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Nonlinear relations between observables in the elastic scattering of two nonidentical

particles are obtained, namely 17 relations expressing the components of higher-order

polarization tensors in terms of lower-order ones (of degree d &2) and 8 relations between

the 19 simplest experiments. The relations are used to discuss the completeness of vari-

ous optimal sets of experiments and to perform a "semidirect" reconstruction of the np

scattering amplitudes at El,b ——425 MeV, 8, =65' (from data points supplemented by
"data" generated from a phase-shift analysis).

I. INTRODUCTION

The purpose of this article is to discuss the
direct reconstruction of the scattering matrix from
experimental data for the elastic scattering of two
nonidentical particles with spin —,. Assuming

Lorentz invariance, parity conservation, and time-
reversal invariance, the scattering matrix M will in-
volve 6 invariant amplitudes, i.e., 6 complex func-
tions of the scattering angle and energy. There ex-
ist 36 linearly independent observables which pro-
vide us directly with the quantities ReA;*Ak,

ImA, 'Ak, and
i A;

~

where A; are the amplitudes,
1&i &k &6. These quantities do not depend on
the overall phase of the amplitudes, hence only 11
real functions can be obtained from the experi-
ments (e.g., 6 amplitudes

i A; i
and 5 relative

phases).
Since only 11 of the observables are functionally

independent, nonlinear relations between them ex-
ist. These are obviously important for the plan-

ning of experiments; in particular it is useful to ex-

press more complicated experiments in terms of
simpler ones. It is also of prime importance to
know beforehand which sets of experiments pro-
vide the information needed to reconstruct the
scattering matrix. The main results presented here
are the following. (1) We obtain a set of 25 in-

dependent bilinear relations between the 36 linearly
independent observables (Sec. II). (2) We express
the 17 observables that are components of three-
and four-component polarization tensors in terms
of the 19 simplest observables. This involves no
ambiguity and proves that the three- and four-
component tensors are not needed for a complete
reconstruction of the scattering matrix (Sec. III).

(3) We obtain a convenient set of 8 nonlinear rela-

tions between the 19 simplest experiments (Sec.
IV). (4) We use the nonlinear relations between ob-

servables to obtain different optimal sufficient and

complete sets of experiments (Sec. V). We perform
a reconstruction of the amplitudes from experi-
mental data at E~,b ——425 MeV, 8=65' (Sec. VI).
Since the data are incomplete, we supplement it by
"simulated data, " calculated on the basis of phase-
shift analysis.

The terminology we use was partly introduced in
a recent publication. ' Thus, in this paper, we call
a set of experiments optimal if it consists of a
measurement of the differential cross section, the
polarization of the scattered particle P„ooo——Aoo„p&

the polarization of the recoil particle Po„oo——A coo„,
and the minimal needed number of components of
two-component polarization tensors (all notations
were reviewed in two recent publications ' on the
scattering formalism and are partly discussed in

Sec. II below). A set is called sufficient if it makes
it possible to reconstruct the scattering matrix up
to certain discrete ambiguities (and the unavoidable
continuous ambiguity of the overall phase). A set
is called complete if it permits a reconstruction
with no ambiguities (continuous or discrete). A set
will be called natural if it involves the same num-
ber of "pure" experiments in the center-of-mass
(c.m.s.) and laboratory (l.s.) systems. We recall
that a pure experiment is one involving only spin
projections on basis vectors; the c.m.s. and l.s. basis
vectors are given in Sec. II. We are always talking
about a set of experiments performed for one given

energy and scattering angle.
The concept of a complete set of experiments

was first introduced by Puzikov, Ryndin, and
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Smorodinskii and a considerable amount of litera-
ture has been devoted to the direct reconstruction
of scattering amplitudes. ' ' The reason why we
are going into considerable detail at the present
stage is that the development of new experimental
techniques, in particular the availability of beams
of polarized nucleons and of targets polarized in
arbitrary directions, has made complete experi-
ments feasible. Indeed extensive projects for com-
plete experiments exist at many laboratories and
some have already been performed and
analyzed. ' ' Reference 1 was devoted to a study
of the scattering of identical spinor particles (5
scattering amplitudes), in particular proton-proton
scattering. The results were applicable to neutron-
proton scattering only inasmuch as isospin invari-
ance was assumed. This article applies to np
scattering without isospin invariance and indeed a
detailed test of isospin invariance would involve a
reconstruction of all 6 scattering amplitudes, as
treated in this article. For a discussion of isospin
invariance and electromagnetic effects in np
scattering, we refer to some recent publica-
tions' and references therein.

II. SCATTERING FORMALISM
AND QUADRATIC RELATIONS

BETWEEN OBSERVABLES

A. The formalism

The formalism we use was described in detail in
Ref. 3. The scattering matrix is parametrized as

M( kf, k;)= —[(a+b)+(a —b)( o] n )( aq n )

+(c+d)( o] m)( oz m }

+ (c —d )( o ].1 )( (7q. 1 )

+e( 0]+02,n )+f( 0]—cry, n )] .

(2.1)

Here a, ...,f are the 6 scattering amplitudes, i.e.,
complex functions of the energy E and scattering
angle 8. For identical particles (and np scattering
under the assumption of isospin invariance) we
have f=0. The Pauli matrices cr] and o z act on
the first and second particle spinors. The ortho-
normal vectors

kf+ k

/
kf+k;

/

k;ykf
[ k;Xkf (

kf —k;
m

(2.2)

(n, k, s=nXk), (n, k', s'=nXk'),
( 1

""" X k ")
(2.3)

for the initial, scattered, and recoil particle, respec-
tively (where k, k ', and k" are unit vectors along
the incident-, scattered-, and recoil-particle mo-
menta).

All experimental quantities are defined by the
expression

0+pqik 4 Tr0 1p02q~01i02k~ + (2.4)

where the labels p, q, i, and k refer to the polari-
zations of the scattered, recoil, incident, and target
particle, respectively. If an initial particle is unpo-
larized or a final polarization is undetected, the
corresponding label is equal to 0 and we set 0.0——I.
All c.m.s. and l.s. experiments are given in terms
of the amplitudes in Tables 1 and 3 of Ref. 3.

