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We calculate the lowest-order Delbruck scattering amplitude without approximations.
We also show that this amplitude scales in the form of to 'f(8) as to/ m~oo with 9
fixed, where co is the energy of the photon, m is the electron mass, and 0 is the scattering

angle. In addition, we prove that this scaling behavior is obeyed by the Delbruck ampli-

tude even if the higher-order diagrams of multiphoton exchanges are taken into account.
Existing experimental data appear to be in conflict with the scaling behavior, and we sug-

gest that the data be reanalyzed or (and) additional experiments be performed.

I. INTRODUCTION

Delbriick scattering is a classic problem in QED
which remains to be calculated. The existence of
Delbriick scattering (that of a photon by a static
Coulomb field Ze /r) was first proposed almost 50
years ago. ' On the experimental side, people have
measured its cross sections for various energies and
scattering angles, However, on the theoretical
side, its exact calculation has never been success-
.fully completed. There is no problem in principle,
for we may apply the Feynman rules and express it
in the form of multiple integrals in the momentum
space. However, the numerators of the integrands
contain so many terms that the process of its
Feynman parametrization and momentum-space
integration has discouraged even the hardiest souls.

Theoretical results on Delbruck scattering have
therefore been limited to special regions. For ex-

ample, the imaginary part of the lowest-order
Delbriick scattering amplitude at the forward
direction is related to pair production by the opti-
cal theorem, and can therefore be more easily com-
puted. This was done by Jost, t.uttinger, and Slot-
nik. The real part of the forward Delbriick am-

plitude can then be deduced by the dispersion rela-
tion. ' In 1969, Cheng and Wu succeeded in cal-
culating the Delbruck amplitude in the limit
ro/m ~~1 with

~

b,
~

&&co, where co, b, and m are
the incident photon energy, the momentum trans-
fer, and the electron mass, respectively. This is the
region of high energies and small scattering angles,
where most scatterings occur. Their calculation
also includes the higher-order effects of multipho-
ton exchanges, and therefore is valid even when
Za=0 (1), where a is the fine-structure constant.

We have finally carried out the exact calculation

k'

Osis p-k'

FIG. 1. Lowest-order diagrams for Delbriick scatter-
ing.
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of the lowest-order Delbriick scattering amplitude.
The result is reported in this paper. We also find
that this amplitude is asymptotically equal to

co 'f (0)

in the limit colm » 1,
~

b,
~

/m &&1, where 8 is the
scattering angle related to co and

~

b,
~

by

8
2

'

This is the region of high energies with fixed
scattering angles. The scaling formula (1.1) is a
consequence of the finiteness of the Delbriick am-

plitude at m =0, and is obtained by setting m =0
in the Delbriick amplitude.

Although we are as yet unable to calculate the
corrections of multiphoton exchanges to the
Delbruck amplitude, we have proved that this am-

plitude, with the multiphoton-exchange corrections
included, still satisfies (1.1). This will be discussed

in Appendix B. It follows from (1.1) that the dif-
ferential cross section multiplied by co is a func-

tion of 8 only, independent of co:

=(4n. ) '~ f(&) i' co»m .
dQ

II. CALCULATIONS

In this section, we give the details of the exact
calculation of the lowest-order Delbriick ampli-
tude. The reader who is not interested in such de-
tails is advised to skip to the end of the section.

The Delbruck amplitude of Fig. 1 is given by

(D) s 2
g

d 3q Mp(k kq)=ie Z
(2m) (q )(g —q)

(2.1)

where Mp is the lowest-order amplitude for the
scattering of a real photon from a Coulomb pho-
ton:

The observation that the Delbriick amplitude is
finite in the limit m —+0 helps to simplify the exact
calculation of the lowest-order Delbriick amplitude
for m+0. This is because terms in the numerators
which diverge as m ~0 must cancel one another.
It is therefore helpful to group the terms into
sums, each of which is convergent at m =0. There
are then extensive cancellations among terms in
each sum and the final expressions are simpler
than what we naively expected.

r

mj d4p Tr[y, (p+m)yo(p+q+m)y, (p+q II'+m)y—o(p Ir+m)]-
Mp(k, k', q) = 2 + 424m (2m) (p —m )[(p+q) —m ][(p+q —k') —m ][(p —k) —m ]2 2 i 2 2 2 2

Tr[y;(p+m)y (p Ir'+m—)yp(p k q—+m-)yp(p 0+m—)]
(p2 —m )[(p —k')2 —m2][(p —k —q) —m ][(p —k) —m ]

l

+ preceding term with q~b, —q
I . (2 2)

In (2.2) the constant i t'3cj /246 is a subtraction term which is not given by the Feynman rules but is required
to ensure the condition of gauge invariance of Mo (0,0,0)=0. Also, the contribution of diagram 1(b) to Mp
is expressed as the sum of two terms: the last two in (2.2). Upon integration over q, these two terms actu-
ally contribute equally to Mo '. We choose the present expression in order to retain the symmetry of Mo
with respect to the two momenta q and 6—q.

