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Nonlinear relations between observables in the elastic scattering of two nonidentical
particles are obtained, namely 17 relations expressing the components of higher-order
polarization tensors in terms of lower-order ones (of degree d <2) and 8 relations between
the 19 simplest experiments. The relations are used to discuss the completeness of vari-
ous optimal sets of experiments and to perform a “semidirect” reconstruction of the np
scattering amplitudes at Ej,, =425 MeV, 6., =65° (from data points supplemented by

“data” generated from a phase-shift analysis).

I. INTRODUCTION

The purpose of this article is to discuss the
direct reconstruction of the scattering matrix from
experimental data for the elastic scattering of two
nonidentical particles with spin —;— Assuming
Lorentz invariance, parity conservation, and time-
reversal invariance, the scattering matrix M will in-
volve 6 invariant amplitudes, i.e., 6 complex func-
tions of the scattering angle and energy. There ex-
ist 36 linearly independent observables which pro-
vide us directly with the quantities Red; 4,

ImA; Ay, and | 4; | where 4; are the amplitudes,
1<i <k <6. These quantities do not depend on
the overall phase of the amplitudes, hence only 11
real functions can be obtained from the experi-
ments (e.g., 6 amplitudes |4; | % and 5 relative
phases).

Since only 11 of the observables are functionally
independent, nonlinear relations between them ex-
ist. These are obviously important for the plan-
ning of experiments; in particular it is useful to ex-
press more complicated experiments in terms of
simpler ones. It is also of prime importance to
know beforehand which sets of experiments pro-
vide the information needed to reconstruct the
scattering matrix. The main results presented here
are the following. (1) We obtain a set of 25 in-
dependent bilinear relations between the 36 linearly
independent observables (Sec. II). (2) We express
the 17 observables that are components of three-
and four-component polarization tensors in terms
of the 19 simplest observables. This involves no
ambiguity and proves that the three- and four-
component tensors are not needed for a complete
reconstruction of the scattering matrix (Sec. III).
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(3) We obtain a convenient set of 8 nonlinear rela-
tions between the 19 simplest experiments (Sec.
IV). (4) We use the nonlinear relations between ob-
servables to obtain different optimal sufficient and
complete sets of experiments (Sec. V). We perform
a reconstruction of the amplitudes from experi-
mental data at E,, =425 MeV, 6=65° (Sec. VI).
Since the data are incomplete, we supplement it by
“simulated data,” calculated on the basis of phase-
shift analysis.

The terminology we use was partly introduced in
a recent publication.! Thus, in this paper, we call
a set of experiments optimal if it consists of a
measurement of the differential cross section, the
polarization of the scattered particle P,g00=A4q0n0;
the polarization of the recoil particle Pg,00 =4 00ons
and the minimal needed number of components of
two-component polarization tensors (all notations
were reviewed in two recent publications>* on the
scattering formalism and are partly discussed in
Sec. II below). A set is called sufficient if it makes
it possible to reconstruct the scattering matrix up
to certain discrete ambiguities (and the unavoidable
continuous ambiguity of the overall phase). A set
is called complete if it permits a reconstruction
with no ambiguities (continuous or discrete). A set
will be called natural if it involves the same num-
ber of “pure” experiments in the center-of-mass
(c.m.s.) and laboratory (l.s.) systems. We recall
that a pure experiment is one involving only spin
projections on basis vectors; the c.m.s. and Ls. basis
vectors are given in Sec. II. We are always talking
about a set of experiments performed for one given
energy and scattering angle.

The concept of a complete set of experiments
was first introduced by Puzikov, Ryndin, and
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Smorodinskii * and a considerable amount of litera-
ture has been devoted to the direct reconstruction
of scattering amplitudes.”*~13 The reason why we
are going into considerable detail at the present
stage is that the development of new experimental
techniques, in particular the availability of beams
of polarized nucleons and of targets polarized in
arbitrary directions, has made complete experi-
ments feasible. Indeed extensive projects for com-
plete experiments exist at many laboratories and
some have already been performed and
analyzed."*~!7 Reference 1 was devoted to a study
of the scattering of identical spinor particles (5
scattering amplitudes), in particular proton-proton
scattering. The results were applicable to neutron-
proton scattering only inasmuch as isospin invari-
ance was assumed. This article applies to np
scattering without isospin invariance and indeed a
detailed test of isospin invariance would involve a
reconstruction of all 6 scattering amplitudes, as
treated in this article. For a discussion of isospin
invariance and electromagnetic effects in np
scattering, we refer to some recent publica-

tions'® =20 and references therein.

II. SCATTERING FORMALISM
AND QUADRATIC RELATIONS
BETWEEN OBSERVABLES

A. The formalism

The formalism we use was described in detail in
Ref. 3. The scattering matrix is parametrized as

M(KpK)=7[a+b)+(a—b) & '8 ) 7y 1)
+(c+d) &y1h ) 7,
+(c—d)( & T N Ty

01 —01)] .

+e( 14020 )+ f(T1— 0,

)
1)

2.1
1

Ryy=Rea*b= %(DOmOM +Djor0) » Ri3=Rea*c=
Ru= Rea*d=%(Cmm00—C”00) , Ris=Rea*e=
Ry= Reb*c:%(Cmmoo+C,100) , Ryy=Reb*d=

Rye= Reb*f=%(A00,,0—A(m,,) , Riy=Rec*d=

o
Rss=Ree*f = ?(DOmOm —Dyomo)

(SIS

Q v N9
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Here a,...,f are the 6 scattering amplitudes, i.e.,
complex functions of the energy E and scattering
angle 6. For identical particles (and np scattering
under the assumption of isospin invariance) we
have f=0. The Pauli matrices ¢’y and &', act on
the first and second particle spinors. The ortho-
normal vectors

(2.2)

are the c.m.s. basis vectors; E,- and Ef are unit vec-
tors in the direction of the initial- and scattered-
particle c.m.s. momenta. We introduce three dif-
ferent triplets of basis vectors in the l.s., namely

(®,K,s=1xk), (8,k,3'=8xk’),

(H,k u,—s> "—_——ka u)

(2.3)

for the initial,_)sczgtered, a_r}d recoil particle, respec-
tively (where k, k’, and k " are unit vectors along
the incident-, scattered-, and recoil-particle mo-
menta).

All experimental quantities are defined by the
expression

0 Xpgix = 7 Tr01,00 Mooy M+, (2.4)

where the labels p, g, i, and k refer to the polari-
zations of the scattered, recoil, incident, and target
particle, respectively. If an initial particle is unpo-
larized or a final polarization is undetected, the
corresponding label is equal to 0 and we set gg=1.
All c.m.s. and lLs. experiments are given in terms
of the amplitudes in Tables 1 and 3 of Ref. 3.