For further use let us introduce a convenient no-
tation for the 19 experiments involving at most
two spin labels (and hence figuring in any optimal
set of experiments):

are the c.m.s. basis vectors; k; and kf are unit vec-
tors in the direction of the initial- and scattered-
particle c.m.s. momenta. We introduce three dif-
ferent triplets of basis vectors in the l.s., namely

0
R]p = Rea b =—(Dpm pm+D]o]p), R ]3 = Rea*c =—(Kpmmo+Kp]]o)

0 0
R]4 —=Rea*d =—(Cmmoo —C]]pp), R» = Rea~e =—

(Appnp+Apppn) ~

0Rz3= Reb c=—(Cmmoo+C]]po), Rz4= Reb d= —(Epmmp +pap) ~mm 2

0
R26= Reb*f= —(Aoonp —Apppn), R34= Rec d= (Dmpmp D[p]p—) ~

R56= Ree f (Dompm Dmomo) t2

(2.5a}
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0' 0'
Ii6 —= Ima*f =—{&lamp Dolom}, I25= Imb e= (Dlomo+Dolom

CT 0'
133= Ime e =—

{Klppm +Kplm p }, I36 = Ime f= (Clm 00 Cmlpa) ~

2

CT 0'
I43= Imdne= (—Clmoo+Cmlao) I46= Imd'f = {K—loom K—olmo}

Inona Cnnao+Konno} I
d

I
= (1 Dnonp+Cnnoo Karma} ~

I
a I

'+
I
e

I

'= —(I+&.0.0+C-00+Ko..o) I
b

I
'+ If I

'=—{I+&.0.0—C..oo —Ko..o) .
2

(2.5b)

abcdef
abdce f, '

(2.6)

u b e
ie b c

a b c
aifc

d e f
d ia f,—'

d e f
d e —ib

The transformations Xi, . . . ,X4 generate a finite
group. Its order is 16 and it is isomorphic to a
subgroup of the group of permutations of 6 ele-
ments. The 16 different transformations leaving
the set (2.5) invariant are

E, X1, X2, X3, X4, F1 ——X2X3,

Y2 ——X2X4, F3 ——X3X4, F4 ——X1X2,

~S=X1X3 ~ ~6 X3X1 & Z1 X2X3X4 &

Z2 X3X4X1 ~ Z3 =X4X1X

Z4 X2X3X1 U X1X2X3X4

(2.7)

where E is the identity. The multiplication table is

The notations used in (2.5) are discussed in de-

tail elsewhere. ' We recall that o is the unpolar-
ized differential cross section, Apa„o ——Pi and

Aa30n ——P2 are asymmetries due to beam and target
polarization, respectively. The quantities D~o;0,

Drn, ak, Ka ip, K~pal„and C~pp are components of
the depolarization, polarization transfer, and polar-
ization correlation tensors.

The set of observables (2.5) is invariant under
certain "permutations" of the amplitudes a, . . . ,f,
such as the simultaneous trarisposition
(a~b, e~f ), as well as the individual transforma-
tions (c~), (a~ie ), and (b~if). Using
permutation-group notations we can denote these
transformations of the amplitude as

abed e f
bacd fe

l

given in Table I.
The invariance group (2.7) of the set (2.5) allows

us to classify optimal sets of experiinents into con-
jugacy classes and to transfer information from
one optimal set to all sets in the same class. We
shall cail this group the invariance group of the
optimal set and denote it Go.

8. Silinear relations between observables

In order to obtain 25 bilinear relations among
the observables we apply a method used by Bourre-
ly and Soffer'2 for elastic proton-proton scattering.
Define a Hermitian matrix of observables

H=y Sip~,

{an+en ~2cn bn+fn bn fn
(2.8)

IHll I =HaHg~, 1&i &j &6, (2.9)

expressing the inoduli of all 15 off-diagonal matrix
elements in terms of the diagonal ones. A set of
25 independent relations is obtained by adding 10
further formulas, namely

Hll Hzk =H;kHi), 2 & l + 1 =j& k & 6, (2.10)

making it possible to obtain the phases of 10 of the
off-diagonal elements, e.g., those of Hlk
(3 &i+2 & k &6) in terms of the diagonal elements
and the phases of the 5 remaining off-diagonal ele-
ments HJ (2(i+1=j&6).

We shall not spell out the relations (2.10) in de-
tail since they are quite cornphcated. Relations
(2.9},on the other hand, can be written as

—v 2dn, an —en)

satisfying TrH =4cr. The specific choice of the
vector q is dictated by the desire to obtain formu-
las in which third- and fourth-order tensors appear
separately on one side and diagonal second-order
tensors and polarizations on the other [see formu-
las (2.11) below].

Fifteen independent quadratic relations among
the observables are provided by the formulas
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TABLE I. Multiplication table for the invariance group 60 of the optimal set of experiments.

E X] X2 X3 X4 Y] F2 F3 F4 Yg F6 Z] Z2 Z3 Z4 U

E
X]
X2
X3
X4
F]
Y2

F3

Y4

Yg

Y6

Z]
Z2
Z3
Z4
U

X]
X2
X3
X4
Y]
F2
Y3

Y4

Fg

Yg

Z]
Z2
Z3
Z4
U

X]
E
Y4

F6
Y5

Z4
Z3
Z2

X2
X4
X3
U

F3
Y2

Y]
Z]

X2
Y4

E
Y]

X3
X4
Z]
X]
Z3
Z4
Y3

U

Y5

F6
Z2

X3
Fg

Y]
E
Y3

X2
Z]
X4

Z3
X]
Z2
F2
F6
Y4

U
Z4

X4
F6
F2
Y3

Z]
X2
X,
Z4
Z2
X]
Y]
Y5

U

F4
Z3

Y]
Z3
X3
X2
Z]
g
F3
F2

F4
U

X4
Z4
X]
Z2
F6

Y2

Z4
X4
Z]
X2

E

Yg

U
X4

X3
Z3
Z2
X]
Y5

Y3

Z2
Z
X4
X3
Y2

F]
g
U

Y6

Yg

X2
X]
Z4
Z3
F4

F4
X2
X]
Z4
Z3
Y6.
Yg

U

E
Y2

F]
Z2
Z]
X4
X3
F3

F5
X3
Z3
Z2
X]
U

F4
F6

Y]
F3

Z4
X4
Z]
X2
Y2

Yg

X4
Z4
X]
Z2
Y4

U
Yg

Y2

E
F3
Z3
X3
X2
Z]
Y]

Z]
U

F2
Y]
X4
X3
X2

Z2
Z4
Z3
E
Y4

Y6

Y5

X]

Z2
F3
U

F5
Y6

Z3
Z4
X]
Z]
X3
X4
Y4

E
Y]
F2
X2

Z3
F]
Y5

U
Y'4

Z2
X]
Z4

X3
Z]
X2
F6
Y2
Y'3

E
X4

Z4
Y2

F6
F4
U

X]
Z2
Z3

X4
X2
Z]
F5
Y]

F3
X3

U

Z]
Z2
Z3
Z4
Y5

Y6

F4

Y3

Y]
Y'2

X]
X2
X3
X4
E

+ + + + + +
[(&Ommp+&0110) (Cnllp Clnol }1 + [+(+loom +pimp) (Cnlmo+CnmlO}l

=[(1—Cnnoo }—(Dnono —&onno )+2(&onnp —CnnooDnono))+2(P1+P2 }[(1~Cnnop)—(Dnono+&onn0 }]

