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We discuss here the application of a multidimensional WKB method to the
Schrodinger equation and the Klein-Gordon equation. This method enables us to calcu-
late scattering amplitudes in the limit of large incident momentum p and fixed scattering
angle 8. As an application, we calculate the scattering amplitude for the Klein-Gordon
equation with the potential ae ~"/r, and find that in the limit of large p and fixed 8, it is

equal to the scattering amplitude for a Coulomb potential multiplied by (A,e~/2p) ',
where y=0.57721. . . . Our result differs from the eikonal formula, in the high-energy
fixed-angle region. We also show that our formula agrees with the eikonal formula for
small scattering angles satisfying 1»8»k/p. Thus our formula, together with the
eikonal formula, give complete information on the high-energy amplitude for all angles.
A side result of the application of the WKB method is a generalized eikonal formula for
the case of the Klein-Gordon equation with a four-potential A„(x) which depends not
only on space but also on time. This formula holds for the scattering amplitude in the
region p~ Do with the momentum transfer fixed.

I. INTRODUCTION

Despite a great amount of work devoted to
high-energy scattering at fixed angles in quantum
field theories, very few firm results have been es-

tablished. In this paper, we try to resolve one ele-

mentary issue which, to the authors' knowledge,
has never been settled.

It has been known for more than a decade that
the elastic scattering amplitude of multiphoton ex-
change in QED with massive photons is given by
the eikonal formula, in the limit in which the in-
cident c.m. momentum p~ (x) with the momentum
transfer fixed. However; no one has yet succeeded
in calculating this amplitude in the limit p —+ 00

with the scattering angle fixed. One may try to
calculate it by summing the leading terms of each
perturbative order. However, in this limit, the am-
plitude for an n-photon-exchange diagram is of the
order of (lnp) ", while the sum of the leading terms
is of magnitude O(1). This means that there is a

great deal of cancellation in the summation.
Therefore, there is no way to justify that the non-
leading terms are negligible. Alternatively, one
might conjecture that the amplitude in this limit is
obtained from the eikonal formula by taking
A~ Oo. A related conjecture is that the correct
answer is given by the eikonal formula plus the
Saxon-Schiff correction.

The main thrust of this paper is to study high-
energy potential scattering with large momentum
transfers. We shall pay special attention to the
Klein-Gordon equation with the static potential
ae "jr. The amplitude in this special case is of
course interesting in its own right, but the reason
we choose to study it here is that it somewhat
resembles the multiphoton scattering amplitude in
QED. For example, in the high-energy limit with
the momentum transfer fixed, both amplitudes are
given by the same eikonal formula. We shall give
the former amplitude in the high-energy limit with
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the scattering angle fixed. We show that it is
equal to the scattering amplitude of the Klein-
Gordon equation in the Coulomb potential, multi-
plied by (Acr/2p) ', where y=0.57721 is
Euler's constant. We also conclude that, in the re-

gion 8=0(1), it disagrees with both the sum of
leading terms and the eikonal formula, with or
without the Saxon-Schiff correction. Furthermore,
it reduces to the eikonal form in the region
A, /p « 8« 1, and there are no intermediate re-

gions in which the high-energy amplitude takes
different forms. Our results in the fixed-angle re-

gime are for the Klein-Gordon equation and are
not field-theoretic results.

II. THE %KB METHOD FOR SCHRODINGER'S
EQUATION

nonlinear, is more difficult to solve than the
Schrodinger equation. However, it is well known
that (2.5) is satisfied by the classical action. (Some
modification is necessary to incorporate the initial
condition, which is imposed on the momentum)
not the position. We shall discuss this in a mo-
ment. ) The test of validity of this semiclassical ap-
proximation is simple, and is given by (2.4}. The
condition (2.4) is valid either in the limit fi +0, or—

V P'/( V5') ~0, the latter happening at infinite
energy.