A. Traces
The numerators in (2.2) are evaluated in a straightforward way. We have

Tr[y;(P) +m)yo(P2+m)yz(P3+m)yo(Pc+ m)]

gE2E4[plip3j +P3ipl j+~ij(PI P3 m )]+ g1 E3E[2iPp4j+P4ip2j+~ij (P2 P4 m )]

+g+1E2[P4ip3j p31P4; —~'j(P3'p4™)1+gE3&~[p»'pij p2iplj ~ij(P1 P—2 m )]2 2

—4(p»P2j P2iP1j)(P3 P4 m ) 4(P4ip3j P3iP4j)(P—1 P2

(P 1 P3j +P3 Plj )(P2'P4 ) '(P2 P4j+P4'P2j )(Pl P3'™)
+ (P 1 P4j+P4 Plj )(P2 P3 )+ (P2ip3j +P3ip2j )(Pl P4

+ ~, [(pi P2 — ')(P3P4 )+(Pl P4 m )(P2P3 m') (P1P3 m )(P2P4 — ')] (2.3)
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and

Tr[l';(jj I+irib; (P.2+mb'o(jj3+iri)ro(jii4+m)l

=8E3E4[PIip2j+P2PIj+5ij(PI P2 —m )]+8E2E3[PIiP4j+P4PIj+5ij(PI.P4 —m )]2 2

+ EIE3[P4iP2j P2iP4j 5ij(P2 p4 n )] 4(PIip2j +P2iplj )(P3 P4 112 )]2 2

(PliP4j+P4iPlj )(P2 P3 n )+ (Plip3j+P3iplj)(P2 P4

(P4 P2j 'P2iP4j )(PI P3 ™)+4(P3ip2jP2iP3j)(PI P4™)
+ (P4iP3j P3iP4j )(P I P2

2

—45 jl(PI P2 —m')(P3 P4 —~')+(PI P4-I')(P2.P3 —I')—(PI.P3 —m')(P2.P4 —~')] . (2.4)

In (2.3) and (2.4), E„ is the time component of p„,
n =1,2, 3,4. By identifying p„with the momen-
tum of the nth line in the diagrams (see Fig. 1 for
the number designation for the lines), we obtain
the explicit forms for the numerators in (2.2).

B. Cancellation of trace terms

There are terms of diagram 1(a) which cancel
terms of diagram 1(b). This comes about because
diagram 1(a) with line 1 fused is the same as dia-
gram 1(b) with line 4 fused, if we identify lines 2,
3, and 4 in diagram 1(a) with lines 1, 2, and 3 in
diagram 1(b), respectively. Since a factor
(p; —m ) in the numerator cancels the propagator
of the ith line and has the effect of fusing line i,
we get, for example, the following relations be-
tween terms of the numerators:

p2 (pl —m ) for diagram 1(a)

=p, (p42 —m ) for diagram 1(b) . (2.5a)

2 2 2
2Pn Pm =Pn +Pm (Pn Pm ) (2.6)

A term proportional to (p; —m ) in the numerator
of diagram l(a) can be used to cancel a correspond-
ing term in diagram 1(b). Care must be exercised,
however, in choosing such terms for cancellation.
This is because canceling terms which are diver-
gent in the limit m ~0 may complicate the expres-
sions instead. According to the discussion in Sec.
III, the following terms in (2.3) are convergent:

I

Similar relations arise from fusing other internal
lines. For example,

pl;(p3 —m ) for diagram 1(a)

= —p4;(p2 —I ) for diagram 1(b) . (2.5b)

The numerators become simpler if we take ad-
vantage of relations such as (2.5). We shall express
2p„.p in the numerator by

25ij(p I2—m2)(p32 —m 2)+25ij(p2' —I')(p4' —m')

4(pl m)( j—3, q);p—2j 4(p3'—iri')p—4;q, +4(—p2' iri')p»(~ q);—+4(P4' rn—')qip3j—
We shall therefore subtract the terms in (2.7) from (2.3) as well as the following terms from (2.4):