+ + +
[(Cmmpp Cllpp) (Cilnp+Cllpn }l +[+(Clmpp+Cmlpp}+(Cmhp+Clmnp}l

=[(1,C..oo}'—(D.o.o,&0-0)'),2(PI,P2}[(1,C..oo) —(D.o.o,&o..o})
+ + + + +

—2[C„„001~.0„„0+2P2(C„„00+F0 o)) }
1 2 ]

[ 2 (Diplo+ mpmp}+ Inlol +[Dlpmp+ 2 (Clnmp+Cnmpl }+CmnlOl

=
4 I(1—C nPP }+(DnPnP —Eonno )—4(P& P2 )+2[Dn—ono+2P2(1+Dnono}l

(2.11)

—2[Cn.~pn. p+2PI «nnpp+&Onnp}] }

(Cllll+Cllmm }[(CIIII+Cllmm } (1+Cnnpp}+(Dnpnp++Onnp}1+«llml+Clllm

(1+C 00}(D ono++onno) (Pl+P2}

(Dmomo —DIPIP) +(Cnmoi+CInmP) =(1—Cnnoo )+(Dnono —Konno )+2(EPnnPCnnoo —DnPnP) .

1 ]
[Dpmpm+ 2 (Diplo Dmomp)+Cnlpl) +[Dplpm+ 2 (Clnmp Cnmol)l

=
4 I(1—Cnnoo )+(Dnonp' Eonnp }+4(P1 —P2 }+2[Dnono+2PI(1+Dnpnp)]

&e note that these relations, as well as those ob-
tained from (2.10), mix together the simple and the
complicated experiments. They cannot be directly
used to express the three- and four-component
quantities in terms of the simplest ones without in-
troducing discrete ambiguities (due to solving qua-
dratic equations).

IH. HIGHER-ORDER POLARIZATION TENSORS
IN TERMS OF LOWER-ORDER ONES

The observables (2.5) are the only ones that will

figure in "optimal sets of experiments" and they
are in general easier to measure than the remaining
observables, involving three or four polarizations.
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The higher-order tensors can be expressed in terms
of the lower-order ones without introducing any
ambiguities at all (not even discrete ones) and we

now proceed to obtain the corresponding formulas.
We shall first analyze the generic situation when

none of the observables vanishes identically in the
entire energy and angular region considered and
later analyze exceptional cases.

Our analysis is based on an identity satisfied by
any three complex numbers x, y, and z (Refs. 1, 6,
7, and 21):

x Imy*z+y Imz*x+z Imx*y =0

or equivalently, replacing z by iz:

x Rey*z —y Rez*x+iz Imx*y =0

(3.1)

(3.2)

(the asterisk denotes complex conjugation).
Multiplying (3.1) and (3.2) by another complex

number u~ and taking the real and imaginary
parts, we obtain the following 3 relations:

Putting u =x in (3.3) and (3.4) we obtain

x
I

Rey z = Rex*y Rex z

+ Imx~y Irnx~z,

~

x
~

Imy~z= Rex' Imx~z

—Rex*z Imx*y .

Finally, putting y =z in (3.6) we have

[x
~ ~y ~

=(Rex*y) +(Imx~y)

(3.6)

(3.7)

(3.8)

We can write (3.3), (3.4), and (3.5) symbolically
as (u, xyz), I u, xyz J, and [u,xyz], respectively.
Then we can write 4 relations as

(u,xyz ), (x,uyz ), (y, uxz), (z, uxy ) (3.9)

and any 3 of them are independent. The 3 rela-
tions

I u, xyz I, I u,zxy ), I u,yzx ) (3.10)

are independent and imply [u,xyz]. Any 3 of (3.9)
together with any 2 of (3.10) are independent.
Thus relations (3.3), (3.4), and (3.5) represent five

Reu*x Imy*z+ Reu*y Imz*x+ Reu ~z Imx*y =0,
(3.3)

Reu ~x Rey*z —Reu*y Rez*x —Imu*z Imx ~y =0,
(3.4)

Imu*x Imy*z+ Imu*y Imz~x+ Imu~z Imx~y =0 .

(3.5)

functionally independent relations among any 4
different complex numbers u, x, y, and z. Identify-
ing u, x, y, and z with any 4 of the 6 amplitudes
a, . . . ,f we obtain quadratic relations among the
observables.

These relations can be used to express the
higher-order tensors linearly in terms of the
simpler ones. Multiple applications of the formu-
las (3.3)—(3.8) are required in some cases so that
higher-order expressions are obtained. No "canoni-
cal" choice of the final expressions exists. In
Table II, we present a set of formulas that we
found particularly convenient. They express a11

components of the third- and fourth-order tensors
in terms of the lower-order ones and we sometimes

give several alternative expressions for the same
quantity. Together with formulas (2.5) the formu-
las of Table II express all 36 bilinear combinations

Rik Iik I
u

I

'
~ If I

' (1 &i&k &6) of the am-

plitudes in terms of the 19 simplest observables.
The expressions in Table II make sense as long

as none of the denominators vanishes. Experi-
ments measuring higher-order tensors are then not
needed for a reconstruction, not even to resolve
discrete ambiguities. The first 9 relations are bilin-
ear in the observables, the first 8 of them
transform among each other (as an octet) under the
invariance group Go, the ninth relation is invariant
under the group. The remaining 8 relations are of
order 3 or higher. Further higher-order relations
can be obtained either by applying the group Go to
the existing relations or directly, but we will not go
into this here.

If the observables satisfy R15+0, R26+0, and
either R 34+0, R13I45 —R14I35@0,or R23I46
R24I36+0 then Table II can be used directly to ob-

tain the higher-order tensors. The restriction on

R34 or on quantities such as R i3I45 R i4I35 is not
essential and a reconstruction of the higher-order
tensors is still possible, using other formulas ob-
tained from relations (3.3)—(3.8).

A case of particular interest is R26 =0, R15+0.
This occurs in the case of neutron-proton scatter-
ing where R26+0 is a manifestation of isospin
nonconservation (e.g., due to electromagnetic in-
teractions). Anywhere except in the forward direc-
tion we can hence expect R26 to be small

( If I'«
I

& I').
Consider, e.g., the case R26 ——0, R15+0,

~

c
~

+0, R13I45 R14I35 — R] I345+—0. Directly
from Table II (for R26 ——0) we obtain R36, R46,
I23& I24& I34& R16& R25& I12& I56& I26& aild 2

The remaining quantities can be obtained, e.g., as



27 NONLINEAR RELATIONS BETWEEN OBSERVABLES IN THE. . .

TABLE II. Three- and four-component tensors in terms of lower-order ones.

