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We study two arbitrarily separated SU(2) Yang-Mills-Higgs monopoles in the Atiyah-
Drinfeld-Hitchin-Manin-Nahm {ADHMN) construction. In particular, we obtain an ex-
act analytical expression for the Higgs field on the axis connecting its two zeros which
are defined to be the locations of the monopoles. From this expression we compute the
zeros of the Higgs field for small and large separations.

I. INTRODUCTION

In the past year there has been rapid progress in
determining exact (superimposed and separated)
multimonopole solutions of the SU(2) Yang-Mills-
Higgs theory in the limit of vanishing Higgs po-
tential. Most of the explicit results have been ob-
tained by means of the Atiyah-Ward (AW) an-

satz. ' For a recent review of exact results in the
theory of magnetic monopoles in non-Abelian

gauge theories see Ref. 7. Wherever possible, these
solutions have been shown to be regular, but a gen-
eral proof of this is still an open problem in the
AW approach. In particular, one has to study the
two-separated-monopole solution either perturba-
tively for small separation or numerically for
large separation. Numerical study of the two-
monopole system has also been done in Ref. 9 us-

ing a completely different approach.
Recently, Nahm' has adapted the Atiyah-

Drinfeld-Hitchin-Manin (ADHM) construction for
instantons" to the monopole problem, and we will
refer to it as the ADHMN construction. In the
ADHMN construction, the regularity of the solu-
tion is automatic. Two other advantages of the
ADHMN approach are as follows: (a) it is easily
generalized to gauge groups beyond SU(2), and (b)
it allows the exact construction of Green's func-
tions for particles propagating in the background
of the multimonopole solutions.

The purpose of this paper is to study two arbi-
trarily separated monopoles in the ADHMN con-
struction and, in particular, to locate the two zeros

of the Higgs field (which are defined to be the lo-
cation of the monopoles). The main result of this

paper is an exact analytical expression for the
Higgs field on the axis connecting the two zeros.
From this expression we compute the zeros of the
Higgs field for small and large separations.

The results of this paper should help clarify the
nature of the parameter space for two monopoles
which in turn is relevant to understanding the
dynamics of two monopoles' (e.g. , scattering of
two-far-apart monopoles approaching each other).

II. STATEMENT OF PROBLEM

Let us define in four-dimensional Euclidean
space (x t,x2,x3,x4~ the matrix-valued fields
(a„—=arax„):

a„and I'„,:a„W„a,a„+—[a„,W„—]

(p,v=1,2, 3,4) . (2. 1)

(2.2a)

for A& subject to the following requirements:

(1) In all gauges A& are static (independent of
xg):

For SU(2) Yang-Mills gauge theory, A& (the gauge
potentials) and Fz, (the gauge field strengths) are
2)&2 anti-Hermitian traceless matrices.

The problem, simply stated, is to solve the self-
duality equations

l
I'I.v —,&I.v~~+~~
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(x»x2, x3) .

(3) The gauge-invariant scalar function

H =( ———TrA )'
2

has the following asymptotic form:

(2.2c)

(2.2d)

(2.2b)

In this case A4 is referred to as the Higgs field.
(2) In some gauge A& are nonsingular functions

pology,
' one can define the location of the mono-

poles as the zeros of the function H. In particular,
for n =2, the two-separated-monopole solution will
be defined to be the one where K has exactly two
distinct (simple) zeros. The limit where the two
distinct zeros of H degenerate into one (double)
zero corresponds to the axisymmetric configuration
of two superimposed monopoles. '

III. ADHMN CONSTRUCTION FOR n =2

H +c ———+O(r )
2f

as r=(xi +x2 +x3 )'~ ~oo, (2.2e)

Following Ref. 10, the ADHMN construction
for n =2 begins by defining three real functions

fi, f2, and f3 of a real variable z satisfying the
equations

where c & 0 is an arbitrary constant and n is a posi-
tive integer called the topological charge which, in
appropriate units, is also the magnetic charge of
the solution.

Motivated by considerations from differential to-

dfi de df3
dz dz dz

=f2f3 flf3 flf2 ~

We then define the 4&&4 matrices

(3.1)

r

X3—lX4

Xi +lxg

X ) —lxg

—X3
—lX4 0 0

X3 lx4 x ] lx2

X ) + lX2 —X3 —lX4

f3
0

fi f2—
0 0

f3 fi+—f2
fi+f2 f3—

0 0

fi fz—

f3

(3.2)

and consider the following linear matrix differen-
tial equation (I=4&&4 identit—y matrix):

I+&+M m=0
dz

(3.3)

+2
P" P pdz=5 p, u, P=1,2.