At the initial time T; in the distant past when
the potential is negligible, let the wave function be

exp —(p x —ET;)

Then

The high-energy potential scattering problem is
best handled by the WKB approximation. In
standard textbooks on quantum mechanics, the ap-
plication of the WKB method is usually restricted
to one-dimensional problems. Actually, there is
little difficulty in generalizing it to multidimen-
sional problems. For the purpose of completeness,
we shall give a presentation of such a generaliza-
tion here.

The Schrodinger equation in a potential V(x, t)
is given by

P'( x, T~ ) = p x —ET~ . (2.6)

p'(x, t)= f —x, —V(x, ) dt'

+p x, (T;) ETi, — (2.7)

where x,(t') obeys Newton's equation of motion
with the boundary conditions

The solution of the Hamilton-Jacobi equation satis-
fying the initial condition (2.6) is

iA ~ ' = ——V + V(x, t) P(x, t) .
9t 2m x,(t)=x (2.8a)

(2 1)

Putting

f(x, t) =exp[i''(x, t)/R],

and substituting (2.2) into (2.1), we get

(2.2)

( VP')' — V'P'+ V(x, t) .
27?l 2PPl

(2.3)

fiT P'
&&~ )

( VP')

(2.3) is reduced to

(2A)

(VP')'+ V.
Bt 2m

(2.5)

Equation (2.5) is the Hamilton-Jacobi equation. At
first sight, it may appear that this equation, being

mx, (T;}=p . (2.8b)

Lc=—xe' —V(xe) .C

However, this variation of fL,dt' is equal to

5L,
5x,

5

Note that (2.8a) and (2.8b) say that while we speci-
fy at the final time t the position of the particle,
we specify at the initial time T; the momentum,
not the position, of the particle. This is because
the initial state is an eigenstate of the momentum,
not that of the position. Thus, x, (T~) is not speci-
fied a priori, but is determined by Newton's equa-
tion and (2.8). This means that, as we vary x or t,
x, (T, ) also varies. Such a variation of x, (T;)
causes the term fL,dt' in (2.7) to vary whenever
we vary x or t, where
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and

—x, '+ V(x, )g 2 c (2.9)

VP'=mx, . (2.10)

Consequently, / obeys the Hamilton-Jacobi equa-
tion. Furthermore, at t =T;, we have x, (T~)=x,
thus the initial condition (2.6) is also satisfied.

Equation (2.7) can be reduced by replacing
V(x, ) with

V(x, ) =E ——x,C
p

C

After this replacement and some algebra, we get

P'(x, t)= I [p(x, ) —p] dx,

+p x —Et, (2.11)

where the line integral is along the classical path
satisfying (2.8) and where p(x, ) is the classical
momentum of the particle at x, . Thus we get

+

(x, t)=exp —I [p(x ') —p].dx '

x,'( —~)

which cancels exactly the variation of p x, (T; ),
the second term in the right side of (2.7). Thus, as
is the case with the usual classical action, ~ as
given by (2.7) has the partial derivatives

where the integral is the classical path of the parti-
cle which has outgoing momentum p and passes
through the point x.

The three-dimensional case differs from the
one-dimensional case in one important aspect:
There may exist more than one classical path satis-
fying (2.8). Let us consider, for example, the
scattering by a potential which is finite everywhere
except at the origin, where it is infinite. Then, as
E~ ao, V(x) is much smaller than E except in a
small neighborhood of the origin. Thus, the
motion of a high-energy classical particle with fin-
ite impact parameter is unaffected by the potential
and its trajectory is a straight line. However, if the
impact parameter is very small, the classical parti-
cle would approach the origin and be deflected by
an angle. This is illustrated in Fig. 1. Thus there
are two classical paths which are of the same ini-
tial momentum and final position. The high-

energy scattering amplitude in quantum mechanics
is equal to the sum of contributions from these two
classical paths. More precisely, the straight-line
path contributes to near-forward scattering of fixed
momentum transfer, while the deflected path con-
tributes to fixed-angle scattering.