—25j(p2 —m )(p4 —m )+4(p4 —m )(b —q);PIj —4(p2 —I )PI;qj .2 2 2 2 2 2 2 2 (2.8)

These terms, together with the ones obtained from (2.8) with q —+b, —q, cancel one another.
After making such cancellations, the two traces of (2.3) and (2.4) become, respectively,

8E2E4[plip3j +P3iplj +5ij (PI P3 + )1+ EIE3[P2iP4j+P4iP2j +5ij(P2 P4 + )1
2 2

+8EIE2[P4P3j P3P4j 5ij(P3 P4™)]+8E3E4[plfp2 P2PIJ 5ij(PI P2™' — )]—2 2

—2(PI —m )6;(4—q)j —2(P2 —m )(b,—q);bj —2(P3 —m )q;hj 2(P4 m)j3.;qj— —
—2pl p2j(A +B+C+8)+2p3 p4jA +2p2 pljB 2p3ipijC 2—p2ip4jD-
+5j[(PI m)(B ——C)+(p2 —m )(B—D)+(p3 —m )(A C)+(p4 —m)(A D—)+AB CD]— —(2.9)
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and

45—JEz[(p; +p4 2m—)co+E) 5 ]+SEz [co(13gp,j p)—;13J)+E)b,; 13J ]+4p)p(J( SEz C—D—)
2+2[p);bl(A D—}+bqp)J(A —C) —(p);q~+qp)J)b, C—b„hj.]

+2[(p~ —m )(q;bj lb.;qj—)+(pz m)—q;bz. —(p3 —m )6 b +(p4 m—)5;(13, q) ]—

5—J[(p& m—)(C+D)+(pz —m )(A C)—(p—3 m—)13 +(p4 m—)(B C) C—b, ]—
—8(p3 —m )p),p,, +SEz (p, —m )5,)—2(p, —m )(p, —m )5,J .2 2 2 2 2 2 2 2 2 (2.10)

In (2.9) and (2.10) co is the energy of the incident photon,

A = —q =q, B = —(6—q) =(b —q)

C= —(k+q) =2k q+q, D= —(k' —q) = —2k' q+q
Note that

3+8—C —D=h
In deriving (2.9) and (2.10), we have made use of the transversality condition for the photons k; =kj =0,

which leads to p~; ——p4;, pzj ——p31 for diagram 1(a) and p&;
——p4;, p~j

——pzj for diagram 1(b).

C. Feynman parameters

Next we introduce Feynman parameters a„, n =1,2, 3,4 for the nth internal line. We then make, for dia-
gram 1(a), the change of variables

p =1+(a3+a4)k +u3b —(az+a3)q

and for diagram 1(b), we make the change of variables

p =1+(az+a3+a4)k +uzi, +a3q .

Then (2.2) with the traces given by (2.9) and (2.10) becomes

Mp(kk', q)=6f d a5 1 —ga„ f 4 4+ z 4+
d I NQ Nb Nc

(2n) (I —&, ) (1 D~b) (1 ——&, )

d4I l 5;J+4ngn4b, gh)+8fda~dazda45(1 —u~ —az —a4) f 4 z(2') (1 —aza4Z —m )

8l 5)+fdazda3da45(1 —az —a3 —a4) f (2m) (1 —a3a4A —aza3B uzu4b, —m )
4 2 2 23

dh 45,J I'. 5,J
(2m) [1 —a(1—a)Z —m ] 24m

In (2.12}

N, = ——,5,,(l')'+Pl'+Q

with

P = 2b,;EJ +8[a3b, —(az+ a3—)q];[(a~ +a4)q —a4b ] .

+5&(C+D+b, )—45jco [(a&+az) +(a3+u4) ],
Q =4[a34 —(az+a3)q];[a4b, —(a~+a4)q]J[8~ ( +aa34)( &+au )+zC+D]

+4' (u~a3 azu4)[51(D C)—+2(b,;qj q;bj)]+[(2b —8' )51——4b,;bj](&,—2—m ),

(2.11a)

(2.11b)

(2.12)

(2.13)

(2.14)

(2.15)
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&,=a~a2A +asa4B+a2a4C+a~asD+m

Also,

Nb ———, 5,j(—l ) +Rl +S,
R =5&&(12a&ro +2C —A —B —8a& co )+8(a2b+a&q);[a&q —(az+a4)b, ]j+4(q;hj —&;qj )+2+ +j,

$' = [4(q;Q —Q;q )+5; (8a& —2D)](&b —2m )+[2AB —4a~co (C+D)]a35&+8a&a3N (qlbIJ hfqj )