S
(3 4)

over a symmetric interval —z, (z (z, . Equation
(3.3) will have four linearly independent (4&& 1

column vector) solutions P", and we require that
only two of them be orthonormalizable in the sense
that

[A&]~p—=ath row and Pth column of A&

+z= f 'Fta„Fpdz.
S

(3.5)

1 1 0 0
0 0 1 1

0 0 1 —1

j. —10 0

(3 6)

The real symmetric matrix & can be diagonalized

by the constant orthogonal matrix

Thus, Eq. (3.3) must have two non-normalizable
solutions, and this can only happen if the matrix
P diverges at z =+z, . The ADHMN construction
then states that the solution of our problem [Eq.
(2.2)] for n =2 is given by

so that we can replace Eq. (3.3) with
r

I+&+a W=O,
dz

where

(3.7a)

B'(W+Ix4—i)B=

0 X3 X( —lxg

X3 0 —lX2 X)

Xi lX2 0 —X3

lX2 X ~
—X3

(3.7b)
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f1 f—2+f3
0 f3 f—1 +f2

0 f1 +f2 f3—
0

0
—f1 —f2 —f3

(3.7c)

P"—= P"(x1,x2,xs,z) —=B F'e (3.7d)

Note that the x4 variable has disappeared in Eq.
(3.7a). In terms of & the gauge potentials, Eq.
(2.5), become (l = 1,2, 3)

[A1] p J——~ "d1~p«
S

lA4lag=' z~~~pdz
S

(3 8)

Let & be an arbitrary constant (—:independent
of x1,x2,x3 x4 and z) 4X4 orthogonal matrix and
U(x) an arbitrary 2X2 unitary matrix function of
x~,x2, and x3. Under the transformation

sn(u, k) 1

cn(u, k)
'

cn(u, k)
'

1 dn(u, k)
k' cn(u, k)

1g= —z, k=k'
6

(1+g2)1/2

k'=(1 —k )' 1

(1+62)1/2

and we note that f1,f2,f3 diverge at z =+k'K
where

(4.2)

F ~F~=(B1 )~ U~ (a,a'=1,2), (3.9) E= m/2 dy
o (1—k 2sin2y)1/2

(4.3)

the gauge potentials, Eq. (3.8}, transform as

AI ——U-'A, U+U-'3, U, A, A,'=U- A, U,

(3.10)

which are precisely gauge transformations. In par-
ticular, the scalar function H defined by (2.2d) is
gauge invariant.

c =z, =k'E ~H —+k'jC as p —+00 . (4.4)

For 5=0, f3 ——tanz, f, =f2 ——secz, and we regain
the axially symmetric n =2 monopole solution. '

As noted in Ref. 10, Eq. (3.7) implies that as
r ~ oo, P"—+e and Eq. (2.8) gives H ~z, as
r~ oo. Thus the constant c in Eq. (2.2e) will be
z, =O'E:

IV. EXPLICIT SOLUTIONS FOR f1,f2 yf3

Integration of Eq. (3.1) implies f; f1-
=constant=c, j. Since c&3

——c~2+c23, only two of
these constants of integration are independent. By
appropriate rescaling of z and the f's we can fur-
ther fix one of these constants, c~3, to be 1. %e
also require that the f's diverge at the symmetrical
end points z =+z, and are thus led to the follow-
ing solution of Eq. (3.1):

From now on, by f„f2, and f3 we will mean the
expressions defined by Eq. (4.2).

V. DISCRETE SYMMETRIES OF H

We begin by proving covariance of Eq. (3.7)
under space inversion (parity operation I'):

(5.1)

In the space-inverted system Eq. (3.7} will appear
as

d
( 1 +f 2)1/2( 1 +g2+f 2)1/2

dz

f3(z =0)=0,
f (1+f 2)l/2 f (1+t32+.f 2)1/2

(4.1)

From Eq. (4.2) we have

(5.2)

+W —W P'( —x1, —x2, —x3,z) =0 .
d( —z)

5 is an arbitrary real number.
Equation (4.1) can be explicitly solved in terms

of Jacobian elliptic functions:

f3( —z) = —f3(z), f1(—z) =f1(z},

f2( —z) =f2(z),
(5.3)
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and if we define the constant orthogonal matrix P: A4( —Xi, —X2, —X3)= —A4(xi, X2,X3),

0100
1 000
000 1

0010
(5.4)

(5.7)

where A4 is some gauge transform of A4 [see Eq.
(3.10)]. Squaring both sides of Eq. (5.7) and taking
the trace, we obtain the gauge-invariant statement

then it is easy to show that H( —Xi, —X2, —X3)=H(X1,X2,X3), (5.8)