For near-forward scattering, the contributing
path is given by the straight-lirie path

x,(t') =xz+z, (t') e, ,

ip -x iEt+ (2.12) where

where the contour of integration is the classical
path of the particle which has incident momentum

p and passes through the point x. Similarly,

P'+'(x, t) =exp —f [p(x ') —p].dx '

xy =x e~ +p ey

with the incident momentum in the z direction.
Thus

p(x ') = [2m [E—V(x ')]) ' e, ,

ip x iEt
(2.13) and (2.12) becomes

Z

(x, t) =exp — ( [2m[E —V(x,z')] I
' —p)dz' expP

J

Similarly,

(2.14)

Z ~ ~ /

g'-+, '(x, t)=exp — (I2m[E —V(x,z')]I' —p)dz' exp
fi

(2.15)

Equation (2.15) holds for all p *=p+ b, , with b, fixed and
~ p ~

~ oo. From (2.14) and (2.15) we get the
eikonal formula for the S matrix,
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S(p',p)= fd xiexp ~ — [p(xi,z) —p)]dz ——2 xi 2~5(p —p'),—oo
(2.16)

valid for p~ oo with b, fixed.
Next we consider fixed-angle scattering. We

shall assume that the potential is finite everywhere
except at the origin. Then at any point away from
the origin, f is equal to the sum of two WKB
solutions, each the contribution of a classical path
as depicted in Fig. 1. The WKB solution corre-
sponding to the path parallel to the z axis is given

by Eq. (2.14), while the WKB solution correspond-
ing to the deflected path can be obtained by the
following considerations. We notice that, away
from the origin, this path is a straight line with
fixed angular coordinates 8 and P. Thus, the
phase angle of the solution is of the form

—f I2m[E —V(r', 8,$)]I'~ dr',

where V(r, 8,$) is just another notation for V( x).
The phase angle is determined only up to an addi-
tive function independent of r, and we shall choose
it tobe

——f (I2m[E —V(r', 8,$)]I' —p)dr'+ —.
r

(2.17)

Thus the WKB solution corresponding to the de-
flected path is

4—exp f ( I2m[E —V(r', 8,P)]) '~ —p)dr'+ (2.18)

The factor 1lr in (2.18) is inserted because (2.18}describes a spherically outgoing wave. Alternatively, we
may think of it as coming from the higher-order WKB correction, which ensures that the probability
current is conserved. The wave function g is, therefore, of the form

0
Z

f(x)=exp —f (I2m[E —V(x,z')]]'~ —p)dz'+ P

exp ——f (I2m[E —V(r', 8,$)]J'~ p)dr'+ ' "— (2.19)

where a factor exp( iETIA) ha—s been omitted.
As r~00,

ipz f(8 ~}
exp(iprll)

r

I

lates rapidly as we vary the path, and the sums of
contributions cancel. Therefore, the dominant con-
tribution comes from the paths which give station-
ary actions. Such paths are the classical paths.

(2.20)

thus f(8,$} is the scattering amplitude.
To determine the scattering amplitude, we must

solve the Schrodinger equation approximately near
the turning point r=O, and match the solution
with (2.20}. We shall demonstrate this with an ex-
plicit example in Sec. IV.

If the potential has n singular points, then there
exist n deflected classical paths and there are
(n +1) WKB solutions. This can be understood
from the viewpoint of the path-integral formula-
tion. The wave function is equal to the sum of
contributions from all possible paths. When the
energy is large, the contribution from a path oscil-

FIG. 1. Two classical paths with the same initial
momentum and the same final position. Note that the
curved path has a smaller impact distance.
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III. THE WKB METHOD FOR
THE KLEIN-GORDON EQUATION

In this section, we extend the WKB method to
the Klein-Gordon equation.

The Klein-Gordon equation with the four-vector
potential A„(x) is

D„D"i'(x)=m—P(x), (3.1)

where

Dq =t}q+ieAq(x),

When there is more than one classical path, we
must add up the contributions from all of them.
To obtain the scattering amplitude, we solve the
Schrodinger equation approximately near all turn-

ing points and match them with a superposition of
all WKB solutions.