For further use let us introduce a convenient no-
tation for the 19 experiments involving at most
two spin labels (and hence figuring in any optimal
set of experiments):

(Kommo+Kono) »
(Aoono+4ooon) »

(K ommo—Kono) »

(Dmomo—Dioro) »
(2.5a)
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L= Ima*f="2(
2
()
Iis=Imc*e=Z
3= Imete="

ag
Diomo—Dojom) » Ips=Imb*e= —2‘(Dtomo+0010m) ,

(K1oom +Kotmo) » T36= Ime*f =Z(Cimoo—Cpico) »

I,s=Imd*e =%(Clm00+cm100) y Lig=Imd*f= %(KIOOm —Komo) »

o o . .
IC l 2=?(1-Dn0n0—cnn00+K0nn0) ’ |d ' 2=—2°(1—Dn0n0+cnn00"KOnn0) ’

(2.5b)

(4 o .
la lz"!" le ( 2=3‘(1+Dn0n0+cnn00+K0nn0) ’ lb ‘2+ If‘2=7(1+Dn0n0"cnn00“‘K0nn0) .

The notations used in (2.5) are discussed in de-
tail elsewhere.>® We recall that o is the unpolar-
ized differential cross section, 4,0 =P, and
Aoon =P, are asymmetries due to beam and target
polarization, respectively. The quantities D)0,
Dogoks Kogior Kpooks and Cpyop are components of
the depolarization, polarization transfer, and polar-
ization correlation tensors.

The set of observables (2.5) is invariant under
certain “permutations” of the amplitudes q, . . ., f,
such as the simultaneous transposition
(a<>b,e<>f), as well as the individual transforma-
tions (c<>d), (a<ie), and (b<if). Using
permutation-group notations we can denote these
transformations of the amplitude as

abcdef
Xi=lbacdfe

abcdelf
Xz:abdcef’
b
b

b

(2.6)

abcecd e f

cd —ia f
abcde f]

X3= s

ie

Xe=laifcde —ib

The transformations X, . . ., X, generate a finite
group. Its order is 16 and it is isomorphic to a
subgroup of the group of permutations of 6 ele-
ments. The 16 different transformations leaving
the set (2.5) invariant are

E, X\, X,, X5, X4, Y1=X3X,,

Y,=XX4, Y;=X3X,;, Y,=XX,,
Ys=XX;, Ye=X3X;, Z,=X,X3X,, 2.7
Z,=X3X4 Xy, Z3;=XX\X,,

Zo=X,X3X, , U=X,X,X:X, ,

where E is the identity. The multiplication table is

T .
given in Table L

The invariance group (2.7) of the set (2.5) allows
us to classify optimal sets of experiments into con-
jugacy classes and to transfer information from
one optimal set to all sets in the same class. We
shall call this group the invariance group of the
optimal set and denote it G.

B. Bilinear relations between observables

In order to obtain 25 bilinear relations among
the observables we apply a method used by Bourre-
ly and Soffer'? for elastic proton-proton scattering.
Define a Hermitian matrix of observables

H=¢® tpT ,
@' =(a*+e*,VIc* b* + f* b*—f* ,
—V2d*,a* —e*)

satisfying TrH =40. The specific choice of the
vector @ is dictated by the desire to obtain formu-
las in which third- and fourth-order tensors appear
separately on one side and diagonal second-order
tensors and polarizations on the other [see formu-
las (2.11) below].

Fifteen independent quadratic relations among
the observables are provided by the formulas

|Hy |*=HyHy; , 1<i<j<6, 2.9)

(2.8)

expressing the moduli of all 15 off-diagonal matrix
elements in terms of the diagonal ones. A set of
25 independent relations is obtained by adding 10
further formulas, namely

making it possible to obtain the phases of 10 of the
off-diagonal elements, e.g., those of H,
(3<i+2<k <6) in terms of the diagonal elements
and the phases of the 5 remaining off-diagonal ele-
ments H; (2<i+1=j<6).

We shall not spell out the relations (2.10) in de-
tail since they are quite complicated. Relations
(2.9), on the other hand, can be written as
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TABLE L. Multiplication table for the invariance group Gy of the optimal set of experiments.
E X, X, X3 X, Y, Y, Y, Y, Ys Y Z, z, 2z, 2Z, U

E E X, X, X; X4 Y, Y, Y, Y, Ys Y VA z, Z, Z, U
X] X1 E Y4 Y5 Yg Z3 Z4 Zz Xz X3 X4 U Y3 Y1 Y2 Z|
Xz X2 Y4 E Y] Y2 X3 X4 Zl X] 23 Z4 Y3 U Y5 Ys Zz
X3 X3 Y6 Y1 E Y3 Xz Z] X4 Z4 Zz X] Y2 Ys U Y4 23
X4 X4 Y5 Yz Y3 E Z] Xz X3 23 X] 22 Y] Y6 Y4 U Z4

+ + + gt : + - 5
[(KOmm()tKOIIO ):(CnIIOtCInOI )] + [I(KIOOm -KOImO ):(Cnlmo.:cnmlo)]
- + - - - - +

~

+ + + - -
=[(1—Crnoo®) — (Drono>—Konn0>) 2K 9nn0 — Crn0oPnon0) 132(P1 *P2)[ (17 Crnoo) — (Dnono; Konno)]
- - + +

+ + - - - + -
[(Crmoo Ciio0)=(Citno3 Cuton )1+ [#(Cimo0; Comt00) H Contn0 7 Cimno)
- + + + + - +

-— —_— “+ - — -
=[(1ICnnOO)Z“'(DnOnOIKOnnO)2];2(}’1IPZ)[(l:.cnnOO)_(DnOnOIKOnnO)] ’
+ + +

+ - +
[Domom + 3 (D1010—Dimom0) + Cator*+ [ Dotom + 5 (Ciamo— Cumar)
=7 {(1=Conoo?) +(Dnono*— Komno?) +4(P1?— P3?) +2[ Dyono 2Py (14 Dygno) ]
—2[Cr1n00K 0nn0 £ 2P2(Cpnoo+Komno)1}
[.;'(DIOIO+Dm0m0)iCInIO]2+[DIOmOi'%(Clnm0+CanI)$Cmn10]2 210
=1 {(1=Crnoo?)+ (Dpono’ — Komno?) —4(P1?— P3?) + 2 Dy oo+ 2P3(1+ Dpono)]
—2[ConooKonn0+2P1(Chnoo+Komno)]} »
(Cot F Cutmm ) Citt T Cttmm ) — (1 £ Cn00) + (Dronot Konn0) 14+ Crimt + Citm )*
=(14Cunoo)DonotKomo)—(P1 £P,),
(Dmomo— D100 + (Camot + Cram0)* = (1= Crnoo’) + (Drono” —Konno®) +2(K onn0Crnoo—Drono) -

