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Comment on a universal upper bound on the entropy-to-energy ratio
for bounded systems
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Some difficulties are noted with Bekenstein's arguments that a system with energy E
and effective radius R has an entropy bound S &S&=2m.ER/Ac. The inequality appears
to be valid only for large S~. For that regime an upper bound which is generally stronger
is proposed.

Bekenstein has made the interesting suggestion'
that the entropy of an arbitrary system cannot
exceed the ratio of its effective circumference to its
reduced Compton wavelength:

S(Sn=2mER/f—ic .

However, there are several problems with the
present formulation of this idea.

First, the argument' for the minimum entropy
increase of a large black hole absorbing a system is
not valid. To attain the minimum, it is assumed
that the system is released from a zero-momentum
state when it just touches the hole. But if the
center of the system is at proper distance R from
the horizon before being released, it must be sup-
ported against a gravitational acceleration of c /R
(independent of the size of the hole in the limit
that it is much bigger than R). In fact, the tension
in the system would diverge at the horizon if it
were to be at rest just touching the hole. Such
forces would greatly distort the system and alter
the numerical analysis in a system-dependent way.

Second, the argument from quantum statistics
breaks down if the vacuum energy ED (0, for then

clearly a statistical state with probabilities pp to be
in the ground state and p~ to be in an excited state
with energy E~ & 0 can give arbitrarily large S/E if
E=ppEp+p~EI is made small enough. Bekenstein
gives reasons for assuming Ep g 0, but the Casimir
effect is a counterexample which can give negative
vacuum energy even in a finite cavity (if sufficient-
ly nonspherical or noncubical). It might be sup-
posed that one could avoid this problem simply by
excluding all states with E &0, but this ad hoc
procedure does not suffice, for one can choose the
system (e.g., the Casimir cavity shape) so that the

lowest positive energy is arbitrarily small.
A formulation that seems more likely to work

for a small number of free fields is to redefine the
energy of the ground state as zero and then exclude
that state from consideration. However, one can
imagine cases with interacting fields (e.g. , a Higgs
field with the appropriate self-interaction potential)
in which the first excited state Ej has only slightly
higher energy and hence could be incorporated into
a statistical state to violate the bound on S/E.
Even for free fields the bound could be violated if
there is a sufficiently large number N of species, by
using a density matrix with X equal diagonal en-
tries, each representing a state with only one field
excited. The mean energy would be independent of
N if the excitation energy were the same for all
species, but the entropy would grow as lniV. It is
not correct to use this result to deduce a limit on

for it simply shows that the assumed bound
would not hold in this case. Thus it does not seem
possible to obtain a valid universal bound on S/E
simply in terms of the size of the system.

Nevertheless, the fact that Bekenstein's bound
works for black holes much bigger than the Planck
mass and is saturated for Schwarzschild holes sug-
gests that it may have some domain of validity.
These holes have Sz much larger than unity,
whereas the violations of the bound occur when
other dimensionless quantities (such as 2rrE~R/Pic
or lnN) dominate this quantity. Thus it seems
plausible that the entropy of a system cannot in-
crease faster than S~ as this quantity is made
large, so S/Sz cannot exceed unity in the limit of
large S~.

Now we may ask how closely Bekenstein's
bound Sz may be approached when it is large. For
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a stationary system of energy E in a spherical box
of radius R ygGE/c and volume V=4' /3,
the maximum entropy state is presumably thermal
radiation with a possible black hole at the center,
with total entropy

S-4~GM /iric+ , (ay—)' (E Mc—)
~ (2)

Stefan's constant for nb massless boson helicity
states and nf massless fermion helicity states is

a =m (8ns+7nf)/240i c

and it is assumed all particle species either can be

counted as massless or else make a negligible con-
tribution to the entropy. The black-hole mass M is
chosen to maximize (2). For R ) 12.6(G E /
aA' c )'~, the maximum occurs for M=O (no hole

present), but if this inequality is violated, the max-

imum entropy occurs when M is the larger root of
E —Mc =a V(8irGM/iric ) . An upper bound to
the entropy may be obtained by replacing M by
Elc in the first term of (1) and by 0 in the second

term, giving

S(AGE /Pic'. + —,( fai'c /66)' Ss ~ . (4)

This bound may be improved by extremizing (2)

more carefully and by analyzing the self-gravita-

tion of the radiation, "' but it is an order-of-

magnitude estimate of the attainable entropy and is

not exceeded even when these effects are con-
sidered. The formula should apply to a confined

stationary system whenever it gives a number large
compared with the theory-dependent maximum en-

tropy for Ss of order unity.
It is obvious that (4) gives a much lower bound

on the entropy than (1) when Ss is large, unless

R -GElc so that the system contains a black
hole and does not extend far outside the horizon.
In particular, the entropy of a stationary system

not containing a black hole is much smaller than

(1) if Ss is large. This is true even if the system is

self-gravitating and is confined to a radius not
much bigger than its Schwarzschild radius. ' "
Thus there is a large gap between black-hole entro-

py and the entropy of other stationary systems of
comparable size and mass much bigger than the
Planck mass, though of course the gap may be re-

moved by going to the Planck mass.
For nonstationary self-gravitating systems, it is

much more uncertain what the entropy limits are.
A Friedmann region joined by a narrow throat to a

Schwarzschild exterior can have an arbitrarily
large entropy for a given mass, but it must have
evolved from a white-hole singularity. " Even ex-
cluding this by restricting consideration to non-

singular initial data with no past trapped surfaces,
Sorkin, Wald, and Jiu find a configuration which
has a long throat just outside its Schwarzschild ra-
dius and an arbitrarily large entropy-to-energy ra-
tio." However, they argue that the configuration
is unphysical, because it is based upon a semiclassi-
cal analysis and ignores large quantum fluctua-
tions. When the configuration is restricted so that
the quantum fluctuations are small, it obeys the
bounds (1) and (4).

Another way to get an arbitrarily large entropy
into a region of finite mass and size in a semiclas-
sical analysis is to form a black hole and then feed
it for a sufficiently long time with incoming radia-
tion at just the rate to balance the mass loss to out-

going Hawking radiation. ' Then consider a nearly
null spatial hypersurface which starts at the center
when the horizon forms there and spreads outward
just barely outside the horizon, forming a sort of
sheath around the horizon in a spacetime diagram.
If the horizon is made to persist an arbitrarily long
time and this hypersurface stays very near it for an
arbitrarily large amount of radiation to cross it in-

side some radius slightly outside the horizon, the
entropy on the hypersurface within this region will

be arbitrarily large. This example avoids the diffi-
culties of assembly" of the previous configuration,
but it is also based upon the semiclassica1 approxi-
mation which will measurably break down in
black-hole evaporation. ' There will not be a de-

finite horizon or spatial hypersurface having the
properties above, because of the Brownian motion
of the hole. Even if one considers a collection of
hypersurfaces in the different quantum geometries,
it is possible that correlations in the Hawking radi-
ation with what has been fed into the hole would

keep the entropy finite.
These considerations suggest that it may not be

possible to derive an entropy bound such as (1) or
(4) for nonstationary self-gravitating systems until
we have a better understanding of quantum gravi-

ty. However, semiclassical analyses of stationary
systems support the upper limit (4) when Sz is
large, generally a stronger upper limit than
Bekenstein's bound (1). When Ss is small, the
maximum entropy depends upon the system and is
not rigorously bounded by either (1) or (4).
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