1
R35 — (R23R56 I25I36)=Rec*e =—(C «o+Cl Ql)

R26 2
1R 45 = (R24R 56 —I25I46 )=Red*e = ——( Cgn p+ Cnon )
26

1 0
R 36 = (R 13R56 I 16I35 ) =Rec *f=—( C114p

—C11p4 )

1
R 46 = (R14R 56 I16I45—)=Red f=—( C1„p1—C„11p)

R]s 2

1 0I]3 — (R23I16
—R 12I36 ) =Ima *C =—( CnmlO —Cnlm 0)

R26 2
1 0'I]4

—— (R24I]6—R ]2I46)=Ima*d = — ( Cmln P+ Clmn Q)
R26 2

1
I23 — (R 13I25 —R ]2I35 ) Imb*c =—( Cml o—Cl no)

R]5 2

= 1
I24 = (R14I25 R12I45)=Imb d (Cnmlp+ Cnlmo)

R]s
1 1 0'

I34— (R ]4I35 R ]3I45 ) — (R24I36 —R 23I46 )~™Cd =—( Clnm Q+ Cnm Ql )
R]5 R26 2

R ]3I46 R ]4I36 R ]3I46 R ]4I36
R]6=R]s =R26

R ]3I45 R ]4I35 R23I46 R24I36

1
[R14R26(R13R56—I16I35) R15I46(R23I16—R12I36)]

R34R ]5R26

=Re42 f= (C 1o1
—C1 1o)—

2

R23I45 R24I35 R23I45 R24I35
R25 ——R]5

R ]3I45 R ]4I35 R 23I46 R24I36

1
[R15R24(R23R56 I25I36) R26I45(R13I25 R12I35)1

R 34R 15R26

=Reb e =—(Cnlpl+ClnlQ)
0
2

R]4R23 R]3R24 R]4R23 R]3R24
I]2——R =R26

R ]3I45 R ]4I35 R 23I46 R24I36

1
[R15R23(R24I16—R12I46)—R 13R26(R 14I25 —R 12I45 )]

R34R ]5R26

0'—Ima b ( Cmnl 0 Clnm 0)
2

I36I45 I35I46 I36I45 I35I46
Is6 ——R]s =R26

R ]3I45 R ]4I35 R23I46 R24I36

1
[R15I46(R23R56 I25I36) R26I45(R1—3R56 —I1—6I35)]

R34R ]5R26

=Ime f= (C„o1 C—1o)—
2

R 13(R24R 56 I25I46 ) R 14(R23R 56 I25I36 )I]s=
R24I36 R 23I46

1 0'
2 [R26 R13I45+ (R23R56 I25I36)(R24I« R,2I46)] =Ima e =——

(Cg&~ +Cg~1 )
R34(R2. )' 2
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TABLE II. (Continued. )

27

I26=

I
b

I

'=

R23(R 14R56 —I]6I45)—R24(R ]3R56 —I]6I35)
R ]4I35—R ]3I45

1 2 0
[Rls R23I46+(R13R54 —I14I35)(R14I2s R1—2I45)]=Imb'f =—(Cll l —Clll )

R34«] )' 2

1
[R13R,4R 24'+ (R23I,4

—R,2I36)(R24I, 4
—R 12I44) ]

R34(R26)'
R ]2(R ]3I46—R ]4I36)+I]6(R]4R23—R 13R24) 0.=—(Dn pn p+ Epnn p +Cllll Cllmm )

R23I46 —R24I36
1

, [R23R24R15 +(R13I25 R12I35)(R14I25 R12I45)l2

R„(R„)'
R 12(R23I45 R24I35 )+I25(R 13R24 R 14R23 ) 0

(Dn pn 0 +pnn 0+Cllll +Cllmm )
13 45 14 35 2

1
2 [IssI4sR 24 +(R23R 54 I25I34)(—R 24R 54 I25I4e )1—2

R34(R26)
R56(R23I45 R24I35)+I25(I35I46 I36I45) 0

( 1+Cnnpp ~llll +Cllmm )
23 46 24 36 2

Ifl = 1
2 [I34I44R, 5 +(R13R54 I14I35)(R—14R54 I16I45)]-

R34(R]5)'
R56(R]3 46 R]4I36) I]6(I35I46 36I45) g

Cnn 00 Cllll ~llmm )
R ]3I45—R ]4I35 2

I
c

I
'I25 R23I35

~14=
I23

I
c

I R12 —R13R23I R35 ——

I23

R 13~34+R 34~13

c

R13 +I)3R 34R 35 +~34~35 R 13~35 +R 35J13
R45= ~15

(3.11)

A complete unambiguous reconstruction of all ob-
servables is again seen to be possible. If I23 —0 or

I
c

I
=0 a slight modification provides a recon-

struction in terms of other denominators (this can
be seen using the group Gp).

Finally, if in some region, e.g., that of high ener-

gies, both polarizations vanish, i.e., R15 ——R26 ——0,
or for some reason these two polarizations are not
measured, then an unambiguous reconstruction of
the scattering matrix is impossible without measur-

ing higher-order tensors. To see this it is sufficient
to notice that the transformation

(a,b, c,d, e,f)~(a ~,b~, c*,d~, —e*,—f*)

(3.12)

leaves all observables in the set (2.5) invariant, ex-
cept for Woo„o and oooo„, which change sign. For
R 15

——R26 ——0 the two vectors in (3.12) must be dis-
tinguished by a measurement of, e.g., R;5 or Rl, 6
(i =2,3,4;k=1,3,4). Note that (3.12) is formally

I

equivalent to the refiection n —+ —n in the scatter-
ing matrix.

IV. RELATIONS BETWEEN THE 19 SIMPLEST
EXPERIMENTS

R 15R26 R 12R56+~16~25 (4.1)

The 19 observables in the set (2.5) are expressed
in terms of 6 complex amplitudes a, . . . ,f, the
overall phase of these amplitudes does not enter,
hence 19 observables are expressed in terms of 11
real functions. It follows that 8 independent non-
linear relations exist between them. Such relations
are particularly important since they immediately
provide a criterion for the incompleteness of a set
of experiments.

For example, write expression (3.4) for the am-
plitudes ja,ebf [. We obtain
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or in terms of c.m.s. experimental quantities

m o~—

=(Dplpm Dlpmp }2

+(Dpmpm Dmpmp)(Dpmpm+Dlplp) ~

(4.2)

It follows that if the two asymmetries Aoo„o and

oooo„are known no additional information is pro-
vided by measuring the five linearly independent
components of the two depolarization tensors,

D1p 0& 0 and Dpqpk, rather than just four of them.
The relation (4.2) makes it possible to calculate (up
to a possible twofold ambiguity) the fifth com-
ponent in terms of four measured ones. Alterna-

tively, (4.2) can serve as a test of the experimental
errors involved in a measurement of all five linear-

ly independent components of these two tensors.
Relation (4.1) is the only second-order relation

among the simplest observables. All other rela-
tions involve multiple applications of (3.3)—(3.8)
and again no "canonica1" choice of 8 relations ex-

ists. On the other hand, no end of possible rela-

tions can be written. We give a useful set of them
in Table III. Relation (T III.1) is the same as (4.1)
and is unique in being of second order. Relations
(T III.2), (T III.3), and (T III.4) are, up to linear
combinations, the only three third-order relations
within the set (2.5) involving nondiagonal experi-
ments only.