What happens if the potential is finite every-
where? In this case, a high-energy particle in clas-
sical mechanics cannot be deflected by a large an-

gle. Thus there is no classical path contributing to
the amplitude of high-energy scattering at a fixed
angle. In such a case, the amplitude is exponen-
tially small. It is possible to calculate this small
amplitude if V(x) can be analytically continued to
complex values of x. Scattering occurs at the
turning points in the complex plane, and the
scattering amplitude can be obtained by following
the analytically continued classical path in the
complex plane. '

P(x 1 )~ exp[i(
&

m r p—' x)], r~ —m
1

(3.4)

We shall show in Appendix A that %(x,r) is relat-
ed to P(x) by

%(x,O) =P(x) . (3.5)

(We assume that A& is adiabatically switched off
as

~

r
~

~ ao.} Thus, instead of solving (3.1) to-
gether with (3.2) and Feynman's boundary condi-
tion, we shall solve (3.3) together with (3.4). Since
(3.3) is in the same form as the Schrodinger equa-
tion, the formalism developed in the previous sec-
tion can be directly applied.

Before we go on to present the WKB method for
(3.3), let us make a side remark. Let us imagine
that we did not know of the existence of the time-
dependent Schrodinger equation and just wanted to
solve the time-independent Schrodinger equation.
The introduction of t and the time-dependent
Schrodinger equation would then be regarded as a
purely mathematical device to facilitate the calcu-
lation. Indeed, in our WKB treatment of the
time-independent Schrodinger equation in the last
section, we found it convenient to introduce the
variable t, although the final formulas do not in-
volve t. The introduction of the fifth variable to
facilitate the solving of the Klein-Gordon equation
is of the same motivation.

Let us now apply the WKB method to (3.3). We
put

and we have set A'=c =1. The incident wave is as-
sumed to be then (3.3) gives

(3.6)

P;„,(x)=exp( ip.x ), p =m— (3.2) (Bq&+—eAq
)(i}i'P'+eA")aw

Unlike the Schrodinger equation, (3.1) is a second-
order differential equation with respect to time.
Therefore, to obtain a unique solution, we need to
impose one more boundary condition on P. For re-
lativistic potential scattering, the solution we want
is the one which satisfies Feynman's boundary con-
dition, i.e., no negative-energy waves as t~ ao. At
first sight, this last condition makes it more diffi-
cult to apply the WKB method. We shall over-
come this difficulty by introducing Feynman's
fifth variable which we denote by r. Thus we
consider the equation

+ i (BqB"A'+e BqA &) (3.7)

with the initial condition

P'(x, r; ) = —,m r; —p x, (3.8)

=——,(i}„P'+eA„)(cPP' +eA "}. (3.9)

where ~; is eventually taken to be —ao. Equation
(3.7) is exact. In the WKB approximation, we
neglect the last term in (3.7). Then (3.7) becomes

D„D"%(x,r) =2i 0'(x, r)0
(3.3)

Equation (3.9) is the Hamilton-Jacobi equation of a
particle with the Hamiltonian

with the initial condition
H = —, (P&+eA„)(P&+eA &—), (3.10)
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xp —— ———I' —eAp .
5H

Iji
gpss

P P '

Thus

(3.11)

where P& is the four-"momentum" of the particle.
The Lagrangian of this particle is found by noting
that

Equation (3.18) can be simplified further by utiliz-
ing the fact that p is large. Let the range of A (x)
be L, then the v. duration required for the particle
with velocity p& to pass through the potential is of
the order of L/p. In the limit p —+ ao with L fixed,
L/p is very small. Thus the particle essentially
travels in a straight line and

& ~ 2L =I' x —H = ——,x —eA.x, (3.12)

where x& are the four-coordinates of the particle
and

x,"(r')=x" (r—r'—)p" .

