar way we find

~As)
~SPP gSP1P ~ 1P2 '

Here again we construct gsp p from an SU(3)-
1 2

invariant gspp allowing for SU(3) breaking by us-

ing the data on the total widths of the scalars.
This time gsp p is symmetric in P& and P2. The

coefficients gsp p are given in terms of gspp in

Table III and the numerical values of
gs pp (S+ =5', ir, e', S*) are given in Table IV. gspp

cannot be obtained from the experimental data,
and has been calculated using SU(3) symmetry of
the scalar nonet.

Now we must construct the weak vertices. CP
invariance, Hermiticity, and the SU(4) structure of
the weak nonleptonic Hamiltonian [in (I)] leads us
to

~vpp i + wcos OcCvp)p V PI BpP2

A «rm V"d„(P&P2) is also allowed, but such a
term cancels the pole from the propagator (in the
»«ow-width approximation) and contributes only
to the nonpole background. Since we are con-
structing a pole model for the decays we will ig-
nore this term. The constant 8~ is the usual Fer-
mi constant modified by wave-function overlap
terms. As we will confine ourselves to calculating
ratios of rates the value of 9' iv will not concern
us. Cyp p are the CM factors discussed in Sec.

1 2

II A. They were calculated precisely as in Ref. 1,
and are given in Table V. The constant z appear-
ing in Table V was introduced by Cabibbo and
Maiani to allow for the difference when the vector
is formed from the spectator quark or from a
quark-antiquark pair involved in the weak interac-
tions. For the reasons given in Ref. 1 we set z=1
in our numerical calculations.

In a similar way we construct

4 spp Sivcos OcTCsp, p,S—PiP2 .
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TABLE III. Strong SPJP2 couPling constants. gsp p are as defined by Eq. (5) of text.
1 2

gSp p are symmetric in PJ and P2, so only coefficients from m2) m 1 are listed. k is the
1 2

quadratic e'-S* mixing angle. The numerical values are calculated using the couplings gspp
of Table IV. SJ (e8 ) is the pure SU(3) singlet (octet).

S PJ P2

5'+ E- E'
s+ ~- ~'
s' ~' ~'
S' K+ E-
6'E'K

gsp p (algebraic)

+~2gs'pr
+(2/V 3)gypp
+(2/v 3)gs PP

+(1)gs pp

( 1 )gs'pp

gSPJP2

(numerical value in GeV)

3.68
3.00
3.00
2.6

—2.6

K+ E m

K+ E- m'
K+ K-
K' m+ E-
K' E
K' K

+~2g:.
+(1)g pp
—(1/~3)g„pp
+W2g„„
—(1)g pp
—(1/~3)g pp

3.56
2.52

—1.46
3.56

—2.52
—1.46

7T

e' m'

e' E+ E
e' Ko K

E' 'g

(2/&3)g, cosA+( I/O 2)g +zzsinAe8PP SJPP
(1/v 3)g, cosA, —(1/2V 2)g, sink

S+)PP

—( I /O 3)g, cosA, + ( 1/v 2)g, sinA,
SPP SJ PP

—(1/V 3)g, z~cosA, —(1/V 2)g, sinA,
e8PP S

I
PP

—(1/&3)g, ~pcosA —( I /2&2)g, sinA,
SJ PP

3.51

—0.79

—2.08

—1.76

S' E+ E-
S* KOE
s* ~- ~+

s* ~' ~0

s'

+(1/&2)g, zzcosA, +(1/v 3)g, sinA,
SJ PP

—(1/V 2)g,zpcosA, +(I/V 3)g, zzsinAS1 PP '8
+(1/V 2)g ~&zcosA, —(2/V 3)g, sinA,

1

—(1/2V 2)g, cosA, —(1/V 3)g, sinA,
1 8PP

—(1/2v 2)g,~~cosA, +( I/V 3)g, ~ sinA,
SJ PP e8PP

2.16

—0.99

0.41

—1.37

—0.20

TABLE IV. Numerical values of gspp coupling con-
stants in GeV used in our calculations.

gspp Source

The parameter T, which has dimensions of mass,
allows for the difference in the wave-function over-

lap in the scalar and vector cases. The CM coeffi-
cients Csp p are constructed exactly as before, and

1 2

are tabulated in Table VI. The parameter r is
analogous to z. In our numerical calculation we
set r =1 for the same reason that we used z = 1.