(5.5)

which is our first discrete symmetry of H.
I.et us now consider rotations R 1,R2,R3 of 180'

about the x ~, x2, and x3 axes, respectively:

From Eqs. (3.7}, (5.2), and (5.5) it follows that

P: P'( —X 1, —X2, —X3)z)

—&K(xi X2 X3 —Z), (5.6)

I IE~. x~ ——x~, x2 ———x2,
I IR2. x2 =x2, x ) = —x),
I IR3'. x3 =x3~ x ) = —x&,

x3 = —x3

x3 = —x3,
I

x2 = —x2

(5.9)

and Eq. (3.8) implies If we define the constant orthogonal matrices

—1 0 0 0
0 1 0 0
P P 1 P

0 0 0 1

—100 0
0 1 0 0
0 0 1 0
0 0 0 —1

—1 0 0 0
0 —100
0 0 1 0
0 0 0 1

(5.10)

then it is easy to show that

Ri. &'(Xi, —X2, —X3yz) —S ]F(Xiyx2yx3yz) ~24(xiy X2y X3)—A4(xi yx2yx3),

R2.' & ( —Xl~x2~ —X3~Z)=&2&(xl)X2~X3,Z) ~24( —Xl~x2, —X3)=24(x l~x2, X3),

R3'. & ( —Xl, —X2,X3,Z) =&3&(x1 ~X2~X3,Z) 24( —Xl~ X2,X3—}=24(x 1x2~X3) .

(5.11)

We thus arrive at the following discrete sym-
metries of H:

H(xi, x2,x3)=H( —xi, —x2,x3)

=H(X1, —X2, —X3)

=H( —Xi,X2, —X3) . (5.12)

We will now compute the function H on the x2
axis: xi ——x3 ——0, for, as it turns out, the zeros of
H are precisely on this axis. In this section H and

A4 will stand for H(xi ——O,x2,x3 ——0) and

A4(xi ——O,x2,x3 ——0), respectively. It will be useful
to define a variable u by

r

1 1u:——(u —K)=—
2 2

—E&u &0 (6 1)

VI. EXACT EXPRESSION FOR 0 (x ] =0,x2,x 3 =0 )

Equations (5.8) and (5.12) prove that if H has
exactly two zeros, then those zeros must necessari-

ly be on one of the coordinate axes (xi,x2, or x3)
and located symmetrically about x~ ——x2 ——x3 ——0.
If H has exactly one zero, then it must necessarily
be at x~ ——xq ——x3 ——P. These results were originally
found in the AW approach by O'Raifeartaigh and
Rouhani. '

s 0
so that f dz~2k' f du, etc.

Equations (3.8) and (3.7a) show that in order to
compute A4 on the x2 axis, one can immediately
set xi ——x3 ——0 in Eq. (3.7a) and solve for P" on the
x2 axis. (Note that this would not be true if we
had to compute Ai for l = 1,2, 3.) Thus, we must
solve the following equation:
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1

0

dz o
0

000
100
010
001

fi f—2+f3
0

2LX2

f3 f—i+f2
2LX2

—2LX2

fi+f2 f3—
0

—2LX2

—fi —f2 —f3

&=0. (6.2)

As shown in

Wi

Appendix A, Eq. (6.2) must have exactly two normalizable solutions of the form

0

0

w4

W2

W3

0

(6.3)

where wi and w2 can be taken to be purely real with w3 and w4 purely imaginary. Since P i&i ——0, it fol-
lows that

[~4]l2 [~4]21=0 i

i[A—4)ii= f, (iai + Iui41')zdz
S

ZS—i [A4]22 —— (w2 +
I

w3
I

)zdz
S

&=
I [~4)ii I

=
I [~4)22 I

.

2

f (Ni + Ii04I )dz,
S

s

f (w2 + I
w3

I
)

S

(6.4a)

(6.4b)

(6.4c)

(6.4d)

In order to compute H we need only find [A4]i i.
From Eq. (6.3) it follows that wi and w4 satisfy
the following equations:

1

dZ
+-(fi —f2+f, ) t'ai ix2w4 -0, ——

(6.5a}

1

dZ
(fi+f2+f3—}—ui4+tx2u 1 0 ~

(6.5b)

Let us define the real function A by

w, =A(f, +f,}'". (6.6)

If we substitute Eq. (6.6) into (6.5a), solve for w4,
and then substitute in Eq. (6.5b), we find that A

must satisfy the following equation:

d A =(B+2k sn u)A,
dQ

(6.7)

where B=—4k'2x22 —(1+k ). Equation (6.7) is
Lame's equation (of order 1). Note that since the
coefficients of Eq. (6.7) are regular for all finite
real values of u, so will all its solutions. If we now
define a parameter t through the relation

then it is shown in Ref. 15 that an exact solution
of Eq. (6.7) is given by

8,[(ir/2K)(u+ t) ]
e uz(t)—

04[(ir/2E)u ]

where Hi and 84 are theta functions and Z is
Jacobi's zeta function.