Since

(3.19)

dxP 2 dxP
xp ——

~ x
dT GS

(3.13) p —=0~ 1&=0

(3.14)

Note that in the present treatment, space and time
are treated on equal footing. Also, K in (3.12) is
not related to the energy and its identification with
the Hamiltonian is merely formal.

Using the same arguments we presented in the
last section, we may show that Eq. (3.9) together
with the initial condition (3.8) are solved by

S(x,r)= f [——,x, —eA(x, ) x, ]dr'
l

+ —,m r; px, (r;) —.

where p+ =po+p3 and pz =—pi ei+p2ez, (3.19) is,
more explicitly,

(x, )+——x+ (r r')p- —

(x, ) =x

(x, )i=xi .

(3.20)

Substituting (3.20) into (3.18) and taking r; ~—oo,
we get

In (3.14), x, is the abbreviated notation for x, (r')
which obeys the classical equations of motion

r

P'(x, r) = ——, f eA (x'+,x,xi)dx'+

+2' v —px1

(3.21)

with the boundary conditions

x,"(r)=x"
and

(3.15)

(3.16)

(3.17)

From (3.21), (3.6), and (3.5), we find the WKB
solution of the Klein-Gordon equation (3.1) as

P(x)=exp ip x—
X——f eA (x+,x,xi)dx~

(3.22)We have assumed that A& has been adiabatically
switched off at ~;. Otherwise, a term eA& should
be inserted at the left side of (3.17).

Equation (3.14) can be simplified by making use
of the fact that x, satisfies the classical equation of
motion, hence the Hamiltonian is independent of r.
Since at r;, K is equal to —m /2, we get from
(3.10) and (3.11)

We see from (3.22) that the effect of the potential
is to add a phase shift ——,

' feA dx+ to the wave
function.

It remains to verify that the WKB solution is a
good approximation. This means that we have to
check if

i
B&B"P'+eB&A"

i
is much smaller than

the terms we keep in (3.9). Now
i
B&B"P'

+ eB&AI'
i

is of the order of unity, while the term
(B&P')A& is of the order of E. Thus we have justi-
fied the WKB approximation in the region where
A& is not singular.

From (3.22), we may derive the scattering ampli-
tude for small scattering angle 0. We have

I 2 1 2
~x~ = 2'

Therefore,

—p'xq(r( ) ~ (3.18)

2'(x, r)= —f eA(x, ) dx, ——,m (r 2r;)—
C L

6+x
S = d xidx exp i —hz. i—— A (x+,x,xi)dx+

00
(3.23)
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where 6 is the momentum transfer. Equation
(3.22} is the eikonal formula valid in the limit
E~ 00 with the momentum transfer fixed. It is a
generalization of the usual eikonal formula which
holds for the special case in which A„(x) is in-

dependent of time.
As in the case of the Schrodinger equation, the

amplitude for high-energy fixed-angle scattering in
the present case is obtained by joining the WKB
solutions with the approximate solutions of (3.1)
near the singular points of Az(x). We shall treat
the example of A&(x) =5„0ae "ir in the next sec-
tion.

IV. FIXED-ANGLE SCATTERING
IN THE KLEIN-GORDON EQUATION

In this section, we shall treat fixed-angle scatter-
ing in the Klein-Gordon equation for a static
scalar potential V(x). In this special case, the
Klein-Gordon equation is

I[F.—V(x)] +V —m Jg(x)=0. (4.1)

In (4.1), F- and m are the energy and the mass of
the particle, respectively. We shall solve (4.1}with
the condition that the incident wave is e'~' where

(~2 ~ 2)1/2

Equation (4.1}can be rewritten as

[V +p —U(x)]g(x) =0,
where

(4.2)

U(x)=2EV(x) —V (x) . (4.3)

Equation (4.2) is of the same form as the time-
independent Schrodinger equation. Therefore, we
need to use not the formalism developed in the last
section but the simpler formalism of Sec. II.
Indeed, the formulas in Sec. II directly apply if we
make the replacement