-
We note that these relations, as well as those ob- III. HIGHER-ORDER POLARIZATION TENSORS

tained from (2.10), mix together the simple and the - IN TERMS OF LOWER-ORDER ONES

complicated experiments. They cannot be directly '

used to express the three- and four-component The observables (2.5) are the only ones that will

quantities in terms of the simplest ones without in- figure in “optimal sets of experiments” and they

troducing discrete ambiguities (due to solving qua- are in general easier to measure than the remaining

dratic equations). observables, involving three or four polarizations.
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The higher-order tensors can be expressed in terms
of the lower-order ones without introducing any
ambiguities at all (not even discrete ones) and we
now proceed to obtain the corresponding formulas.

We shall first analyze the generic situation when
none of the observables vanishes identically in the
entire energy and angular region considered and
later analyze exceptional cases.

Our analysis is based on an identity satisfied by
any three complex numbers x, y, and z (Refs. 1, 6,
7, and 21):

x Imy*z+y Imz*x +z Imx*y =0 (3.1
or equivalently, replacing z by iz:
x Rey*z —py Rez*x +iz Imx*y =0 (3.2)

(the asterisk denotes complex conjugation).

Multiplying (3.1) and (3.2) by another complex
number u* and taking the real and imaginary
parts, we obtain the following 3 relations:

Reu*x Imy*z + Reu*y Imz*x + Reu*z Imx*y =0,

(3.3)
Reu*x Rey*z — Reu*y Rez*x — Imu*z Imx*y =0,
(3.4
Imu*x Imy*z + Imu*y Imz*x + Imu*z Imx*y =0 .
(3.5)
Putting ¥ =x in (3.3) and (3.4) we obtain
| x |2Rey*z= Rex*y Rex*z
+ Imx*y Imx*z , (3.6)
| x | 2Imp*z = Rex*y Imx*z
— Rex*z Imx*y . (3.7

Finally, putting y =z in (3.6) we have
|x |2|y | >=(Rex*y)*+(Imx*p)? . (3.8)
We can write (3.3), (3.4), and (3.5) symbolically

as (u,xyz), {u,xyz}, and [u,xyz], respectively.
Then we can write 4 relations as

(u,xyz) , (x,uyz), (y,uxz), (z,uxy) (3.9

and any 3 of them are independent. The 3 rela-
tions
fu,xyz} , {u,zxy}, {u,yzx} (3.10)

are independent and imply [u,xyz]. Any 3 of (3.9)
together with any 2 of (3.10) are independent.
Thus relations (3.3), (3.4), and (3.5) represent five

functionally independent relations among any 4
different complex numbers u, x, y, and z. Identify-
ing u, x, y, and z with any 4 of the 6 amplitudes
a, ..., f we obtain quadratic relations among the
observables.

These relations can be used to express the
higher-order tensors linearly in terms of the
simpler ones. Multiple applications of the formu-
las (3.3)—(3.8) are required in some cases so that
higher-order expressions are obtained. No ‘“canoni-
cal” choice of the final expressions exists. In
Table II, we present a set of formulas that we
found particularly convenient. They express all
components of the third- and fourth-order tensors
in terms of the lower-order ones and we sometimes
give several alternative expressions for the same
quantity. Together with formulas (2.5) the formu-
las of Table II express all 36 bilinear combinations
Ry Iy, la | ..., |f|?(1<izk <6) of the am-
plitudes in terms of the 19 simplest observables.

The expressions in Table II make sense as long
as none of the denominators vanishes. Experi-
ments measuring higher-order tensors are then not
needed for a reconstruction, not even to resolve
discrete ambiguities. The first 9 relations are bilin-
ear in the observables, the first 8 of them
transform among each other (as an octet) under the
invariance group G, the ninth relation is invariant
under the group. The remaining 8 relations are of
order 3 or higher. Further higher-order relations
can be obtained either by applying the group Gg to
the existing relations or directly, but we will not go
into this here.

If the observables satisfy R 550, R,60, and
either R347&0, R 13]45 —R 141357/:0, or R23I46 —
R,41340 then Table II can be used directly to ob-
tain the higher-order tensors. The restriction on
R34 or on quantities such as R 3145 — R 4/35 is not
essential and a reconstruction of the higher-order
tensors is still possible, using other formulas ob-
tained from relations (3.3)—(3.8).

A case of particular interest is Ryg~0, R;570.
This occurs in the case of neutron-proton scatter-
ing where R,4540 is a manifestation of isospin
nonconservation (e.g., due to electromagnetic in-
teractions). Anywhere except in the forward direc-
tion we can hence expect R,¢ to be small
(JfP<<la|?.

Consider, e.g., the case R,5=0, R 570,

| | 250, Ry3l4s—Ry4I3s=—RsI34,0. Directly
from Table II (for R,=0) we obtain R, Ry,
Iy, Ins, I, Ryg, Rys, Iy, Isg, Ing, and | b |2
The remaining quantities can be obtained, e.g., as
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TABLE II. Three- and four-component tensors in terms of lower-order ones.

1
R35=R

26

(R33R 56 —I1sT36)=Rec*e = 2~ Cutg+Cinor)
1
R4s=——(RyRs¢—1I,514s)=Red*e = ‘l(clln0+ClIOn)
R26 2
1
R36=—“(R |3R56—116135)=Rec*f = E’(CIInO*CIIOH )
RIS 2
1
R46=————(R14R56—116145)=Red*fZg—(CInOI_CnIIO)
Rys 2
ag

1
I3 =-——(R23116-R 12136)=Im(1*6‘ = _(Cnmlo—cnlmo)

1
114=E——(R24I,6—R12146)=Ima*d = %‘(len0+clmn0)
26

1

123=—R——(RUIZ5—R]2135)=Imb*C =%(len0—‘clmn0)
15
1

Iy= Ris (Ruslys—Ry2l45)=Imb*d =%(Cnmlo+cnlm0)
1

134=—1 (Ry4l3s—R3145)= —l—'(R24I36—-R2314(,)=ImC*d = g(CInInO'("CanI)
Rjs Ry 2

R3146—R4l36 Ri3l46—Rul36
Rig=Rs =Ry
Ry3145s—Ryal3s Ry3146— Ryl 36
1

= RuRiRos [R14R26(R 3R 56 —1I16135) — R 151 46( R 31 16— R 13136)]

