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Rescattering effects and the Schmid theorem
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We point out here the importance of the 1967 paper by Christoph Schmid in clarifying re-

cent studies concerning the existence (or nonexistence) of peaks in three-body hadron sys-

tems. We further point out that the Schmid theorem left open the possibility that a residual

interference term involving the singularity of a triangle diagram can in principle at least

lead to observable effects in the differential cross section, Some numerical examples are

given.

There has been a spate of papers, both recent' and
not so recent, discussing mechanisms for possible
peaks in three-body hadron systems —mostly associ-
ated with the singularities of the triangle diagram.
We wish to point out here the relevance of an earlier
(largely unnoticed) paper by Schmid which might
have shed a great deal of light on the current con-
fusion of claims and counterclaims. '

Following Schmids we first take up once more
the mechanism proposed by Peierls twenty years
back. The simplest manifestation is via triangle dia-
gram Fig. 1(a), where W is the invariant mass in the
initial two-body system and 5' and 6 are reso-
nances. The singularities of this diagram (triangle
singularities) are at energies which allow all three
internal lines to be on their respective mass shells
and the rescattering angle to be at an extreme value
z=+1 (hence all internal momentum vectors are
parallel in the c.m. frame); for the Peierls case
b, '=6 and a =c (a —=m„6=Ma, etc.) these ener-

gies are given by

Wi =2(d +c ) b—
Wg

——(b, —ci)2/bz .

On which sheet are the triangle singularities)
Coleman and Norton and Bronzan gave a simple
and general answer. The singularity of a Feynman
amplitude is on the physical boundary if, and only
if, the diagram can be interpreted as a classical pro-
cess in space-time. For the rescattering process Fig.
1(a) (triangle amplitude), this means: All three
internal particles must be on their mass shells, the
decaying 5' must emit the b in the direction of c,
and b and c must come together with the correct rel-
ative velocity to form h. In the case b, =A' these

conditions are not satisfied at either W~ or W„, as is
we11 known. In passing we mention that a recent
treatment of pion-deuteron scattering in a relativis-
tic three-body model bears less on the existence of
rescattering [e.g., Fig. 1(a)] but rather on a
resonance-production-type zeroth-order graph [Fig.

FIG. 1. (a) Triangle graph for three particles a, b, and
c. 6' and 6 are resonances formed from a, b, and b, c,
respectively. Final-state (or charge-exchange) scattering.
b+c ~b(b')+c(c') occurs with subenergy e and momen-

tum q. (b) Zeroth-order graph for three particles a, b, and
c in which resonance 5' decays into a, b with subenergy g.
and momentum q'.
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1(b)] projected out to a given partial wave —hence
the interpretation is not really a test of triangle
singularity 8'„as suggested by Brayshaw et al.

Another interesting facet of Schmid's work con-
cerns the question of overlapping resonance bands.
It has been known for a long time' that in general a
Dalitz plot of the kinetic energies T vs T for the

final-state products from, say, nN~n2+m'3+N'
shows bands T =constant and T =constant, cor-

~2 ~3

responding to resonance (isobar) formation. The tri-
angle singularities [e.g., Eq. (1} with b, =h(1238),
c=a =sr, b=N] correspond kinematically to the
crossing point of the above-mentioned bands enter-

ing and leaving the physical region of the Dalitz
plot. Chang" proposed that, irrespective of the
sheet difficulties of the Peierls singularity, one could
hope for production of peaks by interference of
overlapping resonance bands as they enter the physi-
cal region of Dalitz plot. However, Schmid has
shown quite generally that interference of overlap-

ping resonance bands for the commonly discussed
cases' "does not produce peaks in either total tran
sition rate or two-body mass plots.

It has been argued, especially by Brayshaw and
Peierls that even if one such graph by itself [e.g.,
Fig. 1(a)] is regular on the physical boundary, the
sum of multiple-rescattering graphs (in particular,
the inclusion of the "box graph") might sum to a
singularity as a truly dynamical effect, e.g., to a true
three-body resonance pole on the correct sheet at an
energy near the appropriate Peierls singularity. This
was first conjectured. by Hwa' essentially treating
the triangle singularity as a kind of dynamical driv-
ing force, but the claim of a "nearby" resonance pole
is not borne out in the strong-coupling static model.
Another class of calculations has been to examine
soluble models less physical than strong-coupling
theory to examine their solutions for three-body res-
onances or bound states. The complete calculation
of Srivastava' in the Lee model found no resonance
in the vicinity of the Peierls singularity. Hence, in
the absence of a detailed calculation of the touted
importance of an off-shell analysis with respect to
the singularity of their "box graph" (amongst other
higher-order diagrams), the Brayshaw-Peierls sug-
gestion remains an unprouen conjecture.