III. CALCULATIONS AND RESULTS

In our model there are 25 Cabibbo-allowed decay
modes of the D and F mesons. Most of these have
contributions from more than one pole diagram.
The pole diagrams are uniquely identified by their
weak vertices (as numbered in Tables V and VI).
In Table VII we list these 25 decays, identifying
(by the weak vertices) the pole diagrams which
contribute to them.

In calculating the diagrams we have introduced
finite-width propagators through the replacement

K

SJ
I

E'8

Ql

2.52
2.41
2.68
2.6

experimental
experimental
experimental

theoretical
estimate

1

p —m +re p —m +imI2 2 ~ 2 2

where m is the resonance mass and I is its total
width. Integrating over the phase space, the decay
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Serial
number

1

2
3
4
5

6
7
8

9
10
11
12
13
14

P,~VP3

D+~p+K
—+K m+

D ~K* m+
—+p+K~p~K mp

~ppK~0 pK
~coK~p—+K

p+ -(t~+
p+ 0

~K K+
K*+K

~p 'g

CVI, P3

V 3[X++ZX ]
V3 ZX++X ]
Z 3X+
V3X,
V 3/2X
ZV'3/2X
( I/V 2)X
ZV 3/2X

X
ZV 3X,
V2X,
V3X
ZV 3X

—X+

TABLE V. CM vertex factors Cqp p [defined in Eq.
c 3

(6)] which are required in this paper for VP,P3 vertices.
The serial number associated with each vertex is used to
label the associated pole diagram. In numerical calcula-
tions the parameter Z was set to unity (see text).

Taking ratios of branching ratios we have three
pieces of experimental information, which turn out
to be rather insensitive to the parameter T. From
the data we obtain the limit

~T
~

&2.56eV.
This is a conservative estimate resulting from

consideration of the two ratios

(10)

and we tabulate the coefficients A, B, and C in
Table VIII.

We quote Kirby et al. for experimental data on
three-body decay. (There seems to be no subse-

quent improvement in the quality of this data. )

The branching ratios are as follows:

(a) B(D ~K rr+rr ) =(3.1+0.7) %%uo,

(b) B(D ~K n+n)=. (6 7+.2 1)%. ,

(c) B(D+ K ~+~+)=(4.5+0.8)%,
(d) B(D+~K n+n ).=(15.3+9.0)%%uo .

rates may be expressed as quadratic functions of
the unknown parameter T,

r(P, -P,P,P, ) =e~'cos'8, (~T'+BT+C ),
(9)

=2.16+0.83,
PD ~K m+m)'

r(D+~K'~+~o)
r(D+ K ~+~+)

TABLE VI. CM factors Csz p [defined in Eq. (7)] which are required in this paper. The
c 3

serial number associated with the vertex is used to label the associated pole diagram. The

parameter r is set equal to unity in our numerical calculations. For convenience the mixing-

angle (A, ) dependent coefficients are also given numerically.

Serial

number

P, —+PS CSP P3 CsP P with
c 3

numerical value
of A,

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

D+ K S'+
0—+K m+

D' ~K-~+
~K 5'+
~K S'
~K e'
~K S*

—0 0~K %
0~K

Q pi~K 'g

~+ K K+0

—+K K+

E

~m+S*
gr+
Qt+~ I

V 3(rX +X+)
V3(X +rX+)
rv 3X,
V3X
rV 3/2X
r [sinA, + (cosA, ) /V 2]X
r [cosA, —(sinA)/V 2]x
V 3/2X
V I/2X
X
&3X
rV 3X
r(V 2 cosA, —sinA, )X+
—r(V 2 sinA, +cosA, )X+
V2X,
—X+

(1.03)rX.
(0.66)rX

(0.93)rX
—(1.46)rX+
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TABLE VII. Pole-term contributions to the 25 Cabibbo-favored decay modes of D+, D,
and F+ considered in the paper. The pole terms are labeled by the serial number of the
weak vertex occurring in them, according to the numbering in Tables V and VI.