=Rea*f = %(anoz —Charo)

R23I45 —Ry41 35 R23I45 —R24135
Rys=R;s =126
R13]45~—R‘4135 R23I46—R24136
1
= m;[RISRN(RZ}R56_125136)—R26145(R13125_R12135)]

=Reb*e = %(CnIOI + Ciuro)

R14R;3—R 3Ry, Ri4R33—R 3Ry,
Ih,=R;s =4&K26
Ri3l4s—R 4135 Ryal4s—Roul 36
1
=————[R;sRp(Rul 16— R12146) —R13R26(R 14l s — R 12145)]
R34RsR

=Ima*h = —;—(C,,.,,Io—clnmo)

I3l 45— 135146 I3l 45— 135146
Iss=R;;s =Ry
Ry3145—Ry4l3s Riyli6— Ryl 36
1
=m[R15146(R23R56"‘125136)_R26145(R]3R56_116135)]

=Ime*f = %( Cumot — Crnnio)

R13(R34R 56— Insl46) — R14(Rp3R 56 — 1551 36)
Riad36— Rl 46

IIS=

1 g
= 5[ R26’R 13045+ (R23R 56— InsI36)(Roal 16— Rzl 46)] =Ima*e = 2 (Ctim + Ctmi)
Ris(Rag) 2
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TABLE I1. (Continued.)

_ R33(R 4R s¢—I16145) —R4(R 3R 56 —116135)

Iy
2 RiI3s—Ry3lys
1
= S[Ri1s?R o3l 46+ (R 3R 56— I16135)(R 14l 25— R 12145) ] =Imb*f = Z(Cipps — i)
R34(R;5) 2
1
|a l2=m[R13R14R262+(R23116—'R12136)(R24116—R12146)]
34(Ro6
R5(Ry3146—R 141 I,¢(R4R3—R 3R
= DRl Rt o M R0) — 2 (Dyonot Koma +Cin = Ci)
23046 —Raal36
1
|b|2=R R\ [R23R24R 5%+ (Ry3l2s—Rial3s ) Rial a5 — R12145)]
34(Rys
R12(Rp3lys—Roul3s)+1s(Ri3Ry% —RuRy) o
= =—(Dpono—Kon C C
Risles—Roulos 2( 1010 —Konno + Cut + Citym )
1
|e|2=———_R (R ) [I351asR26>+(R33R 56— 1251 36)(R2aR 56 — 1551 46)]
34(Rog
Rs(Ry3lys— Ryl 35)+1os(I3sl4s—I36l4s) o
Rolus—Roslne 2( + Canoo— Cutt + Ctmm )
1
| f1?=———[I36l46R 15>+ (R13R ss—I16]35)(R14R s6—I16145)]
R34(R5)

_ Risg(R13046 — R 141 36) — 116135146 — 1361 45) _o

(1—=Canoo— Cut — Cttmm )

Ry3lys—R 4035 2
|c|’Ri;—R13R; | ¢ | s —Ry3155 Ryl + Rl s
Il3= ) 35= , 142____2____ ,
I I le |
R34R35+134135 Ry3I35+Rssl s , R+’ (3.11)
Rig=—S=038 1= =B o 2
l 4 I l c l l c |

A complete unambiguous reconstruction of all ob-
servables is again seen to be possible. If I,3=0 or
| ¢ | 2=0 a slight modification provides a recon-
struction in terms of other denominators (this can
be seen using the group G).

Finally, if in some region, e.g., that of high ener-
gies, both polarizations vanish, i.e., R s =R,¢=0,
or for some reason these two polarizations are not
measured, then an unambiguous reconstruction of
the scattering matrix is impossible without measur-
ing higher-order tensors. To see this it is sufficient
to notice that the transformation

(a,b,c,d,e,f)——»(a*,b*,c*,d“, ’_e*a _f*)
(3.12)

leaves all observables in the set (2.5) invariant, ex-
cept for Ao, and Agyn, Which change sign. For
R 5=R,=0 the two vectors in (3.12) must be dis-
tinguished by a measurement of, e.g., R;s or Ry¢
(i=2,3,4;k=1,3,4). Note that (3.12) is formally

equivalent to the reflection T— —1 in the scatter-
ing matrix.

IV. RELATIONS BETWEEN THE 19 SIMPLEST
EXPERIMENTS '

The 19 observables in the set (2.5) are expressed
in terms of 6 complex amplitudes q, . . ., f, the
overall phase of these amplitudes does not enter,
hence 19 observables are expressed in terms of 11
real functions. It follows that 8 independent non-
linear relations exist between them. Such relations
are particularly important since they immediately
provide a criterion for the incompleteness of a set
of experiments.

For example, write expression (3.4) for the am-
plitudes {a,ebf}. We obtain

R 5sRy6—R 3R s56+116I,5=0 4.1)
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or in terms of c.m.s. experimental quantities

2 2
Aoono”—Aooon

=(DOIOmz’—DlOmOZ)

+ (Domom —Dm om0 Domom + Dioro) -

4.2)

It follows that if the two asymmetries A, and
Agoon are known no additional information is pro-
vided by measuring the five linearly independent
components of the two depolarization tensors,
Dyoi0 and Doy, rather than just four of them.
The relation (4.2) makes it possible to calculate (up
to a possible twofold ambiguity) the fifth com-
ponent in terms of four measured ones. Alterna-
tively, (4.2) can serve as a test of the experimental
errors involved in a measurement of all five linear-
ly independent components of these two tensors.

Relation (4.1) is the only second-order relation
among the simplest observables. All other rela-
tions involve multiple applications of (3.3)—(3.8)
and again no “canonical” choice of 8 relations ex-
ists. On the other hand, no end of possible rela-
tions can be written. We give a useful set of them
in Table III. Relation (T IIL.1) is the same as (4.1)
and is unique in being of second order. Relations
(TIIL2), (TIIL.3), and (T I11.4) are, up to linear
combinations, the only three third-order relations
within the set (2.5) involving nondiagonal experi-
ments only.

Relations (T III.1) and (T I11.4) are invariant
under the group G, relations (T I11.2) and (T I11.3)
transform amongst each other.

The relations (T IIL5), . . ., (T IIL.8) involve di-
agonal observables ( |c |2, |d |2 |a |*+ |e|? or
|5 |24 | f|? on the left-hand side, nondiagonal
on the right. Relations (T II1.6) and (T IIL.8) are
obtained from (T IIL5) and (T II1.7) respectively, by
applying the operator X, (X) of G,. New rela-
tions within each of the (TIILS), . . ., (TIIL8) sets
can be obtained by applying the group G,; we only
give one representative of each Gy class of rela-
tions within each set of formulas. Sets of 8 in-
dependent relations are obtained by taking, e.g.,
(TIIL1), ..., (TIIL4) and one of each set of for-
mulas (TIILS), . . ., (T IIL8).