Next, we take up the work of Polykarpov and van
der Velde. ' Their point is well taken that the
Brayshaw mechanism, except for the emphasized
importance of final charge exchange with
b+c~b'+c' and b'+c' at threshold in Fig. 1(a)
(where b, is replaced by some effective S-wave
scattering at that vertex}, is the same mechanism al-
ready noted by Aitchison and Kacser, '"

by Aniso-
vich et al. , ' and by Valuev, ' but probably first no-

F=A(rt)+B(E,e), (2)

where g and e are, respectively, ab and bc subener-
gies (cf. Fig. 1) and E is the total energy. (All ener-
gies are relative to the relevant sum of rest masses. )

Following the methods of Aitchison and Kacser, ' A

and 8 are given by

A(g) =1/(ri —5'), (3)

(a +b )(b'+c )
(1 p)(a+b+c)p

(4a)

where f(q) is the b cscattering ampl-itude, and

(»P& = f dg' inP(E, e,q'),
2m.

(4b)

(b+c)[q+p'(rt')]+cp+i0+
(b+c)[q+p'(rt')] cp+i 0+— (4c)

The kinematic variables, cf. Fig. 1, are

ticed by I.andshoff. ' In the language of Schmid
this is the modified (and weak) Peierls mechanism.
As for the final-charge-exchange mechanism of
Brayshaw, we agree with Polykarpov and van der
Velde' that the Brayshaw singularity which moves
upward towards the real axis, ostensibly "very close"
to the physical region due to b+c~b'+c' charge
exchange, actually lies on a distant sheet. This is
most transparently seen by examining Eq. (5) of
Brayshaw, Simmons, and Tuan for Im s where s is
the (square of) three-body energy of the system.
There is nothing to prevent Im s here from going
positive if as (in their notation) is increased enough
(see also Ref. 1, Fig. 2). Since nature will not allow
this disaster on the physical sheet, it must mean that
the singularity whose position is given by their Eq.
(5) is not near the physical sheet. Hence the
Braysham mechanism is invalid.

Coming back to our central theme, the crucial
Schmid observation is that when the triangle ampli-
tude B of Fig. 1(a), a first-order rescattering correc-
tion, is added to the zeroth-order amplitude A of
Fig. 1(b},the effect of rescattering is seen to be noth-
ing more than a multiplication of part of the zero-
order amplitude by a phase factor e ' [see below,
Eq. (12)]. Explicitly in the nonrelativistic limit, the
total amplitude F is, up to a constant factor,
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2bce
b+c

' 1/2
Ao+B= [ln(aa/Pg)(a+b }(b+c }

2 a+b+c qp

' 1/2

g( p)
2abri

2a (b +c )(E e)—
a+b+c

' 1/2

' 1/2
2c(a+ b )(E—g')

a+b+c
b, is the complex resonance energy b, =Z iI'/—2,
where I is the energy-dependent width I =yq, and
I"=yq'. The once-integrated differential cross sec-
tion do/de is

+1
da/de=qp J d cos8 IF I

qp 2 (2i+I) IF~ I'
1=0

where cos8= p q/pq and the F~ are the partial-wave
projections of F with respect to the relative direction
of p and q. Because the rescattering is pure S wave,
Fo =Ao+B F[=A( (1+0), and so

dcT/de:do/de o oqeer'+4
dcT

dE'

where

—2iqf (q)lnP~ ]

(a+b)(b+c)
(1 2isl p )

2(a+b+c)qp
(12)

Notice that, as emphasized by Schmid, the partial-
wave projection of the zeroth-order amplitude A has
singularities where aq or Pa equal 0 or ao which
are "triangle singularities" corresponding to energy-
conserving and collinear intermediate states. Fur-
ther, the effect of the rescattering amplitude B is to
multiply the term in' of the zeroth-order ampli-
tude by a phase factor e ' . The rescattering correc-
tion to the cross section is

=( IAo+B I

~—IAo I )qp .
d6'

Using Eq. (12), we have

( I inane
—e in' I

do' 1 2i5 2

dE' QP

—
I
1nas —1nP~

I
)

Re[(e2's —1)inane in' ] .

and

do qp= ~ J', dcos8IA I'
de ooreer

=qp( I~o+B I

' —
I ~o

I

'} .
d6

For constant I,
(a+b)(b+c)

10 ln
2(a+b+c)qp Pg

(10)

where a~ and Pa are a and P, respectively, evaluat-
ed at g'=6', i.e.,

(b+ c)[ q+p'(&') ]+—cp

(b+c)[ q+p'(5'}] cp '— —

(b+c )[q+p'(6') ]+cp
(b+c)[q+p'(6')] cp

'—
An approximation to (lnP), Eq. (4b), which is

good when the width of the resonance is small, and
in any case has the triangle singularity, is lnPa. Us-
ing this, the S-wave amplitude to first order in the
rescattering is approximately

(13)

Schmid's point is that ado/de has no I in' I

term, even though
I
B I, the contribution of the re-

scattering term alone (neglecting interference) does.
Thus a large value of lnP~ (e.g., due to a nearby
"triangle singularity" ) does not necessarily result in
a large value of b, du/de. However, as Eq. (13)
shows, there is still the possibility that the rescatter-
ing contributes interesting structure to der/de from
either the factor lna~ or the factor in'.