[2m(E —V)]'i ~p —V . (4.4)

Thus, instead of (2.19), we have, for the wave func-
tion away from the origin

g(x) exp —i I V(x1,z')dz'+ipz + '
exp i I V(r', 0,$)dr'+iprf ((},p) (4.5)

To be specific, we shall choose

V(x) =ae "Ir, (4.6)

(p —V)» BV
Bp'

where r =
i

x i. Extension to a superposition of
Yukawa potentials is not difficult and we shall dis-

cuss it briefly at the end of this section. For the
potential in (4.6), the WKB approximation holds if

(4.8)exp[ipr —ia ln(urer)] .(6}, )

The detailed derivation of (4.8) is given in Appen-
dix B.

The WKB solutions do not hold in the neighbor-
hood of the origin, where we may solve the Klein-
Gordon equation approximately in another way.
We note that, for A,r « 1,

pr»0(1) .
(4.7) V(x)=—.

I'
(4.9)

In the region

1 1—»r »—,
p

the WKB solution (4.5) becomes, after some alge-
bra,

A,(r —z)er
1it(x)=exp ipz+iain

2

Thus, for A,r « 1, and p »m, the Klein-Gordon
equation (3.1) is approximately

2' cxV2+ 2 P + Q 0
r I.

(4.10)

This equation can be easily solved by the separa-
tion in spherical coordinates. It suffices to give
the solution for pr »1. We have

g A1(2l + 1)P1(cos8)[ exp[i (pr a ln2pr —, 1—'m+51 )]——ex. p[ i (pr —a In—2pr —, 1'm+5'1 )]], —.
2ipr I =o

(4.1 1)
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where

and

[(l + ~

}2 2]1/2

z s', f'(1'+ 1+ia }

1 (1'+ 1 i a—)

(4.12)

(4.13)

Now, the well-known Coulomb wave function has the asymptotic form

The constants A~ are determined in such a way that (4.11) is equal to an incident wave plus a spherically
outgoing wave. According to (4.8) the incident wave is equal to

ia
A,er

exp[ipz+ialnp(r —z}] .
2p

fc(8}
exp I i [pz +a lnp (r —z)] I +

v
exp[i(pr —a ln2pr )], pr » 1 (4.14a)

where fc(8) is the Coulomb scattering amplitude. Alternatively, we may express this same Coulomb wave
function in the form of the partial-wave expansion

1 g (2l + 1)P~(cos8) I exp[i (pr —a ln2pr +26~)] exp[ —i(pr —ln a—ln2p—r)] I, pr &&1 .
2ipv I

Equating (4.14a) and (4.14b), we find that
'ia

ker
exp I i [pz +a lnp (r —z) ] )

2p

(A,er/2p)' g (2l + 1)P~(cos8) [exp[i (pr —a ln2pr) ]—exp[ i (pr le—a ln—2pr )—]), pr && 1
2ipv I

(4.14b)

(4.15)

where a factor (Per/2p)'~ has been inserted for the convenience of later comparisons. Therefore, if the

right-hand side of (4.11) is equal to the incident wave (4.13) plus a spherically outgoing wave, we must

equate the coefficient of the spherically incoming wave in (4.11) with that in (4.15). We get

'ia
A,er
2p

i@[i—(1/2)l'] r 1' (4.16)

Substituting (4.16) into (4.11), we get

where

A.er
ia

F(8) . . 1 1exp[ipz+ia ln(r —z)]+ exp(ipr i a ln2pr), —»r »——,
r p

(4.17)

F(8}= g (2l+1)PI(cos8} e' " '' —1
2ip I o I (I'+1 ia)— (4.18)

Note that F(8) is the amplitude for relativistic
Coulomb scattering. Comparing (4.17) with (4.8),
we obtain the scattering amplitude as

2la

This is the central result of this paper.
Equation (4.19}is easily generalized to the case

A,er
2p

F(8) . (4.19} 00
—Pl'

&(r)= f dpa(p)
Pp v
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where cr(p) vanishes sufficiently rapidly as p —+ oo.