2
+4(a2b, +a3q);[a&q —(a&+a4)b]j(8a& co —C —D) —4a&[&;(&—q)j& +q;&JB —q;(&—q)J+ ],

with

9'b =asap +a2a3B+a~asC+a2a46 +m2 2

(2.16)

(2.17)

(2.18)

(2.19}

(2.20)

and

N, =Nb(q~b q), D—,=Db(q~b, q) . —

In deriving the above, we have made use of the formula

(5p;) =&— m—BS'
Ba;

(2.21)

where 5p; =p; —l, i =1,2,3,4. This formula is derived in Appendix A. We have also made the following re-

placements:

l~l„~ 4gq„l2, lql„lpl ~ (gq„g +gag„+gq g„p) .
24

We remark that a great amount of cancellation has occurred in the derivation of (2.13)—(2.20).
Next we carry out the integration over l. We shall need to use the following formulas:

1

dp 2

(
2 ~)4

(p2)2

le
6S'

6+2 1 $ 1+2

(2.22)

—2& ln +3&'0
(2.23)

and

(2.24)

where 0 is an ultraviolet cutoff which we introduce for the convenience of handling divergent integrals.
Since the Delbruck amplitude is ultraviolet finite, this cutoff parameter will disappear from the final expres-
sion. With (2.22) —(2.24), we may carry out the integration over l in (2.12}and get
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4

Mp(k, k', q)= fd a5 1 —ga„
16

+85;J 1ncrt, + + q +85,J ln&b
a g b b

+ the three preceding terms with q~h —q

~ ~

2' daidasda45(1 —aq —as —a4) ln(asag +aqaiB+aqaqb, +m )

r

i m ~c~/
5

(' dain[1+a(1 a—)Z /m ]
4' b, b, a(1—a)

ih; Lq i5,J
2~2' 2 4~2 (2.25)

&'= —16[ash —(ate+as)q];[(ai+a4)q a4b, ]; —25—J[C+D+8co (ai+a~)(as+a~)],
Q'=4[a&& —(ai+a&)q];[a&5—(ai+a4)q], [8co'(a~+a&)(as+a&)+ C+D]

+4co'(aiai —aia4)[5cj(D C)+2(h—;qj. —q;bj)] —4m [(b, 4co )5J——2b,;b, ],

(2.26)

(2.27}

snd

R'=25 J [b, ' C —8a—~(1 ai)co']—4q;b, —4h;(b, —q), —1—6(a&h+aiq);[aiq —(a3+u4)6]j, (2.28)

S'=2[a+B —2aiasco (C+D)—m (8aico —2D)]5cj+8(aiuico m)—(q;hz —5;qj )

+4(aid, +aiq);[asq —(ai+a4)b ]J(8ai co —C D)—
24a3[h;(6 q—)JA +q;bJB—q;(b q)J. b—, ] . —

We make two remarks about Eq. (2.25}:
(i) Tests on the correctness of the algebra up to this point are provided by the conditions

Mp(k, k', 0)=Mp(k, k', 6)=0

(2.29)

which are consequences of gauge invariance. Equation (2.25) satisfies these conditions.
(ii) The expression (2.25) is finite at m =0. For example, at m =0, &, vanishes at ai ——a4 ——0. Thus, the

integral of (S', ) over the two-dimensional plane normal to the line of singularity ai ——a4 ——0 is logarithmi-

cally divergent. However, all terms of Q' vanish at ui ——a4 ——0, therefore the integrals in (2.25) have no in-

finities caused by the singularity at ai ——a4 ——0. Similarly for the singularity of (6', ) at ai ——ai ——0 and

the singularity of (&b) at ai ——az ——0 and a4 ——ai ——0. Thus Mp is finite at m =0. This implies that Mp '

is finite at m =0, as the integration over q in (2.1) also gives no divergences.
The logarithmic functions in the integrals in (2.25) can be eliminated by making use of the following iden-

tities:

4 4

f d a5 1 —gab in&'= —, f d a5 1 —gak
ae/aa„+2m' -2

+ —,
' f d'a5 1 —g a, 'inc

kQn a„=0
n =1,2, 3,4 (2.30)

where & can be either &„&b,or O', . A proof of (2.30) will be given in Appendix A. We express the
logarithmic functions in the first integral in (2.25) as

8(in&, +ln&b+lnS', ) =41n(&, /&b&, )+121n(&b&, ) . (2.31)

For the first term in (2.31), we apply (2.30) in such a way that the integrated parts cancel. This is possible
because S',

~ p is equal to &b
~ p with u„—+a„+i, n =1,2,3, and similarly for &,

~
p, n =2,3,4.