Relations (T III.1) and (T III.4) are invariant
under the group Gp, relations (T III.2) and (T III.3)
transform amongst each other.

The relations (T III.5), . . . , (T III.8) involve di-

agonal observables (
~

c
~

',
~

d
~

3,
~

a
~

2+
(
e

~

', or
(b ( + ( f (

) on the left-hand side, nondiagonal
on the right. Relations (T III.6) and (T III.8) are
obtained from (T III.5) and (T III.7} respectively, by

applying the operator X3 (Xi ) of Go. New rela-
tions within each of the (T III.5), . . . , (T III.S) sets
can be obtained by applying the group Go,' we only
give one representative of each Go class of rela-

tions within each set of formulas. Sets of 8 in-

dependent relations are obtained by taking, e.g.,
(T III.1), . . . , (T III.4) and one of each set of for-
mulas (T IIL5}, . . . , (T III.S).

Relations (T III.5), . . . , (T III.8) are quite
cumbersome when written explicitly in terms of
c.m.s. or l.s. observables, though this is easily done

using formulas (2.5). Relations (T III.1), . . . ,
(T III.4) are rewritten in terms of these observables
in Table IV.

A way of seeing that the relations
(T III.1), . . . , (T III.S) are independent is to use
them for a complete reconstruction of all 19 "op-
timal" observables from 11 given ones. Let us as-
sume that 11 nondiagonal experiments are per-
formed, e.g., providing the set

I R,2)R, 3,R,4,R,5,R33,R24 R26,Ii6,I25,I35&I3$ I

(4.3)

Relations (T III.1), . . . , (T III.4) now represent a
system of linear inhomogeneous equations for R56,
R 34 I45 and I46 ~ The determinant of the system
is nonzero, hence it has a unique solution. Rela-
tions (T III.5), . . . , (T III.S) (one of each) then pro-
vide all diagonal optimal observables in terms of
the set (4.3). The set (4.3) is hence complete: from
(4.3) we obtain (2.5) linearly (and thus with no am-

biguities); from (2.5) we obtain all observables us-

ing the formulas of Table II.
The set (4.3) is by no means unique; many such

complete sets of 11 nondiagonal experiments exist
(they can be classified into orbits under Gp). We
shall not go into an analysis here since such sets,
excluding the cross section o., represent little exper-
imental interest.

Relations (T III.1}, . . . , (T III.S) also make it
possible to identify incomplete sets. As an exam-

ple consider a different set of 11 nondiagonal op-
timal observables:

IR i2, R 13,R i4, R i5,R23,R24, R26, R34,Iis, I3s, I46 I.
(4.4)

Relations (T III.1), . . . , (T III.3) provide R56, I35,
and I45 linearly in terms of I&5. Relation (T III.4)
is then satisfied identically and I25 remains un-

known. Substituting for R56 I35 and I45 in terms
of I25 into, e.g. , (T III.5a) and (T III.5b) [or any
other pair of relations in one of the sets
(T III.5), . . . , (T III.S}],we find that I35 cancels
out and we obtain an identity involving the set
(4.4). The experiments in this set are hence not in-

dependent: the same information can be obtained
from 10 experiments only and a reconstruction of
the scattering matrix is hence impossible.
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V. COMMENTS ON THE DIRECT
RECONSTRUCTION OF THE SCATTERING

MATRIX

Let us first show that optimal complete natural
sets of 12 experiments exist, i.e., that 12 well

chosen experiments (in the c.m.s. or l.s.) are suffi-
cient to reconstruct the scattering matrix.

A. Set involving Aoo,q and ED~0

Y2
a2 ——X&c+ =X2c+

c C

1/2
Y2 —Y

Xi —X2
c=

where

ApEg —AgEp
X) ———

2hg

oR13 (~x +onno~o)
Y) ———

~sr

(5.2a)

(5.2b)

Consider a set consisting of the unpolarized
cross section o., the two asymrnetries Appp„and
Appnp, any 7 of the 8 components of the polariza-
tion correlation tensor C, and the polarization
transfer tensor K with both labels in the scattering
plane and any two of the three diagonal quantities

Dnpnp, Konnp, and C«00. Relation (T IIIA), or
equivalently (T IV.4a) or (T IV.4b) will then unam-

biguously provide us with the missing component
of Nor C.

Thus, the set

I R f 3 &R I4&R ]5 &R p3 &R34 &R26&I35 &I3t» I45 &l40 I

is obtained by performing 9 measurements. From
Table II we also obtain I34 I]2 R25 R $6 and I56
in terms of the above set. We make use of the ar-
bitrariness of the overall phase and postulate that
the amplitude c is real and positive (we assume
c+0). Denoting the real and imaginary parts of
an amplitude x as x~ and x2, respectively, we ex-
press the real and imaginary parts of a, . . . ,f in
terms of c, a2, and the measured or calculated ob-
servables:

R i3 R23
ai —— , bi ——

R ~4c —I34a2
Ci =C,

R &5C
—I35a2 R i6c —I36a2ei=, fi=

Ri3 R)3

23a 2+Ii2c
a2, b2 ——

Ri3

I34
C2=0 ~ d2=

C

I35 f2=
C

(5.1)

In order to obtain a2 and c we make use of the
cross section o and two additional diagonal observ-
ables, e.g.~ &pnnp and Cnnpp We find

ApEc —AcEp
X2 ———

2ac

oR)3 (Ac —C«(gAO)
Y2 ———

~c

(5.3a)

Ap =R i3 +R23 +I34 +I35 +I362 2

Ep ——R i3 +R i4 +R i5 +R 16 +I»
Ag ——R )3 R23 I34 +I35 I36

2 2 2 2 2

K —R i3 —R i4 +R i5 —R i6 —I(22 — 2 2 2 2

Ac ——R(3 —R23 +I34 +I35 I36
2 2 2 2 2

Ec=—Ri3 +Ri4 +R» —Ri6 —I»2 2 2 2 2

(5.3b)

hz ——A pBz —A+Bp ~c=A pBc—AcBp (5.3c)

I O&~ Opn 0&~ooon &~Ooss &~ Opkk &~ posk&~ Opks &

+Os "so&+Os"kp &+Ok "so&~ Opnn &+Onn 0 I (5 4)

coristitutes an optimal complete natural set and,

Bp =R23Ii2 —R i4I34 R ]5I35 R $6I36

Bk ———R23I)2+R (4I34 R }5I35+R)6I36 & (5.3d)

Bc———R23I]2 R J4I34 R i5I35+R J6I36 .

This reconstruction is possible as long as c+0,
5k+0, b,c+0. These quantities may vanish for
some energies and angles but they do not vanish
identically. The above reconstruction made use of
12 measured observables. Note that if only one of
the diagonal measurements was performed (e.g.,
Konnp) in addition to o, then (5.1) and (5.2a) would
provide the real and imaginary parts of all ampli-
tudes in terms of c and we would have a quadratic
equation for c

~

. This would provide
~

c
~

(and
hence c =

~

c &0) with at most a twofold ambi-
guity.