Relations (T IIL5), . . . , (T IIL.8) are quite
cumbersome when written explicitly in terms of
c.m.s. or l.s. observables, though this is easily done

using formulas (2.5). Relations (TIIL1), ...,
(T IIL.4) are rewritten in terms of these observables
in Table IV.

A way of seeing that the relations
(TIIL1), ..., (TIIL8) are independent is to use
them for a complete reconstruction of all 19 “op-
timal” observables from 11 given ones. Let us as-
sume that 11 nondiagonal experiments are per-
formed, e.g., providing the set

{R12,R13,R14,R15,R3,R04 Rog, 16,1 25,135,1 36} .

4.3)

Relations (TIIL.1), . . ., (T II1.4) now represent a
system of linear inhomogeneous equations for R,
Ry, I4s, and I 4. The determinant of the system
is nonzero, hence it has a unique solution. Rela-
tions (TIILS), . . ., (T IIL.8) (one of each) then pro-
vide all diagonal optimal observables in terms of
the set (4.3). The set (4.3) is hence complete: from
(4.3) we obtain (2.5) linearly (and thus with no am-
biguities); from (2.5) we obtain all observables us-
ing the formulas of Table II.

The set (4.3) is by no means unique; many such
complete sets of 11 nondiagonal experiments exist
(they can be classified into orbits under Gy). We
shall not go into an analysis here since such sets,
excluding the cross section o, represent little exper-
imental interest.

Relations (T IIL.1), . . ., (T IIL.8) also make it
possible to identify incomplete sets. As an exam-
ple consider a different set of 11 nondiagonal op-
timal observables:

{R12,R3,R4,R5,R73,R24,R6,R 34,1 16,136,146} -
(4.4)

Relations (T IIL.1), . . . , (T IIL.3) provide Rs¢, I35,
and 1,5 linearly in terms of I,5. Relation (T I11.4)
is then satisfied identically and I,s remains un-
known. Substituting for Rsg, I35, and I45 in terms
of 1,5 into, e.g., (T IIL.5a) and (T IIL.5b) [or any
other pair of relations in one of the sets

(TILS), . . ., (TIIL8)], we find that I,5 cancels
out and we obtain an identity involving the set
(4.4). The experiments in this set are hence not in-
dependent: the same information can be obtained
from 10 experiments only and a reconstruction of
the scattering matrix is hence impossible.
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V. COMMENTS ON THE DIRECT
RECONSTRUCTION OF THE SCATTERING
MATRIX

Let us first show that optimal complete natural
sets of 12 experiments exist, i.e., that 12 well
chosen experiments (in the c.m.s. or l.s.) are suffi-
cient to reconstruct the scattering matrix.

A. Set involving Ag.q and Kopeo

Consider a set consisting of the unpolarized
cross section o, the two asymmetries A4 gy, and
Awono, any 7 of the 8 components of the polariza-
tion correlation tensor C, and the polarization
transfer tensor K with both labels in the scattering
plane and any two of the three diagonal quantities
D, 010, Konno, and Cp,q0- Relation (T I11.4), or
equivalently (TIV.4a) or (T IV.4b) will then unam-
biguously provide us with the missing component
of K or C.

Thus, the set

{R13,R14,R15,R23,R 4, R 6,135,136, 45,1 46}

is obtained by performing 9 measurements. From
Table II we also obtain I34, I3, Rys5, Ryg, and Isg
in terms of the above set. We make use of the ar-
bitrariness of the overall phase and postulate that
the amplitude c is real and positive (we assume
¢540). Denoting the real and imaginary parts of
an amplitude x as x; and x,, respectively, we ex-
press the real and imaginary parts of a, . . ., f in
terms of ¢, a,, and the measured or calculated ob-
servables:

R R
= EN b1=—2‘3‘,
¢
ciee . d Ryyc—1I3a,
1=c, djy=——F/—,
: Ry
e Rysc—1I3sa, Rysc —1I3a,
=745 o Ji =T >
! Ry3 Ry 5
1
o b Rya,+1¢ )
2, by=——7,
2 Ry
I
c;=0, dz’—‘_3i ’
¢
I35 I3
€= y [r=—7
c ¢

In order to obtain @, and ¢ we make use of the
cross section o and two additional diagonal observ-
ables, e.g., Ko,,0 and C,,0. We find

Y, Y,
a2=X1C+T=XZC+—c—- , (5.2a)
y,_y, |2 -
c= X,_X, , (5.2b)
where
1 2AK ’
__ oRM(Ag —Komodo)
1= AK ’
5.3
X — AogEc—AcE (5.32)
2 2A¢ ’
_ oR 3% (Ac — Crnoodo)
= Ac )
Ag=R 3>+ Ry> + I3+ 1352 + 154,
Eo=R;3>+R >+ R s>+ R > +1,,%,
Agx =R 32— Ry =132+ 133 —I3% ,
k=R 23 —134"+ 135" — I3 (5.3b)

Ex=R3*—R1>+Ris*—R s’ 11,7,
Ac=R;*— Ry + 132+ I1* — 1567,
Ec=—R;3*+R1>+R s> =R ¢* 1,2,

AK =AOBK —'AKBO N AC=A0BC _ACBO N (5.3C)

By=RyI;;—R4l34—R5I35—Ryel5 ,
Bx=—Rp3I ;5 +Ry4l34—Ry5I35+Ryl36 ,  (5.3d)
Be=—Ry3113—Ry4l34—RysI35+R 615

This reconstruction is possible as long as ¢=40,
Ag540, Ac50. These quantities may vanish for
some energies and angles but they do not vanish
identically. The above reconstruction made use of
12 measured observables. Note that if only one of
the diagonal measurements was performed (e.g.,
Kouno) in addition to o, then (5.1) and (5.2a) would
provide the real and imaginary parts of all ampli-
tudes in terms of ¢ and we would have a quadratic
equation for |c |2 This would provide |c |2 (and
hence ¢ = | ¢ | >0) with at most a twofold ambi-
guity.