For 121n($'b&, ) in (2.31) we integrate by parts with respect to ai. We then get
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l 4
Mo- f d a5 1 —ga„

16 1

P'+ —,5& [8m +(a&+a2)A +(a3+a4)B +(a2+a4)C +(a~+ a 3)D]

Q
R' ——,5&[a3(A +B)+(a2+a4)b —8m ]+4a3C5~j

+ .+ +
a b

+ the two preceding terms with q ~6—q

i~!~J i m 2~i~j f ' dain[1+a(1 —a)b, /m ] i5ij

2nd 4+ b, a(1—a) 12~2 (2.32)

D. Final integration

It remains to substitute (2.32) into (2.1) and carry out the integration over q. We shall introduce the
Feynman parameters P5, P6, and p for the factors q, (5 —q), and &, (or &s), respectively. Calling

pa; =P;, i =1,2, 3,4

we get

p=(Pi+P2+ p3+134)

and

4 6

dP5d136dp 5(1 P5 136 p—)d a—5 1——g a„=p d P5 1 —g P;
1 1

(2.33)

Whenever we encounter a term of the numerator with a factor q or (b, —q },we shall use this factor to

cancel the same factor in the denominator. Thus we get

(g) Q Z3 2

0

6

dP5 1 —gP;
1 p Qi R i pSi

d q + + +
+a @'a +b &b

4 4

dP, gdP, 5 1 P, QP, — —
1 1

P

P2 PQ2 R2 PSpdq2+ 3 + 2+ 3+a ~a ~b +b P =0

4 4

dP) P dP;5 1 —Pg —$P;
1 1

P

P3 PQ3 3 PS3
d q, +,+,+

&a @'a &b &b P =0

~lj fd4 5 1 g fd3 3 477az P(~2 g) (2.34)

where

P, = —,5&[5b —48co (a, +a~)(a3+a4)+16m +2(a~+a4 —a, —a3}(k+k') q]

—16[a3b —(a2+ a3)q];[(a~+a4)q —a46]j, (2.35)
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2
P2 ———5;l[1+—,(a3+a4)],

2I' = —5; [1+—,(a, +a )],
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(2.36)

(2.37)

Ql 12 I [u3&—(a2+a3)q];[a4b —(al+a4)q]j[8co (al+u2)(a3+a4) —b, ]
+2co (ala3 a2—a4)[h;q —q;b, —(k+k'). q5J] —m [(b, 4—co )5J —2h;hj]J,

Q2 8[u3~ (a2+ 3)q]:[a4~—( 1+a4)q]J

Q3 ——8[a3b, —(a2 +a 3 )q];[a45 —(a 1 +a4 )q]J

7+2a~ —4u3
Rl ——45,l (2a3 —1)(k+k') q —8al(1 —al)co + 5 + —,m

(2.38)

(2.39)

(2.40)

—Sq; EJ —8b„(b, —q)~ —32(a2b, +a3q); [a3q (a3+—a4)h]3, (2.41)

4a3
R2 ——25; —i

r

4a3
R3 ——25" —1

EJ 7

(2.42)

(2.43)

Sl ——24t ala3co b5J ,m[4a—lco + , b, +(k+ k'—).q]5J+(a2b, +a3q);[a3q —(a3+a4)h]J(8al co + b )

+a3q;(6 q)j. b +2(—ala3co —m )(q;b~ 5;qj)—J,2 2 2

S2 ———16I5J(ala3co ——,m )+(a26+a3q);[a3q —(a3+a4)h]J +a36;(4—q)J I,1

1S3=—16I5'z(ula3co ——,m )+(a2~+a3q);[a3q (a3+—u4)~1~+a3q;~J ],
+u=P5q'+P6(l q)'+pm'+—p '[(Pl+P4)(P2+P3)q'+2(P2P4k P1P3k' P3—P4~).q+—P3P4~'1

+b P3q +P6(~ q) +Pm +P [P3(P1+P2+P4)q'+2P3(Plk P2~) q+P2(P3+P4)~ ]

(2.44)

(2.45)

(2A6)

(2A7)

(2A8)

and

F(h, m )= ——,5;J — 2
—5;1

~I~J 1 m 2~i~j ' da ln[ ]+a( 1 —a)b. /m ]
CX

(2A9)

To ca~ out the integration over q, we make, for diagram 1(a), the change of variable

q= l +5q,
and, for diagram l(b), the change of variable

q= I +5qb ~

where

5q. =[(P6p+P3P4)~ P2P4k+P1P3k'V—A

5qb [(P6P+P2P3) ~ P1P3k]~Ab

with

~u =(Ps+P6)p+(Pl+P4)(P2+P3)

Ab —(PS+P6)p+P3(Pl +P2+P4) .