We have thus shown that, e.g., the set of 12 ob-
servables
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e.g., the set of 11 observables

I &&A Opn 0 &
A pppn &A ppss &

A ppkk &
A Opsk &

A Opks &

Kps "sp & Kps "k0 & Kpk "sp &A Opnn j (5.5) Z2 Z1a=
8'1 —8'2

' 1/2

Z1 Z2

a a
(5.7a)

(5.7b)

constitutes an optimal sufficient natural set. Since
any 7 of the 8 linearly independent quantities

Aoo„, . . . , Ep, ,p, . . . , could have been chosen and

any 2 of A ppnn Kpnn p Dn pn p in (5.4) or any one of
them in (5.5), there exist 24 complete sets of type
(5.4) and 24 sufficient sets of type {5.5).

B. Set involving components of D p, p, Dpbpg,
l

and C~bpp

A different natural set of observables consists of
all 5 linearly independent scattering-plane com-
ponents of the 2 depolarization tensors D, 4
scattering-plane components of the polarization
correlation tensor C, the 2 polarizations and an ap-
propriate number of diagonal experiments. In view
of relations {TIII.1) and (T III.2) [i.e., (7 IV. la) and
(T IV.2a), or (T IV. lb) and (T IV.2b)], the above 11
nondiagonal quantities actually represent 9 experi-

ppnp~ spoon~ Cmmpp, CIioo, CImpp and
C 100 are measured (T III.1) and (T III.2) can be
solved to obtain the missing components of D.

Thus, performing 9 experiments we obtain the
11 quantities

where

SDTo —SpTD
rv, =—

25D

O'R12 (TD —T11D„p„p)Zi-
5D

ScTo —SoTc
2SC

&R 12'{TC Tp—&nnpp)

To R 12 +R 14 +R 15 +I13 +I16

Sp =R12 +R23 +R26 +I24 +I25

TD R12 R14 +R15 I13 +I162 2 2 2 2

SD ——R12 —R23 +R26 —I24 +I252 2 2 2 2

Tc= —R12 +Ri4 +Ris —I13 —I2 2 2 2 2

Sc R12 R23 R26 +I24 +I252 2 2 2 2

~D TOQD TDQO & ~C TOQC TCQO &

(5.8a)

(5.8b)

R12
a1 ——a, b1 —— 1

ci —— (R23a —I13b2),
R12

IR12,R 14&R15,R23&R26&R34&R56,I16,I25,I36,I45 j .

Directly from Table II we can obtain R35 R46 I13,
and I24. Making an appropriate choice for the
overall phase we arrange for a to be real and posi-
tive. All amplitudes can then be expressed in
terms of the above nondiagonal observables and,
e.g., a1 ——a and b2..

Qp =—R 23I13 R26I16 +R 14—I24+R 15I25,

QD R23I13 R26I16 R14I24+R15I25 &

QC R23I13+R26I16+R14I24+R15I25 .

(5.8d)

This reconstruction is possible if 5D+0, 5c+0,
and a+0; these quantities certainly do not vanish
identically. The same comments apply as after
formulas (5.3). Thus, e.g., the set of 12 "observ-
ables"

R14
d1= e1=

a
R15 1f i

= {R26a I16b2»a '
R12

I O,R 14,R15&R23,R26&R56&I16&I25,

136&145 & Dn On 0& Cnn 00j (5.9)

a2 ——0, b2,

c2 ——,d2 {I24a +R 14b——2),a '
R12

1
e2 {I25a +R15b2) f2

R12 a

(5.6) is an optimal complete natural set and, e.g., the set
of 11 "observables"

[O&R 14,R15,R23&R26&R56&I16&I25&I36&I45&DnPnpj

(5.10)

Now let us make use of the cross section cr and
two diagonal observables, e.g., D„p„p and C„„oo.
We find

is an optimal sufficient natural one. Choosing dif-
ferent diagonal experiments or different com-
ponents of the tensor D we obtain many more such
sets. The discussion is similar when the tensor C
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is replaced by the tensor K.
To conclude this section let us call attention to

the importance of evaluating the completeness of a
set of experiments. Thus it is possible to measure
as many as 25 observables without obtaining any
information about one of the amplitudes, 26 that
still leave a continuous ambiguity, and 27 that
leave a discrete ambiguity. An example of such a
"disastrous" choice of 25 experiments is, e.g., the
set of all Rtk and I;k for i,k+5 and

I
a I, I

b I,
I& I' Id I' If I'

VI. NUMERICAL APPLICATIONS
OF THE NONLINEAR RELATIONS

AND A "SEMIDIRECT" RECONSTRUCTION
AT E),b ——425 MeV, 8=65'

A. Formulation of the problem

and the scattering data

A op„o ——0.087+0.012,

Aooo„——0.107+0.017,

ECos"so =0 022+0 09

Los"ko =—0 079+0 110

Kok"so =—0 080+0 160

Ds'oso=0 449+0 029

Ds'oko=0. 671+0.031

Eo~~p = —0.364+0.184

A op„„——0.174+0.126,

0 = 1.725+0.086 mb/sr,

D„o„o——0.886+0.034 .

(6.1a)

(6.1b)

(6.lc)

(6.1d)

(6.1e)

(6.1f)

Conspicuously missing in the set (6.1) are com-

It is at this stage somewhat too early to attempt
a serious direct reconstruction of the np scattering
amplitudes since a complete experiment has yet to
be performed. To illustrate the use of the non-
linear relations between observables and to perform
a preliminary study of the propagation of errors
and the numerical problems involved, we adopt a
hybrid approach. %e choose the point
(E~,b, 8, ) =(425 MeV, 65') at which, or close to
which, 11 different np scattering experiments have
actually been performed. Taking the data from a
recent compilation and interpolating linearly in

energy and/or angle whenever necessary, we obtain
the following values of optimal observables:

ponents of the asymmetry tensor Aoo,d. These will

presumably soon be measured, since they actually
involve the simplest of the two-component experi-
ments, once a polarized beam and target are simul-

taneously available. We make use of the fact that
an np phase-shift analysis is available at 425
MeV. This analysis provides the following values:

A op„———0.050+0.013,

Appkk ———0.201+0.025,

A oak
——A pok,

——0.062+0.006,

and also

(6.2a)

Dk'oso= —0 821+0 009 (6.2b)

We shall, below, treat the values (6.2} on the same
footing as (6.1), i.e., as if they represented mea-
sured data. A reconstruction of amplitudes that
makes use of observables from (6.1) and (6.2) will

be called a "semidirect reconstruction. "
The laboratory-system scattering and recoil an-

gles at the considered point are

e, =29.9, e,=54.8, (6.3)

respectively.
In order to reconstruct both amplitudes and oth-

er experimental quantities we use a Monte Carlo
method, similar to the one used by Johnson et al. '

for pp scattering. Each of the variables from the
(6.1}or (6.2) set used in a reconstruction will be
randomly and independently generated about its
measured (or phase-shift) value within the given er-
ror. Since large experimental errors are involved
we found it preferable to use a uniform random
distribution, rather than, say, a Gaussian one.
This obviously increases the spread of the calculat-
ed quantities. On the other hand, an artificial con-
finement of the data causing a peak at the given
imprecise experimental value, can, and in fact does,
make a semidirect reconstruction of the amplitudes
impossible.