P, -+PPP

D+-+K K K+
E a+a

~K-~+m+
K a+g

D' ~K-~+m'

K ~-~+
Kmm

—+K a g
E-~+q'

0 0'K n. g
E-~+q'

—+Kgb
Egg

Contributions

1,15
1,2, 16
2,16
2, 15,16

3,4,5,17,22

3,6,17,20,21
5,6,20,21,22
5,7,19,22,23
3,7,17,18,23
9,24
9,24
7,20,21,23
kinematically

forbidden

4,6,18,19,20,21
6,19,20,21

P, ~PPP
F+ K-~+K+

E ~'K+
K q'K+
E K'~+

—+m +m'+m'

~a +a'm'

—+K+K g

+g 77
Ol

+f/ 1T 7?

Contributions

10,12,25,27,28
12,13,25,26
12,13,11,25,26,29
10,13,26,27,28
27,28
27,28

27,28,29
14,30
30
11
14

TABLE VIII. The numerical constants A, 8, and C [defined in Eq. (9)] for the 25 decays
considered in this paper.

1

2
3
4
5

6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

P, ~PiP2P3 mode

F+ ~++q'q'
F+ ~g'm+~0
F+ ~q'm+m'
F+ ~m+~ m.

F+ ~+~+~-
F+ ~K+K r]
D' K-~+q'
D' ~E ~'q'
D+—+E m+a+
D+—+K E K+
F+ ~+q'q'
D+~E m+g'
D+~K m'+m'

F+ —+K K+n

D' ~K g'g'
D' ~K ~0~0
F+ K-K+~+
D' ~E-~+g'
D' ~K ~'q'
F+ ~K K'~+
D' K ~-~+
D' ~K m+m'

D ~K K K+
F+ ~K K+~'

a (t-eV-')

1.474 x 10
0
0

1.988x10 2

4.284x 10
2.734X 10
1.673 X10-'
8.343 x 10-'
5.237 X 10-'
2.324X 10-'
3.180X10-'
2.045 X10-'
2.620 x 10-'
1.381 X 10
5.613X 10
3.882 x 10
2.898 x 10
4.239X10-'
3.166x 10-'
6.469 x 10-'
2.399x 10-'
8.039x10 '
3.906x 10-'
3.359x10-'
4.614X 10

a (Gev')

0
0
0
0
0

-5.387X 10-'
+3.463 x 10-'
+3.514x 10-'
+2.284 x 10
—1.105x 10

0
—8.108x 10
—2.380X10 3

—8.561x 10
+2.901x 10-'
+7.877X 10
+9.882 x 10
+ 1.795 X 10
—7.816x 10
+4.011x10-'
—3.613x10 '
+4.946X 10
+8.422X 10-'
—1.014X 10-'
+9.718x 10-'

C (Gev')

0
2.751x 10
4.635x 10-'

0
0

9.964x 10-'
3.934X10 5

1.966X 10-'
1.130x 10-'
1.369x 10

0
8.041x 10-4
2.412x 10-'
1071X10 '
2.513x 10-'
1.617X10 6

2.253 x 10-'
1.400x 10-'
1.987X 10-'
3.897x 10-'
1.260x 10
1.671x 10-'
3.208 x 10-'
2.013x 10-4
6.908 X 10
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2.4

2.2

2.0

1.8

1.6

4.0

3.6

3.2

2.8

2.4

1.2

1.0

.8

2.0

1.6

1.2

.6-

4-

02

Asymptote of both
curves.