Clearly, explicit calculations of do/de are called
for. For numerical work, we use a =c, and f=same
resonant scattering as in the triangle diagram, name-

ly,

e ' =1+2iqf(q)= 6—e

1.e.,

2iqf(q} =
6—e

(14)

To make a comparison with Polykarpov and van der
Velde, ' we shall illustrate with their parameters for
the Nh system:
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FIG. 2. (a) The differential cross sections der/de (units
are arbitrary) vs total energy E with a breakdown of the
contributions from zeroth-order, triangle, and interference
terms at @=Z/2 computed from Eq. (7). (b) The same en-
tries as in (a) but for e=Z.
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lated from

+1 1

i(rp, q, 8)—b, '(ri )

rather than from the constant-width formula (10),
although (10) proved to be a good approximation to
the exact integral expression for Ac with r'(ri)
dependence. The total cross section is then

o(E)= f de. (16)

In the numerical evaluation of Eq. (4b) the phase
choice is as follows. In the region 0&e&E and
E & r)', p is positive only if

(a+b)(b+c)E( b(a+b+c)

I I I ~ ~ ~ ~ ~0
100 150 200 P,50

ENERGY E(MeV)

FIG. 3. The differential cross section der/de (arbitrary
units) vs total energy E for the case @=Z/2 and the width
I ~ reduced to 11.5 MeV. Also shown is the interference-
term contribution alone; the triangle-diagram- (rescatter-
ing) amplitude squared is less than 10%%uo of the interfer-
ence term plotted here.

r(e) =yq =r~(e/s) '~',

where I ~ ——115 MeV .

However, we shall not use their form factors g (e).
For consistency, we shall compute do/de from (7)
with

and

1

(a+b)(b+c)

x I (acr)')'~ [b(a+b+c—)(E ri')]'~ I—
and

b'=6'(ri) =b, —ir'(ri)/2 Otherwise, p is negative and Inp=ln
I p I

in-
In the region ri'&E, p'=+i

I p I
and where

aeEE')
(a+b)(b+c)

The Ac contribution to do IdE is numerically calcu-
I

we have

lnp=ln
I p I

+i tan —tan
q+ clb+c q [c/(b+c) jp—
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and where

aeE
(a+b)(b+c)

we have

lnp=ln
~ p~ +i tan —@+tan

The dominant feature of do/de versus total energy E is the large interference term for e=b, /2 throughout
(note e=b, /2 and ri =6 bands intersect in the physical region of the Dalitz plot for 175 &E & 1810 MeV). For
a=A, the interference cross section becomes relatively unimportant vis a vis zeroth-order + triangle contribu-
tions. These are depicted in Figs. 2(a) and 2{b). The contrast for the two cases is due to the reality of 2iqf(q}
in the interference term'

do'

"~ Int

2
(a+b)(b+c) 1

(2 Re[ [in(ua /P~ )]'2iqf(q) {lnP) I )
2 a+b+c qp

(17)

for e=Z, and an enhanced value for dc;/de ~;„, at
e=h/2 due in part to the well-known' fact that at
e=b, /2 the triangle singularity lies close to the
resonance-particle threshold and is thus "near" the
physical region. The dominant term in (17) for
e=Z/2 is proportional to Im{2iqf(q)), absent in the
e=h case.

The full do/de for e=Z/100=1. 57 MeV (near
the b cthresho-ld) and I a ——115 MeV is both small
and dull (in terms of structure) reflecting the
suppression due to q and I'(e) (Eq. 15) for the
zeroth-order and triangle terms of Eq. (7). The total
cross section as expected also shows no structure.

As for the cusp effects discussed above following
Eq. (13), reducing I a to 11.5 MeV does lead to
small interference cusps at E=553 and 784 MeV
where the intersection of e=Z/100 and ri =5 bands
enter and leave the physical region of the Dalitz
plot. Such effects are anticipated for e=0 from
Eqs. (13) and (17) in the narrow-width limit (in

which {inP)=lnP~ ) when (inane )"in' has a siz-
able and dominantly imaginary component; they are,
however, totally swamped by the very much larger
zeroth-order term and hence are unobservable in the
complete expression for do /de [Eq. (7)]. For
e=h/2, the rescattering contribution to der/de has
a peak (half width =115 MeV) around E=170
MeV. However, it is only a less than 10' effect
against a rapidly rising zeroth-order cross section, '

see Fig. 3.
Note added. After this work was submitted for

publication we were informed by I. J. R. Aitchison
of his work with C. Kacser [Phys. Rev 173, 1700
(1968)], which stressed a similar point regarding the
interference term Eq. (17}.
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