Then we have

(2.50)

(2.51)

(2.52)

(2.53)

(2.54)

(2.55)
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I', = (l +C) (2.56}

SIld

Ab
5'b —— ( I +Cb), (2.57)

where

C.=A. '[~'p(ppspe+PsP4Ps+P(P2pe) ~'(P(Ps P2P—4)'+m'p'A. ]

and

Cb =Ab I ~ p[ppspe+P2ps(ps+P4)+ P4pe(P2+Ps)+P2psp4] ~ P( Ps +m p Ab I .

We make use of the formulas

(2.58)

(2.59)

1

2l

dsl ( l )f
( l 2+C)4 ( l '+C)

( l '+C}'
l '( l'+C)

Then (2.34}becomes

1

C

5C

8C5/2 2C

SC

6C
I

wo -az fd 51—(g))3 2 pe N(N2N3N4
(

A 4C3/2 A4Cs/2 A4C3/2 A 4Cs/2
1 P a a a a P b b b b

5 5

+ a'Z' f gap, S 1 —g p,
1 1

N5 X6 Xp - Xg
2 C 1/2 P 3C 3/2 P 2 C 1/2 P 3C 3/2aP a a a bP b b b

6

where

d a5 1 —ga„as
4~a Z—2a'Z'5, , f + F(h, m ),

(a(+a~+a4)[Z aqa4 —a( as' +m (a(+aq+aa)1

(2.60)

a

+&(J[S(pi+P2)(Ps+ P4)ps s(P2+P4)(pips —P2P4)](~ ——,~ }

.&ig [4(Ps+Pe)(p—i+—P2}' , pAa] ls ' , 5J—m —'A.p, —— (2.61)

a

(P(Ps P2P4)'~'—
+3 mp 5;b, +—(2co ——,b, )5;J

a
(2.62)
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Pbp+P2P3 Psp+P3P4
N3 —— 2p(Ab —PiP3) —SAb P2+P3 P4+P3

Ab Ab

+t';3, [(2P 2+Pi —P3)P1P3( —,~' —2"+SPi(2P2+P3)Ab~ /p SPI P3 ~ /p 2p Ps~

—( —,P2+ —,Pi ——,P3)Ab b, 8pA—bm /3+SP3 AbCb/p], (2.63)

P P
P P+P2P

P P
Psp+P P

2P1P3(PlP3~ P m ) (P6P+P2P3)(Psp+P3P4)
+ Psp-

Ab b

PPiP3(4~'-~')—3&;;P;Psb, 'co'+ —,ti;;m'p SPico'+pb, '
b

(2.64)

PPs 2 Pl+P2
5 EJ p +

a P
(2.65)

2pPSP4Ps'
6 ~2 ~~j

a

(2.66)

4
2N7 25; —————1 —.2P, /A,EJ

(2.67)

~i PiP3 /P zp)+4P—3 P2~ ~ /Ab 4P2 . P4+—P3
1 PsP +P4P3

b

P 2

1+ b, ;b, /pJ.
b

(2.68)

In deriving the above, we have made use of the in-
variance property of C, and A, under the transfor-
mation

Ps P6, Pi P4, P2 P3

and the invariance property of Cb and Ab under
the transformation

PS~P6 P2~P4

By this invariance, we may, for example, ignore
the second integral in (2.34) and multiply the third
integral in (2.34) by two, or make the following re-
placement in Xt ..

(P2P6 P3Ps)(P4Ps PIP6)~2P2P6(P4Ps P1P6)

III. THE SCALING BEHAVIOR

The lowest-order Delbruck amplitude has a very
interesting property: It is finite in the limit of

~/co~=g(e, p;/~), (3 1)

where d is the dimension of M (for example, the
photon-photon scattering amplitude is dimension-
less, while the dimension of the Delbriick ampli-
tude is the inverse of a mass). For the right-hand
side of (3.1), the high-energy limit co —+ oo with 8
fixed is the same as the infrared limit p; —+0. If

I~0. As we shall explain below, this means that
the high-energy fixed-angle Delb6ick amplitude
scales in the form of (1.1).