~r, (T) for
T&p 4- The Asymptote g

of both parts
I I

0 2 4 6

r (Tj For T)0
2

I I I I

8 10 12 14 16 T (GeV)

I

0 2 6 8 10 12 14 16 T+GeV)

(experimental values indicated) while from Table
VIII our predictions are

FIG. 5. A plot of r i( T) compared with experimental-

ly permitted region. (The negative half plane folded

onto the positive half plane. )

FIG. 6. A plot of rz(T) compared with experimental-

ly permitted region. (The negative half plane folded
onto the positive half plane. )

other modes. Because r& or r2 individually yields
the bound in (10) one may consider either one of
the following as a prediction (the other is then
viewed as providing the T bound}

(b') B(D ~K n. +n )=(5.8+1.3)%,
(3.906)T +(8.422)T+320.8

(8.039)T +(4.946)T+167.1

(12)
(d') B(D+~K n. +n )=(9.1+1.6)%%uo

(2.620)T +( —2.380)T+241.2
(5.237)T +(2.284}T+113.0

In Figs. 5 and 6 these functions are plotted along
with the experimentally permitted domain given in
(11). [Note that the left half plane ( negative T)
has been folded onto the right half plane ( positive.
T ) for comparison. ] The experimental data would

have to be vastly improved in order to determine
the sign of T, this explains the modulus signs in
(10)

For a representative value of T, T=0.9 GeV, we
present in Table IX the relative rates of the
Cabibbo-allowed modes, in column 1 relative to the
largest single three-body mode (D ~K n +n ),
and in column 3 relative to the strongest three-
body decay mode of the decaying meson. For
comparison with the data, in column 4 we use the
most accurately experimentally known three-body
branching ratio for D+ and D and our results for
T=0.9 GeV to predict the branching ratios of the

-~+
R=

0
B(D+ X) I (D X)
B(D' I),„, r(D+ r) „„„„„,

(13)

which result for T=0.9 GeV. Either view is con-
sistent with the data (b) and (d).

To illustrate the sensitivity of our results to T,
column 2 of Table IX gives the relative rates for
T=0, for comparison with the results of column 1.
Some of the strongly kinematically suppressed
modes are sensitive to T, and perhaps it is best
determined from B(F+~n +m n jl
B(F+~K K.+n+} as the deno. minator is very
weakly dependent on T while the numerator is very
strongly dependent on T.

To compare relative rates of D+ and D decays
we need the total lifetimes of particles. We can
turn this comparison around, using Table IX and
the data to predict the lifetime ratio through
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TABLE IX. Relative rates and branching ratios of Cabibbo-favored three-body decay modes of charmed mesons.
Relative rates 1 are relative to I (D ~K m+a ) while relative rates 2 are relative to the largest mode of the decaying
particle. Branching ratios are obtained using those branching ratios marked + as input.

Mode
Relative rate 1

(T=0.9 QeV)

8.30X 10
4.33x 10-'
3.76 x 10-'
1.40x 10-'
4.86 x10-'
3.26X10 '
1.34x 10
1.05 X 10
7.77 X 1O-'
3.60x 10-'
6.83 x 10-'

Relative rate 1

(T=O OeV)

8-58 X 10
4.36x 10-'
3.93X10-'
1.45 X 10

0
3.34 x 10
2.15x 10

0
0
0

3.11x10-'

Relative rate 2
(T=0.9 GeV)

1

5.22 X 10
4.53 x 10-'
1.69x 10-'
5.85 x 10-'
3.93x10-'
1.61 X 10
1.26x 10-'
9.36x 10-'
4.34X10 "

8.24 X 10

Branching ratios

D+ K ~+~'
E-m+m+
z sc ac+

~E ~+q'

D' ~Sr-~+~'
x ~-~+
E m+g
z-sc sr+
E m. m

0 OErg
rc sc x'

~SC-m+g'

E g'r]'

7.27 x 10-'
3.60 x 10-'
6.06 X 10
5.22 X 10

1

5.37X10-'
1.16x 10
8.54 X 10-'
7.51X 10-'
1.44x 10-'
1.45 x 10-4
1.32 X 10-4
7.09x 10-'
1.65 X 10

7.52 X 10
3.52 X10-'
4.27 x 10
2.51x 10-'

1

5.21x 10-'
6.19x 10
6.28 X 10
7.02 X10-'
1.22 x 10-'
7.83 x 10-'
1.23 X 10
6.13x 10-'
5.04X10-'

1

4.95 x 10
8.33x 10-'
7.18x10-'