In this case, the high-energy fixed-angle scattering
amplitude is given by (4.19) with

a= f dpo(1M)

and

ink, = f d1M o(1M)lnu f dp o(p} .

f= (A,er) ' 8((1 (420)
(g2)1+ial ( 1

where

06=2p sin —.
2

'

(iii) We may compare (4.20) with the eikonal for-
mula. This formula for the potential ae "/r is

0

f=~ fd be ' '
Il —exp[ —2iaEO(A, b)]J .2'

(4.21)

In the limit 5/)(, »1, (4.21) also gives (4.20).
Therefore, (4.19) agrees with the eikonal formula in

the region

8 ((1, b, /A, » 1 . (4.22)

However, for 8=0(1), the scattering amplitude is

a transcendental function and differs from the
eikonal formula. This remains to be the case even

if the Saxon-Schiff correction is included. Numer-

ical plots of (4.18) are shown in Fig. 2.
The sum of leading terms is —2ap/(5 )'+'~,

which differs from (4.20) by a phase angle even in

the region 8«1.
(iv) The fact tl1at (4.19) agrees with the eikonal

formula in the region 8«1, p8~&1 suggests that
(4.19) holds not only in the region of fixed 8, but

In summary, we note the following properties of
the scattering amplitude.

(i) It is in the form of p
' ' times a function

of 8.
(ii) This function of 8 is a transcendental func-

tion which reduces to an elementary function in

the limit 8« l. In this limit, the partial waves
w1th 1»1 in (4.19) constitute the bulk of scatter-
ing. Thus we may make in (4.19) the approxima-
tion of

[(i+ 1
)2 a2]1/2 I + 1

Then the partial-wave amplitude in (4.18) is of the
same form as that of nonrelativistic Coulomb
scattering, and we get

also down to the region of small angles as long as
8»1/p. It is not difficult to show that this is the
case. The scattering amplitude is equal to

fd x e ' '" V(x)F(x),

where

(4.23)

F(x)=e '1"1/i(x) .

As
~

~
~

~~, the dominant contribution to the in-
tegral (4.23) comes from the region

~

x
~

=O(1/5).
&

~
«p, the region of contribution satisfies

~
px »1. In this region, the WKB method ap-

plies and the wave function is given accurately by
the eikonal form of (2.14). Substituting (2.14) into
(4.23), we get the eikonal formula (2.16). There-
fore, the eikonal formula holds for

~
Z

~
&&p.

Since (4.19) agrees with the eikonal formula in the
region p »

~

b,
~

&&A,, it holds in this region as
well. Together with the result established earlier
that (4.19) holds for b, =O(p), we conclude that
(4.19) holds for all values

~

5
~

&&A,. There are no
intermediate regions in which the scattering ampli-
tude takes different asymptotic forms. The asymp-
totic high-energy amplitude is now known for all
momentum transfers.

(v) As we have mentioned in Sec. I, the leading
terms of perturbative calculations have powers of
lnp. The effects of such (lnp)" terms can now be
seen from (4.19): they modify greatly the phase
angle but not the magnitude of f. As p~ oo, the
phase angle of f approaches infinity logarithmical-
ly.

(vi) Aside from the phase factor (her/2p) ',
(4.19) is the same as the scattering amplitude of
the Klein-Gordon equation with the Coulomb po-
tential n/r. This is easily understood: High-

energy fixed-angle scattering is dependent on
small-distance interactions only, and at small dis-

tances, the Yukawa potential ae "/r is equal to
the Coulomb potential. The exponential decay of
the Yukawa potential merely serves as a cutoff,
and turns the well-known logarithmically divergent

phase angle a lnr in the Coulomb wave function
into the phase angle 2a in(Acr/2p). It is also in-

teresting to observe that the V term in the Klein-
Gordon equation (3.1) contributes to high-energy

fixed-angle scattering, and cannot be ignored. This
can also be understood without detailed calcula-
tions: at distance r =O(1/p), V of of the order of
p . More generally, a potential p '/r', a &2,
cannot be considered to be small and must be
treated to all orders. On the other hand, a poten-