B. Use of nonlinear relations to generate
further optimal data points

The relation (T IV.4b) can be used to obtain the
experimentally unknown component Kok ko from
the quantities (6.1a), (6.1b), and (6.2a). An input
of W =20000 simulations turns out to provide a
good stability and the result is

Kok "ko =0 130+0 091 [—0 139 0.396] ' (6 4)

Td the right of the mean value we give the stand-
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ard deviation (statistical error) and in brackets the
interval that gives the observed lower and upper
bounds of the output distribution, respectively.

Note that the phase-shift-analysis value of (6.4)
is Epk* kp =0.158+0.019 and the two values are in
good agreement. This is encouraging from the
point of view of applying the nonlinear relations in
energy regions where phase-shift analyses are not
available. It also indicates that at this energy and
angle a measurement of Kpk-kp would not be an ef-
ficient way of decreasing the influence of errors on
an amplitude reconstruction since the statistical er-
ror in (6.4) is less than the experimental errors in
(6.1b).

In order to use relation (7 IV. lb) we must select
5 linearly independent components of the two
depolarization tensors. Let us choose these to be

IDs'oso Ds'oko&Dk'Pso&Dos"os&Dos"ok I

The first two have been measured (6.1c), for the
third we take the phase-shift-analysis value (6.2b).

Relation (T IV. lb) now reduces to the equation
of a circle in the two unknown experimental quan-
tities

& —Dps"Os~ 3 +os "pk ~

namely

each such process, some simulations may generate
a negative radicand, preventing thereby the deter-
mination of x or y. Such events are rejected and a
number of approximately 20000 simulations in
each calculation again provides a very good stabili-
ty of the results.

Up to 100000 simulations were tried and reject-
ed in some cases. The results are shown in Tables
V and VI, where the numbers to the right of the
means have the same meaning as those in Eq. (6.4).
A rejection of all simulations is indicated by a
blank for the unattained output value. The aster-
isk in Table V means that only one event in
100000 was accepted in that particular case.

An idealized version of the preceding application
can be made if one assumes that Dps "ps (Dps 'pk) is
derived from precise experimental values of
DPs"Pk {Dos"Ps). In this refined case, the outhne of
the ring in the (x,y) plane becomes smooth as
shown in Fig. 1. We see that only a rather re-
stricted crescent in the (Dp, -p„Dp, -pk) plane is al-
lowed by the previously known data (6.1a), (6.1c),
and (6.2b), indicating that a measurement of this
optimal variable would not decrease errors in an
amplitude reconstruction significantly.

C. Determination of three-component
polarization tensors

(x —xp) +(y —yp) =r2 2 2

COS82
xo =

~ (Ds'oko+Dk'oso) &

2 sin8i

yp =xptan02

r =(Aoonp —Hoop» )

(6.5)

The determination of components of higher-
order tensors from the lower-order ones can be use-
ful in the direct reconstruction. The sets of experi-
ments (6.1a), (6.lb), the phase-shift values (6.2a),
and the calculated observable (6.4) now provide the
set

+ , [2D;oso+ co—t8i(Ds'oko+Dk'oso) l
1 2

1+ —.{Dsoko—Dkoso) .

A first realistic application consists in attaching
systematically an error of +0.100 (this is larger
than the usual experimental errors for this case) to
each value of Dp, -pk (Dp; p, ) ranging from —1 to
+ 1 and then calculating the corresponding
Dps"ps {Dps pk). SinCe a Square rOOt iS PreSent in

S= I R i3&R i4&R i5&R23&R24&R26&I35&I3$ I45&I46I

discussed in Sec. V. Table II allows us to deter-
mine IR i6,R25,Iii, I34,I56 I, or equivalently

Cnlpi, Cine p, C[n&» p& C&»nip, Cn&n pl whicli are finally
reconverted into the eight linearly dependent ob-
servables of C«, p and C»khaki. As indicated previ-
ously the constant distribution of the input statistic
can give unacceptable output values so that it is
necessary to impose a physical constraint, namely,

TABLE V. Determination of Do;ok from assumed imprecise values of DG;o, .
+Os"Os

—0.100+0.100
—0.300+0.100
—0.500+0.100
—0.700+0.100
—0.900+0.100

DOs"Ok

0.215+0.040
0.235+0.032
0.185+0.039
0.036+0.071

—0.187+0.066

[0.103,0.305]
[0.166,0.307]
[0.082,0.283]

[—0.160,0.189]
[—0.383,—0.044]

+Os"Os

0.100+0.100
0.300+0.100
0.500+0. 100
0.700+0.100
0.900+0.100

+Os"Ok

0.116+0.064
—0.087+0.104
—0.272

f—0.082,0.2SSJ

[—0.388,0.133]
(*)
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TABLE VI. Determination of Dp, -p, from assumed imPrecise values of Dp 'pk.

Dps"Ok

—0.100+0.100
—0.300+0.100
—0.500+0.100
—0.700+0.100
—0.900+0.100

Dps"ps

0.281+0.048
0.340+0.030
0.328+0.027
0.239+0.044
0.030+0.097

[0.134,0.386]
[0.259,0.405]
[0.258,0.399]
[0.125,0.342]

[—0.270,0.197]

Dps"pk

0.100+0.100
0.300+0.100
0.500+0. 100
0.700+0.100
0.900+0.100

Dps "ps

0.115+0.099
—0.065+0.079

[—0.270,0.309]
[—0.274,0.119]

that the resulting observables be included in the in-
terval [-1,1]. This selection rejected between 3%
and 10%%uo of the 300000 events submitted, from
which we obtain a relatively good stability of the
results, presented in Table VII. As expected these
are rather small and accompanied by important
statistical errors. A measurement of one of the
components of C„s~ or C,„,o would hence be help-
ful in eliminating ambiguities due to the presence
of experimental errors (as opposed to the idealized
case of no errors where the three- and four-
component tensors are not needed. )

D. Semidirect reconstruction of the scattering
amplitudes

Let us now consider the measured observables
(6.1a), (6.1b), (6.1d), (6.1e) together with the phase-
shift-analysis quantities (6.2a) and the observable
(6.4) calculated using (T IV.4b). They form the op-

0.5-
Dos"ok

I I

-3.0 '-o.'5 '

0
~ I

Dos"Os

0.5

-0.5-

-1.0-

FIG. 1. Predicted values of Dp, -p, and Dp, pk when no
correlation is assumed between their errors. The miss-
ing part of the circle corresponds to values never at-
tained for the number of simulations tried.

timal complete natural set of 12 observables (5.4).
We can hence use formulas (5.1) to (5.3) to per-
form a numerical "semidirect" reconstruction of
the scattering amplitudes at E~,b ——425 MeV,
8, =6S'. Once again simulations leading to a
negative radicand in (5.2b) were rejected. They
represent approximately 59.8% of the events. A
self-consistency constraint was imposed, namely
that the outcoming amplitudes reproduce the value
of o within its experimental error. This selection
rejected almost 39.7% of the events. Only 5000
simulations were successfully treated, which is far
from sufficient to guarantee the stability of the re-
sults. Statistical errors are large and the output
distribution is quite broad, so that the means here
should be taken only as qualitative indications.