1

5.37x 10-'
1.16x10 2

8.54 x 10-'
7.51x 10-'
1.44 X 10-'
1.45 x 10-4
1.32 x 10
7.09X 10
1.65 X10-'

(9.1 + 1.6) %
(4.5+0.8) %*
(7.6+1.3)x 10
(6.5+1.1)x 10-'%

(5.8+1.3) %%uo

(3.1+0.7) %
(6.7+1.5) X 10
(5.0+1.1)X 10
(4.4+1.0)x 10
(8.4+1.9)x 10
(8.4+1.9)X 10
(7.7+1.7) X 10 4%

(4.1+0.9)X 10
(9.6+2.1)X 10

If we use the experimental facts that

B(D+ +K n+m).
B(D ~K m+m )

and

'=228 152
B(D ~K m+rro)

then along with Table VIII this gives two deter-
minations of R,

T (8.039)+T(4.946)+ 167.1

T (5.237)+T(2.284)+113.0

T (3.906)+T(8.422)+320.8

T (2.620) ~ T( —2.380)~241.2

(15)

These functions are plotted in Fig. 7 for
~

T
~

& 2.5
GeV. They vary very slowly with T. Considering
the experimental errors, R i and Rz are quite con-
sistent with each other.

We quote R values at T=0.9 GeV and find

R i(0.9)=2.16+0.63,

Rp(0. 9)=3.13+2.09 .

A weighted mean gives

(16)
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R
5.5

TABLE X. Branching ratios predicted by the model
for observed D ~VP decays, compared with experimen-
tal values. The rate marked with an asterisk was used
as input in the calculation.

Predicted Observed
Decay mode branching ratio (%) branching ratio (%)

'4 x x'1 5x
-2.5 -2.0 -1.5 -1.0 -.5 0 .5

2 (T}mean

1.0 1.5 ZO 2.5
T (GeV) ~

D —+K m+

~K p+
0~K p'

-4t0 0K m

3.7 +1.4
0.09+0.03

0.08+0.03

3.3+1.2*

7e2 30
0 1

+Oi3

1.4+I 4

FIG. 7. The functions RI(T) and R2(T) with error
regions, plotted for T (2.5 GeV.

R (T=0.9 GeV) =2.24+0.60 . (17)

1.51(R &2.90 (18)

which is only a slightly broader domain than (17)
itself.

IV. CONCLUSIONS

We have shown how the spectator model may
implicate a pole model of three-body decays of the
charmed D and I' mesons. This model is con-
sistent with the available data on the relative rates
of three-body decays of D and D+, and with the
present value of the lifetime ratio.

That a pole model works is not surprising in
view of the Dalitz-plot analysis of the decays.
The D ~E m +m. decay mode is dominated by
the K* n + contribution (70+I6%), the K~p con-
tribution is small (2+2%), and the "nonresonant"
background is 30+I4%. D +K n+m is d—om-.
inated by the p+K contribution (85+ I5 %), with

small contributions from K' n (11+It%) and

This result is quite consistent with datum (1'). We
emphasize that our model is naturally compatible
with unequal D+ and D lifetimes, whatever
mechanism is responsible for the effect. No con-
trivance was necessary to obtain (17).

In fact independent of T, R
&

implies

K* n+ (7+q%) and the "nonresonant" back-
ground (6+0%). The Dalitz plot for
D+~K n. +n + is neither uniformly populated
nor dominated by the K* m

+ mode, for which an

upper limit of 39% is estimated. No scalar meson
enhancements have been seen in the analysis, but
these resonances are very broad and provide a
small contribution to the observed decays. They
should not be expected to be visible experimentally
until much higher statistics are available.

For our model to be consistent, it should predict
the relative branching ratios for charmed-meson
decay into vector and pseudoscalar mesons. The
observed branching ratios are given in Table X and
are compared to the predictions of our model. The
agreement is acceptable, and provides further sup-
port for the model. Not only do we predict overall
three-body branching ratios well, but also the con-
stituent vector-pseudoscalar branching ratios.

In conclusion we find that our spectator-based
model is in good agreement with the data on
three-body decays of charmed mesons —the incon-
sistencies seen in the Km. decays of D mesons do
not propagate into the three-body sector.
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