We shall give a discussion of this scaling
behavior in a more general context. An elastic
scattering amplitude is a function of the variables

co,
~
6

~

and the masses p;, i =1,2, . . . , of the
particles involved. Out of these variables, we may
construct the dimensionless variables 8 and p;/co.
Thus we may write
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M has no mass divergence as JM;
—+0, i.e.,

limg 0,
JMI

p;~0 CO
I

then we have

=g(8), a finite function,

M~co g(8), co~ co (3.2)

Equation (3.2) is a generalization of (1.1).
In QED, the only particle with a mass is the

electron: We shall prove that the lowest-order
Delbruck scattering amplitude has no divergence as
m ~0. Let us set m =0 and examine if the
scattering amplitude is singular. According to the
Coleman-Norton theorem, a singularity of the
scattering amplitude for a diagram may occur if
this diagram or one of its reduced diagrams (a dia-

gram obtained from it by fusing one or more inter-
nal lines) can kinematically represent a classical
process, in which all particles are on the mass
shell. It is easy to verify that a massless classical
particle is kinematically allowed to turn into two
massless classical particles only if the momenta of
all three particles are parallel. It turns out that, in

QED with m =0, the vertex function vanishes at
such a point. For example, consider diagram 1(a).
According to the Feynman rules, there is, associat-

ed with the vertex involving the incoming photon,
a numerator factor py;(p —k), where i denotes the

polarization of the photon. When p& ~ k&, we

have

py, (p —lg} ccIry;I'd=2k;k —y;k =0 .

Because of this vanishing of the numerator at the

singularity surface in the p space, the integral in

(2.2) is convergent at m =0. Therefore, the
Delbruck amplitude corresponding to the diagrams

in Fig. 1 is finite in the limit m ~0. Consequent-

ly, the scaling formulas (1.1) and (1.2) hold. A
more detailed discussion of the application of the
Coleman-Norton theorem to the Delbriick ampli-

tude can be found in Appendix B.
The fact that the lowest-order Delbruck ampli-

tude is finite at m =0 can also be seen directly
from (2.60). It is not difficult to prove that all in-

tegrals in (2.60} remain convergent if we set m =0.
For example, if we set m =0, we find from (2.58)
that A, C, vanishes quadratically in the neighbor-

hood of Pi ——P4 ——P5 ——Ps ——0. Therefore, if N2 did

not vanish at pi ——p4
——pq ——ps ——0, then the first in-

tegral in (2.60) would be logarithmically divergent.

However, if we set nz =0, Nz vanishes linearly in

the neighborhood of P, =P4 ——P~ =Ps ——0. Thus,
there is no divergence. Similar arguments hold for

other singular surfaces of the integrand, and (2.60)
is finite at m =0. The scaling function f(8) in
(1.1) can therefore be obtained from (2.60) by set-

ting m =0, co=i, and
I

b,
I
=2sin8/2.

To compare our results quantitatively with ex-
periments, numerical evaluation of (2.60) must be
performed. For nuclear targets with large Z, we
need to calculate, in addition, the corrections due
to multiphoton exchanges. While we are as yet un-

able to calculate such corrections, we have proven

I06

10
5

~ = I0.83 —MeV

~ ~ = 7.9 —MeV

Al
& IO—

20 40' 60' 80' I 00'

FIG. 2. Experimental values for the elastic scattering
of 7.9- and 10.83-MeV photons. The function plotted is
co do/dQ.
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that the Delbriick amplitude of multiphoton ex-
changes satisfies the scaling formula (1.1). This
proof is sketched in Appendix B. Therefore, the
qualitative feature of our results is of experimental
relevance. There exist experimental data of 7.9-
MeV photons and 10.83-MeV photons' on U.
According to the analysis in Refs. 9 and 10,
Delbriick scattering dominates over other coherent
processes such as Thomson scattering, Rayleigh
scattering, and nuclear resonance scattering, for
0&75 with 7.9-MeV photons and for 0&45' with
10.83-MeV photons. Since the energies of these
photons divided by m are much larger than unity,
Eq. (1.2) should hold approximately. Experimental
values for the left side of (1.2) are reproduced in

Fig. 2. We see that scaling is grossly violated.
Therefore, we suggest that the data be reanalyzed
or (and) additional experiments be performed (we

must note in such analysis that U is a complex
nucleus and not a point charge. Therefore, the ef-

fects of the form factor must also be taken into ac-
count).