The results of the reconstruction are given in
Table VIII. Two reconstructions are represented in
this table. The semidirect reconstruction (from the
data supplemented by phase-shift-analysis values
for Aoo,~) and from the observables (5.4) complete-
ly calculated on the basis of the phase-shift
analysis. The second set of values for the scatter-
ing amplitudes does not coincide with the values
given by Bystricky, Lechanoine, and Lehar, since
our phase convention is Imc =0, Ree & 0, whereas
their overall phase is determined by the one-pion-
exchange amplitudes used for higher partial waves.
The numbers in Table VIII are ordered in the same
way as in Eq. (6.4): After the mean value we give
the standard deviation and the interval representing
the output distribution of each amplitude.

Both reconstructions involve large errors and the
mean values obtained in the two cases are in poor
agreement with each other. The influence of the
experimental errors is large. On the other hand,
the mean values of the input observables used in
the semidirect reconstruction are actually incom-
patible with each other. Indeed, if we replace the
uniform distributions for the data discussed in Sec.
VIA by distributions peaked at the mean experi-
mental values, we find that all our simulations are
rejected if 0. is to be reconstructed within its exper-
imental error of 5%%uo.
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TABLE VII. Determination of C,„,o and C„b~ (equivalently M, o,„and Nab~) from an
optimal set known at the point (Ej,b ——425 MeV, 8=65').

C, p

Ck'ns0

Cs'nk0

Ck'nk0

0.028+0.273
—0.067+0.209

0.130+0.231
—0.008+0.278

C~-os

Cnk"os

Cns"Ok

Cnk"Ok

—0.088+0.178
—0.019+0.266

0.012+0.301
—0.098+0.226

The amplitude f, violating isospin invariance,
was assumed to vanish in the phase-shift
analysis. Consequently, we find Ref =Imf =0
with high accuracy in the reconstruction from
phase-shift values in Table VIII. In the semidirect
reconstruction we find that Ref =0.114+0.304,
i.e., this amplitude does not necessarily vanish,
however no conclusions on isospin violation can be
drawn here.

A discussion of the actual limits acceptable for
the observables in order to permit a "reasonably"
accurate determination of the amplitudes goes
beyond the scope of this paper. The experimental
situation for np scattering is at this stage much less
favorable than for pp scattering, where ambiguities
are also encountered in direct reconstructions. '

VII. CONCLUSIONS

This paper consists of essentially two parts. In
the first we derive a variety of nonlinear relations
between experimental quantities in the elastic
scattering of two nonidentical spinor particles.
The relations can be used in order to determine
whether a given set of experiments is complete,
sufficient, or neither. They can also be used to cal-
culate the values of certain observables on the basis
of the measurement of other ones, or to put limits

on the possible values of certain variables.
The second part (Secs. V and VI) is concerned

with a reconstruction of the np scattering ampli-
tudes without assuming isospin invariance. In Sec.
V we discuss the completeness of various specific
sets of 12 experiments. In Sec. VI we actually per-
form an amplitude reconstruction at Ei,b ——425
MeV and 8=65'. %e call the reconstruction a
"semidirect" one, since it was necessary to add the
values of the asymmetry tensor Aoo,q, calculated on
the basis of a phase-shift analysis, to the measured
observables 0~ Appnp~ ~pppn~ ~ ppnn~ &pnnp~ &ps"sp~

Ep 'kp and Epk-, p. The reconstruction is meant
more as an illustration of the use of the nonlinear
relations than anything else. It shows how these
relations help to distinguish between ambiguities
inherent in the formalism {incomplete sets of data)
and ambiguities due to experimental errors. The
fact that at a given energy and angle the nonlinear.
relations predict some observables with good accu-
racy but others with very large error bars, should
be used to plan experiments resolving ambiguities.

A combination of a direct reconstruction with
other methods of extracting amplitudes from data
seems to be a fruitful approach. At energies up to
about 1 GeV a phase-shift analysis is quite feasible.
At higher energies we plan to apply analyses in-

volving simultaneous expansions in terms of func-

TABLE VIII. Reconstruction of the np amplitudes at the point Ej,b ——425 MeV,
0, =65'.

Amplitudes Semidirect reconstruction Reconstruction from phase-shift values

Rea
Ima
Reb
Imb
Rcc
Imc
Red
Imd
Ree
Ime
Ref
1mf

0.286+0.327
0.645+0.486

—0.581+0.220
—0.343+0.780

0.424+0. 132
0

—0.721+0.496
0.259+0.343
0.274+0.299
0.123+0.165
0.114+0.304
0.000+0.012

[—0.929,1.118]
[—0.939,1.086]

[—1.284, —0.242]
[—1.133,1.140]

[0.153,0.815]
0

[—1.148,0.874]

[—1.059,1.116]
[—0.915,1.008]
[—0.592,1.097]
[—1.058,1.108]
[—0.059,0.049]

—0.002+0.032
0.351+0.244

—0.735+0.403
—0.074+0.930

0.513+0.327
0

—0.319+0.509
—0.213+0.109
—0.176+0.873

0.737+0.399
—0.003+0.102

0.000+0.014

[—0.092,0.137]
[0.088,0.841]

[—1.395,—0.224]

[—1.205, 1.187]
[0.175,1.077]

0
[—1.098,0.324]

[—0.374,—0.059]
[—1.219,1.189]

[0.217,1.417]
[—0.395,0.534]
[—0.047,0.050]
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tions of the scattering angle and the energy ' and
to combine these with a direct reconstruction.

Such an approach should make it possible to
combine the advantages of a direct reconstruction,
namely the freedom from theoretical bias, with the
advantages of partial wave and other expansions,
namely the possibility of simultaneously using data
measured at different energies and angles.

We plan to return to the problem of the recon-
struction of np scattering amplitudes and in partic-
ular the distinction between algebraic ambiguities
occurring even for precise data and statistical am-

biguities due to experimental errors, in the future,
once more data become available.
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