26 MULTIDIMENSIONAL WKB APPROACH TO HIGH-ENERGY. . .

4
I

IO

I

0
~ ~
D
(D

CC

I

Im ME~K

40 BO l20

Angle (deg)

I

U
(D

CL

I

IfA MEEK

Re ME~K

Ang le (deg )

FIG. 2. Numerical values of the real and imaginary parts of M =2ipF. The scattering amplitude is proportional to
M, a quantity which is independent of momentum. Results are shown for u=0.2 and a=0.3.

tial which is equal to r ' times a coefficient much
smaller than p

' can be treated perturbatively.
For example, in nonrelativistic Coulomb scattering,
the potential is n/r, where o. is independent of the
energy and is hence much smaller than p as p ~ oo.
Thus the nonrelativistic Coulomb scattering ampli-
tude is asymptotically equal to its Born term in the

high-energy limit. However, in relativistic
Coulomb scattering, the effective potential, accord-
ing to {4.3), is 2pa. /r a /r, and nei—ther term of
this potential can be considered small.

{vii) We may extend the study to the Dirac equa-
tion. For this equation, the high-energy fixed-
angle scattering amplitude in the potential ae "/r
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is also equal to that in the Coulomb potential a/r
multiplied by (A,e "/2p) ' .
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U =ie(aqA" +Aqa") —e A

Then the solution of (Al) satisfying Feynman's

boundary conditions with the incident wave e
is the solution of the integral equation

P(x) =e '" "+J G(x,x') U(x')P(x')d x',

where

(A2}

APPENDIX A

In this appendix, we shall prove (3.5).
Let us rewrite the Klein-Gordon equation as

d4 —iq (x —x')
G(x,x'}=

(21r) q m+—i e

Next we rewrite (3.3) as

21 —a„a~ e(x, r)=Uq(x, r) .~ a
87

(A3)

(A4)

( a„a"—m}P—(x)= UP(x),

where

(A 1)
The solution of 4 satisfying the initial condition
(3.4) is the solution of the integral equation

q'(x, r)=e' ' ~"'+Jd x'dr'G(x, rx', r'}U(x')O(x', r'),
where

d q dco exp[ico(r —r') iq (x —x—')].
G(x, rx', r') =

(21r) 21r 2co+q—+ie

(A5)

(A6)

%(x,r) =f(x)e' (A7)

Substituting (A7) into (A5), we find that the in-

tegral equation satisfied by f(x) is precisely (A2).
Thus

Since U is independent of r, %(x,r) is of the form A(b 2+z~2)1/2

Ii —— dz'
(b2+ i2)1/2

z —A(b +z' )

P (b2+ i2)1/2

The first integral in (83) is equal to

(83)

(()(x)=P(x,O) .

APPENDIX B

In this appendix, we calculate, in the limit
kr —+0, the integrals

z —A(b +z' )eIi —= dz'
(b2+ i2)1/2

(AS)

(81)

Kp(Ab)= —ln —y+O(A, b 1n(Ab)),
2

where y=0.57721. . . is Euler's constant. The
second integral in (83) is equal toI, —A, dz'+O(A, r )(b'+z')'"

(84)

and

e
—AT

dr, (82) Therefore,

=ln =O(kz) . (85)
b

where b +z =r . These two integrals appear in
(3.5) with V=ae "/r.

We have

A,(r —z)I)-—ln —y .
2

Next, we turn to I2. We have

(86)
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00 Ap

lz= f p 'e t'dp = lim f p '+'e t'dp f—p
'+'e t'dp

@~0

A,1' (A,r )' (A,r)'+'= lim l (e)— (p
'+' —p'+ )dp = lim l'(e) — + + t ~ ~

g~o e~o 1+@

=—y—in', r +O(A,r) . (87)
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