We have thus shown that, e.g., the set of 12 ob-
servables

{ U’AOOn O’AOOOn ’AOOSS ’A OOkkrA 00sk»A 00ks »
K 05505 K 05705 K o504 00nn » K om0 } (5.4)

corstitutes an optimal complete natural set and,
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e.g., the set of 11 observables

i U’AOOn O’AOOOn 4 OOss9A00kk ,A 00sk’A00ks,
KOS”SO’KOS"kOJKOk"SO’AOOnn} (5-5)

constitutes an optimal sufficient natural set. Since
any 7 of the 8 linearly independent quantities
Aogsss - - - 5 Kossos - - - » could have been chosen and
any 2 of AgonnsKonnosDrono in (5.4) or any one of
them in (5.5), there exist 24 complete sets of type
(5.4) and 24 sufficient sets of type (5.5).

B. Set involving components of D,q.0, Dosod,
‘ and Cab()o

A different natural set of observables consists of
all 5 linearly independent scattering-plane com-
ponents of the 2 depolarization tensors D, 4
scattering-plane components of the polarization
correlation tensor C, the 2 polarizations and an ap-
propriate number of diagonal experiments. In view
of relations (T III.1) and (T IIL.2) [i.e., (TIV.1a) and
(TIV.2a), or (TIV.1b) and (T IV.2b)], the above 11
nondiagonal quantities actually represent 9 experi-
ments. Once Ago,0, A00ons Crmmoos Cioos Cimoos and
C,100 are measured (T II1.1) and (T I11.2) can be
solved to obtain the missing components of D.

Thus, performing 9 experiments we obtain the
11 quantities

{R12,R4,R5,R23,R6,R34,R 56,1 16,1 25,136,145} -

Directly from Table II we can obtain R3s, Ry, I3,
and I,,. Making an appropriate choice for the
overall phase we arrange for a to be real and posi-
tive. All amplitudes can then be expressed in
terms of the above nondiagonal observables and,
e.g., a;=a and b,:

Ry, 1
ay=a, bj=—-, C1=T(R230—113b2),
12
Ry Ris 1
d1=7 =" f1='§—l‘2*(sta—I16bz),
02=O’ b27

(5.6)
1
C2="_""> ‘1’2=*‘R12 (In4a +R4b5) ,

er=—\(Isa +Rysby) , fr= 116
Rl2 5 2 b 2 a .

Now let us make use of the cross section o and
two diagonal observables, e.g., D,q,0 and C,,00-
We find

b2=Wla+——=Wza+——— N (5.73)
a a
z,-z, | (5.7b)
a= W, W, , .
where
SpTog—S,T
w,—_2To=SeTp
255
_ 0Rp(Tp—ToDyono)
1= 8 ’
D
2 286‘ ’
OR AT —ToCruoo)
ZZ=_ ’
8¢
To=R >+ R1>+R 5> +1 32 +167,
So=R 12>+ Ry>+Ry6’+ 1>+ 1,52,
Tp=R;,>—R >+ R s> —12+16%,
p=Ry 14 15" =13 +146 (5.80)

Sp=R 1 —Ry®+ Ry’ — 1, +1,5%,
Tc=—R*+R1>+R 5> 132 —167,
Sc=R;;>—Ry> —Ry* + 1, +1,5%

8p=To0p—TpQo, 8c=ToQc—TcQo, (58¢c)

Qo=—Rp3l3—Rysl16+Ral2s+Ryslps
Op =Ryl 3—Roel16—Ry4lr4+RysIps , (5.8d)
Qc=RI13+Ryel 16+ Riadl2s+Rsls .

This reconstruction is possible if 8,0, 5540,
and a=40; these quantities certainly do not vanish
identically. The same comments apply as after
formulas (5.3). Thus, e.g., the set of 12 “observ-
ables”

{o,R14,R15,R3,R 26, R 56,116,155 ,
I36:I453Dn0n07cnn00} (5-9)

is an optimal complete natural set and, e.g., the set
of 11 “observables”

{0,R14,R 15, R23,R 26, R 56,1 16,1 25,1 36,145, Dpono}
(5.10)

is an optimal sufficient natural one. Choosing dif-
ferent diagonal experiments or different com-
ponents of the tensor D we obtain many more such
sets. The discussion is similar when the tensor C



is replaced by the tensor K.

To conclude this section let us call attention to
the importance of evaluating the completeness of a
set of experiments. Thus it is possible to measure
as many as 25 observables without obtaining any
information about one of the amplitudes, 26 that
still leave a continuous ambiguity, and 27 that
leave a discrete ambiguity. An example of such a
“disastrous” choice of 25 experiments is, e.g., the
set of all R, and Iy for i,k=5 and |a |2 |b|?
le|% 1d % | f12

VI. NUMERICAL APPLICATIONS
OF THE NONLINEAR RELATIONS
AND A “SEMIDIRECT” RECONSTRUCTION
AT Ej;, =425 MeV, 0=65°

A. Formulation of the problem
and the scattering data

It is at this stage somewhat too early to attempt
a serious direct reconstruction of the np scattering
amplitudes since a complete experiment has yet to
be performed. To illustrate the use of the non-
linear relations between observables and to perform
a preliminary study of the propagation of errors
and the numerical problems involved, we adopt a
hybrid approach. We choose the point
(Eap50..m. ) =(425 MeV, 65°) at which, or close to
which, 11 different np scattering experiments have
actually been performed. Taking the data from a
recent compilation?? and interpolating linearly in
energy and/or angle whenever necessary, we obtain
the following values of optimal observables:

Agono=0.087+0.012 ,

Ao, =0.10740.017 ,

Kogrs0=0.022+0.096 ,
Kogrko=—0.079+0.110 , (6.1b)
Kogrso=—0.080+0.160 ,

Dyi050=0.449+0.029 ,

(6.1a)

(6.1c)
Dyoro=0.671+0.031 ,
Kopo=—0.364+0.184 ,

(6.1d)
Agonn=0.174+0.126 ,
0=1.725+0.086 mb/sr , (6.1¢)
D,yon0=0.886+0.034 . 6.1)

Conspicuously missing in the set (6.1) are com-
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ponents of the asymmetry tensor Agyy. These will
presumably soon be measured, since they actually
involve the simplest of the two-component experi-
ments, once a polarized beam and target are simul-
taneously available. We make use of the fact that
an np phase-shift analysis is available? at 425
MeV. This analysis provides the following values:

Agoss=—0.050+0.013 ,
Aoorr =—0.2014+0.025 , (6.2a)
A gosk =Agors =0.062+0.006 ,
and also
Dy ps0=—0.821+0.009 (6.2b)

We shall, below, treat the values (6.2) on the same
footing as (6.1), i.e., as if they represented mea-
sured data. A reconstruction of amplitudes that
makes use of observables from (6.1) and (6.2) will
be called a “semidirect reconstruction.”

The laboratory-system scattering and recoil an-
gles at the considered point are

6,=29.9°, 6,=54.8", (6.3)

respectively.