4 4

g a;(p —m ') =g a;(l +5p, )'—m'

4
l +2l. g a;5p;

4

+ $ a;(5p;) —m (A2)

4

g a;5p;=0. (A3)

The term in (A2) independent of l is defined to be

&=—g a;(5p;) +m (A4)

Now we may prove that

g a;aj(5p; —
5pj ) =2+ a;(5p;) (A5)

The variable l is chosen so that the term linear in l
above vanishes:
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APPENDIX A

N = ——, g a;aj (5p; 5pj ) +m—

= ——, pa;aj(p; —pj. ) +m (A6)

In this appendix, we shall give proofs for (2.21)
and (2.30).

After introducing Feynman parameters, the
product of propagators

Since p; —pJ is dependent only on the external mo-
menta but not on a„, n =1,2, 3,4, we have from
(A6) that

—1

g(p; —m )
1

becomes

4
—4

ga;(p; —m )
1

(Al)

= —ga (5p —5p )

= —(5p;)' —g a, (5p;)' .

From (A4) and (A7), we get (2.21).
To prove (2.30) with n =1, let us make the

change of variables

Xk
ak —— , k =1,2, 3,4

1+X1
'

then it is easy to show that

(A7)

(AS)

Let

P- =I+~Pl

then

4
d a5 1 —gak

1

4d x 5(1—x2 —x3 x4)

(1+x))

(A9)
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X)
1 —Q&= a~ ——

1+x) 1+x)
(A10)

(a) (b)

To be specific, we shall choose N =&. Then

4

f d a5 1 —gak in&,
L

=I dxzdx3dx45(1 —x2 —x3 —x4)

X
dxi D,

——ln
(1+x, ) (1+x, )

(Al 1)
(c)

(A12)

APPENDIX 8

D, —:(1+xi) &, .

By writing dx&/(1+xi)" as ——,d[(1+xi) ] and

integrating by parts, we may get, after some alge-

bra, Eq. (2.30).

(e)

In this appendix, we give a detailed proof of the
finiteness at m =0 of the Delbriick amplitude of
multiphoton exchanges.

We first consider the lowest-order diagrams in
Fig. 1 and their reduced diagrams illustrated in

Fig. 3. Since all classical massless particles travel
with the velocity of light, it is not possible for two
classical particles to begin at one point and meet
again at another, if one particle travels freely while
the other particle changes direction one or more
times. Thus we eliminate diagrams 1(b), 3(a), 3(b),
3(c), and 3(g) as possible configurations for mass
divergences, in accordance with the Coleman-
Norton theorem. Also, by observing that one of
the particles in the loop of either diagram 3(h) or
diagram 3(i) must have negative energy, we elim-
inate these two diagrams from consideration.

Thus we are left with diagrams 1(a), 3(d), 3(e),
and 3(f). We shall show that although these dia-

grams may satisfy the condition of the Coleman-
Norton theorem, they still do not cause Mo ' to
diverge.

We begin by observing that diagram 3(f) does
not satisfy the condition of the Coleman-Norton
theorem if (k+q) +0 and (k' —q) +0. This is
because in this case, classical kinematics dictates
that the two massless particles in the loop travel in
different directions, and therefore cannot meet
twice. At (k+q) =0, the amplitude Mo at m =0
has a divergence. However, the divergence is only
logarithmic, and does not cause the integration
over d q in (2.1) to diverge. Similarly for the

FIG. 3. The reduced diagrams for the diagrams in
Fig. 1.

neighborhood of (k' —q)2=0.
Next we turn to diagram 1(a). This diagram

does not satisfy the condition of the Coleman-
Norton theorem unless q=ab, 0&a &1. This is
because classical kinematics dictates that p =a k
and p+q=ak', 0&a &1. %hen q=ah, the con-
dition of the Coleman-Norton theorem is met.
However, since this divergence is only logarithmic,
integrating over the neighborhood of this one-
dimensional surface of singularity does not cause
Mo ' to become infinite.

Finally, we examine diagrams 3(d} and 3(e}. As
we have mentioned in the paragraph following Eq.
(3.2), the vertex function has a zero on the surface
of singularity in the p space, and the integration
over d p is convergent. Thus diagrams 3(d) and
3(e) do not make M~& infinite. We have therefore
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shown that Mo ' is finite at m =0.
The same arguments hold for all higher-order

diagrams of multiphoton exchanges. We may
prove that, at m =0, a configuration corresponding
to a classical process either gives zero contribution

because the numerator vanishes, or is realized
under constraints of the variables. Hence the in-
tegrals for the amplitude are convergent at m =0.
Therefore, the Delbriick amplitude of multiphoton
exchanges satisfies (1.1).
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