In order to reconstruct both amplitudes and oth-
er experimental quantities we use a Monte Carlo
method, similar to the one used by Johnson et al. 14
for pp scattering. Each of the variables from the
(6.1) or (6.2) set used in a reconstruction will be
randomly and independently generated about its
measured (or phase-shift) value within the given er-
ror. Since large experimental errors are involved
we found it preferable to use a uniform random
distribution, rather than, say, a Gaussian one.

This obviously increases the spread of the calculat-
ed quantities. On the other hand, an artificial con-
finement of the data causing a peak at the given
imprecise experimental value, can, and in fact does,
make a semidirect reconstruction of the amplitudes
impossible.

B. Use of nonlinear relations to generate
further optimal data points

The relation (T IV.4b) can be used to obtain the
experimentally unknown component Ko from
the quantities (6.1a), (6.1b), and (6.2a). An input
of N =20000 simulations turns out to provide a
good stability and the result is

Kokeo=0.130+0.091 [—0.139,0.396] .. (6.4)

Td the right of the mean value we give the stand-
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ard deviation (statistical error) and in brackets the
interval that gives the observed lower and upper
bounds of the output distribution, respectively.

Note that the phase-shift-analysis value of (6.4)
is Kogx0=0.15840.019 and the two values are in
good agreement. This is encouraging from the
point of view of applying the nonlinear relations in
energy regions where phase-shift analyses are not
available. It also indicates that at this energy and
angle a measurement of Ko would not be an ef-
ficient way of decreasing the influence of errors on
an amplitude reconstruction since the statistical er-
ror in (6.4) is less than the experimental errors in
(6.1b).

In order to use relation (T IV.1b) we must select
5 linearly independent components of the two
depolarization tensors. Let us choose these to be

{DS'OSO’DS'OkO’Dk'OSO’DOS"OS’DOS"Ok} .
The first two have been measured (6.1c), for the
third we take the phase-shift-analysis value (6.2b).

Relation (T IV.1b) now reduces to the equation

of a circle in the two unknown experimental quan-
tities

x =Dogno5y ¥ =Dosok »
namely

(x —x0)*+(y —yo)?=r?,

cosd,

=——(D Dyoso) »
X 25in(91( soko+Droso

(6.5)
Yo=xotan6, ,
r2=(A00n02—A000n2)
+ 'i‘ [2Dy450-+cot6( Dyoro+Diroso) 1
+ 1 (Dyoro—Drroso)? -

A first realistic application consists in attaching
systematically an error of +0.100 (this is larger
than the usual experimental errors for this case) to
each value of Dyggr (Dogggs) ranging from —1 to
+1 and then calculating the corresponding

Dygros (Dogor). Since a square root is present in
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each such process, some simulations may generate
a negative radicand, preventing thereby the deter-
mination of x or y. Such events are rejected and a
number of approximately 20000 simulations in
each calculation again provides a very good stabili-
ty of the results.

Up to 100000 simulations were tried and reject-
ed in some cases. The results are shown in Tables
V and VI, where the numbers to the right of the
means have the same meaning as those in Eq. (6.4).
A rejection of all simulations is indicated by a
blank for the unattained output value. The aster-
isk in Table V means that only one event in
100000 was accepted in that particular case.

An idealized version of the preceding application
can be made if one assumes that Dggs (Dogor) is
derived from precise experimental values of
Dygor (Dogrgs). In this refined case, the outline of
the ring in the (x,y) plane becomes smooth as
shown in Fig. 1. We see that only a rather re-
stricted crescent in the (Dggq, Dogor) plane is al-
lowed by the previously known data (6.1a), (6.1c),
and (6.2b), indicating that a measurement of this
optimal variable would not decrease errors in an
amplitude reconstruction significantly.

C. Determination of three-component
polarization tensors

The determination of components of higher-
order tensors from the lower-order ones can be use-
ful in the direct reconstruction. The sets of experi-
ments (6.1a), (6.1b), the phase-shift values (6.2a),
and the calculated observable (6.4) now provide the
set

S ={Ry3,R14,R5,R3,R24,R 6,1 35,1 36 I 45,1 45}

discussed in Sec. V. Table II allows us to deter-
mine {R4,R,s,115,134,156}, or equivalently
CnIOI’CInIO’ Cinmos CmnIO’ Cnm()l which are ﬁnally
reconverted into the eight linearly dependent ob-
servables of C,,. and C,p04. As indicated previ-
ously the constant distribution of the input statistic
can give unacceptable output values so that it is
necessary to impose a physical constraint, namely,

TABLE V. Determination of Do, from assumed imprecise values of Dgg;.

D05 Dygox Dsos Dok
—0.1004+0.100 0.215+0.040 [0.103,0.305] 0.100+0.100 0.116+0.064 [—0.082,0.258)
—0.300+0.100 0.235+0.032 [0.166,0.307] 0.300+0.100 —0.087+0.104 [—0.388,0.133]
—0.500+0.100 0.185+0.039 [0.082,0.283] 0.500+0.100 —0.272 (*)
—0.700+0.100 0.036+0.071 [—0.160,0.189] 0.700+0. 100
—0.900+0.100 —0.187+0.066 [—0.383,—0.044] 0.900+0.100
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TABLE VI. Determination of Dgss from assumed imprecise values of Dggox.

Dosok Dosros Dosox D05
—0.100+0.100 0.281+0.048 [0.134,0.386] 0.100+0.100 0.115+0.099 [—0.270,0.309]
—0.300+0.100 0.340+0.030 [0.259,0.405] 0.300+0.100 —0.065+0.079 [—0.274,0.119]
—0.500+0.100 0.328+0.027 [0.258,0.399] 0.500+0.100
—0.700+0.100 0.239+0.044 [0.125,0.342] 0.700+0.100
—0.900+0.100 0.030+0.097 [—0.270,0.197] 0.900+0.100

that the resulting observables be included in the in-
terval [-1,1]. This selection rejected between 3%
and 10% of the 300000 events submitted, from
which we obtain a relatively good stability of the
results, presented in Table VII. As expected these
are rather small and accompanied by important
statistical errors. A measurement of one of the
components of C,;04 Or C,,.0 Would hence be help-
ful in eliminating ambiguities due to the presence
of experimental errors (as opposed to the idealized
case of no errors where the three- and four-
component tensors are not needed.)

D. Semidirect reconstruction of the scattering
amplitudes

Let us now consider the measured observables
(6.1a), (6.1b), (6.1d), (6.1e) together with the phase-
shift-analysis quantities (6.2a) and the observable
(6.4) calculated using (TIV.4b). They form the op-
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FIG. 1. Predicted values of Dy and Dyggr when no
correlation is assumed between their errors. The miss-
ing part of the circle corresponds to values never at-
tained for the number of simulations tried.

timal complete natural set of 12 observables (5.4).
We can hence use formulas (5.1) to (5.3) to per-
form a numerical “semidirect” reconstruction of
the scattering amplitudes at E,;, =425 MeV,
0..m.=65°. Once again simulations leading to a
negative radicand in (5.2b) were rejected. They
represent approximately 59.8% of the events. A
self-consistency constraint was imposed, namely
that the outcoming amplitudes reproduce the value
of o within its experimental error. This selection
rejected almost 39.7% of the events. Only 5000
simulations were successfully treated, which is far
from sufficient to guarantee the stability of the re-
sults. Statistical errors are large and the output
distribution is quite broad, so that the means here
should be taken only as qualitative indications.

The results of the reconstruction are given in
Table VIII. Two reconstructions are represented in
this table. The semidirect reconstruction (from the
data supplemented by phase-shift-analysis values
for Agocq) and from the observables (5.4) complete-
ly calculated on the basis of the phase-shift
analysis. The second set of values for the scatter-
ing amplitudes does not coincide with the values
given by Bystricky, Lechanoine, and Lehar,?® since
our phase convention is Imc =0, Rec >0, whereas
their overall phase is determined by the one-pion-
exchange amplitudes used for higher partial waves.
The numbers in Table VIII are ordered in the same
way as in Eq. (6.4): After the mean value we give
the standard deviation and the interval representing
the output distribution of each amplitude.

Both reconstructions involve large errors and the
mean values obtained in the two cases are in poor
agreement with each other. The influence of the
experimental errors is large. On the other hand,
the mean values of the input observables used in
the semidirect reconstruction are actually incom-
patible with each other. Indeed, if we replace the
uniform distributions for the data discussed in Sec.
VIA by distributions peaked at the mean experi-
mental values, we find that all our simulations are
rejected if o is to be reconstructed within its exper-
imeéntal error of 5%.
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TABLE VII. Determination of C,,.0 and Cppoq (equivalently M., and Nop,g) from an
optimal set known at the point (Ep,, =425 MeV, 6 =65°).

Cs’nsO 0.028 i0273
Cirnso —0.067+0.209
Cynko 0.130+0.231
Cinio —0.008+0.278

Cosos —0.088+0.178
an"Os —0.0194+0.266
Crsok 0.012+0.301
Chkok —0.098+0.226

The amplitude f, violating isospin invariance,
was assumed to vanish in the phase-shift
analysis.> Consequently, we find Ref =Imf =0
with high accuracy in the reconstruction from
phase-shift values in Table VIII. In the semidirect
reconstruction we find that Ref =0.114+0.304,
i.e., this amplitude does not necessarily vanish,
however no conclusions on isospin violation can be
drawn here.

A discussion of the actual limits acceptable for
the observables in order to permit a “reasonably”
accurate determination of the amplitudes goes
beyond the scope of this paper. The experimental
situation for np scattering is at this stage much less
favorable than for pp scattering, where ambiguities
are also encountered in direct reconstructions.!4~16

VII. CONCLUSIONS

This paper consists of essentially two parts. In
the first we derive a variety of nonlinear relations
between experimental quantities in the elastic
scattering of two nonidentical spinor particles.

The relations can be used in order to determine
whether a given set of experiments is complete,
sufficient, or neither. They can also be used to cal-
culate the values of certain observables on the basis
of the measurement of other ones, or to put limits

on the possible values of certain variables.

The second part (Secs. V and VI) is concerned
with a reconstruction of the np scattering ampli-
tudes without assuming isospin invariance. In Sec.
V we discuss the completeness of various specific
sets of 12 experiments. In Sec. VI we actually per-
form an amplitude reconstruction at E,, =425
MeV and 0=65°. We call the reconstruction a
“semidirect” one, since it was necessary to add the
values of the asymmetry tensor A4, calculated on
the basis of a phase-shift analysis, to the measured
observables o, Aon0s Aooons Aoonns Konnos Kossos
Ko k0, and Kogso. The reconstruction is meant
more as an illustration of the use of the nonlinear
relations than anything else. It shows how these
relations help to distinguish between ambiguities
inherent in the formalism (incomplete sets of data)
and ambiguities due to experimental errors. The
fact that at a given energy and angle the nonlinear.
relations predict some observables with good accu-
racy but others with very large error bars, should
be used to plan experiments resolving ambiguities.

A combination of a direct reconstruction with
other methods of extracting amplitudes from data
seems to be a fruitful approach. At energies up to
about 1 GeV a phase-shift analysis is quite feasible.
At higher energies we plan to apply analyses in-
volving simultaneous expansions in terms of func-

TABLE VIII. Reconstruction of the np amplitudes at the point Ej,, =425 MeV,

Oc.m. =65".

Amplitudes Semidirect reconstruction Reconstruction from phase-shift values
Rea 0.286+0.327 [—0.929,1.118] —0.002+0.032 [—0.092,0.137]
Ima 0.645+0.486 [—0.939,1.086] 0.351+0.244 [0.088,0.841]
Reb —0.581+0.220 [—1.284,—0.242] —0.735+0.403 [—1.395,—0.224]
Imb —0.343+0.780 [—1.133,1.140] —0.074+0.930 [—1.205,1.187]
Rec 0.424+0.132 [0.153,0.815] 0.513+0.327 [0.175,1.077]
Imc 0 0 0 0
Red —0.72140.496 [—1.148,0.874] —0.319+0.509 [—1.098,0.324]
Imd 0.259+0.343 [—1.059,1.116] —0.213+0.109 [—0.374,—0.059]
Ree 0.274+0.299 [—0.915,1.008] —0.176+0.873 [—1.219,1.189]
Ime 0.123+0.165  [—0.592,1.097]  0.737+0.399 [0.217,1.417]
Ref 0.114+0.304  [—1.058,1.108] —0.003+0.102 [—0.395,0.534]

Imf 0.000+0.012 [—0.059,0.049] 0.000+0.014 [—0.047,0.050]
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24,25 and

tions of the scattering angle and the energy
to combine these with a direct reconstruction.

Such an approach should make it possible to
combine the advantages of a direct reconstruction,
namely the freedom from theoretical bias, with the
advantages of partial wave and other expansions,
namely the possibility of simultaneously using data
measured at different energies and angles.

We plan to return to the problem of the recon-
struction of np scattering amplitudes and in partic-
ular the distinction between algebraic ambiguities
occurring even for precise data and statistical am-
biguities due to experimental errors, in the future,
once more data become available.
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