In order that P i be normalizable, we must have
0 0f t'ai du= f A (fi+f3)du(a& .

(6.9)

A(u)=W(u) —W( —u) . (6.10)

From now on, A will be defined by Eq. (6.10).
It is fortunate that, with A defined by Eqs. (6.7)

and (6.10), all of the integrals in Eq. (6.4b) can be
evaluated exactly —some of the details can be
found in Appendix B. In order to present the re-
sult we now define the function S(t) by

S( )= dlnA

u= —SC

However, (fi+f3) has a simple pole at u =0, and
therefore it is essential that A(u =0}=0. [Because
of the regularity of Eq. (6.7), A can have a simple
zero at u =0.) Now since sn ( —u)=sn (u), it fol-
lows from Eqs. (6.7) and (6.9) that we can obtain a
normalizable solution by choosing

B—=4k' x2 —(1+k )

2 2=——1 —kent, (6.8)
—(snt dnt) h[~Z( ))

cnt
(6.11}
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The exact expression for [A4]» is found to be

2k'—i [A4]) )
—— k'—K+

B +1+k'—S'

X S 2(B—+1+k')
dB

(6.12)

Taking the absolute value of Eq. (6.12) we obtain
H(x

&

——O,xz,x3 ——0).

In terms of the parametrization (6.8), Eq. (6.12)
becomes

2k'
i—[A4] ) ) —— k'K—+ (ksnt —S }

snt dS
X S—

cntdnt dt

(6.13)

As we will show, it is sometimes useful to make
the following change of parametrization:

e/2 dyt=t'+iK' where K'=
(1—k'~sin y)'~

Equations (6.8) and (6.11}in terms of t' become

2 I

B=4k'x, '—(1+k')=—1+
sn t'

r

S(r)= , , —coth K Z(t')+
(snt')(dnt') snt'

(6.14)

(6.15a)

(6.15b)

and Eq. (6.12) becomes

2k su r S snt dS
cnt'dnt' dt' (6.16)

VII. ZEROS OF H

We begin by evaluating H at the origin x~ ——xq ——x3 ——0. In terms of the parametrization (6.8), we see that
xq ——0 corresponds to t =0. To evaluate Eq. (6.13) in the limit t~O, we need the following Taylor series ex-
pansions around t =0:

ts=nr+ . , S(r)= t (K —E)+ ~ ~ ~,—

where
m/2

E—= I (1—k 2sjn2y)1/2' .
0

Substituting Eq. (7.1) into (6.13) we obtain

snt + o o ~

cnt dnt
(7.1)

i [A4(x) ———xz ——x3 ——0)]))—— [(1+k' )K —2E] .
k'

k

Expanding Eq. (7.2) around 5=0 we find

(72)

i [ A4( x)
———xp ——x3 ——0)]))—— 5 +0(5 ),

16
(7.3)

so that 5=0 corresponds to the axisymmetric configuration of two superimposed monopoles with H vanish-
ing at only one point, namely x

&

——xq ——x3 ——0. For 5=0 we can use the parametrization (6.1S) to evaluate
H(x~ ——O,xz,x3 ——0) as follows. For 5=k =0 the elliptic functions become trigonometric functions:

For 5=k =0: snt'=sint', cnt'=cost', dnt'=1, Z(t')=0, K =n/2. (7.4)
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Substituting Eq. (7.4) into (6.16) we obtain

2 cosh[(n. /2)p] [ sinh[(n. /2)p] —(n./2)p cosh[(m /2)p] I'"'"' '"'"' " ' " 2'
p[ —p +sinh [(m/2)p]J

p=(4x —1)'~,
(7 5)

which agrees completely (after appropriate rescal-

ing) with results obtained using the AW approach. '

Equation (7.5) has the following Taylor series ex-

pansion around x2 ——0:

—i [A4(x| ——O,xz,x3 ——0,5=0)]1)

3 — xq +0(xq ) . (7.6)
2 4

Since on the xq axis H =
~
[A4]~ ~ ~

and

H( —xz) =H(+xz), it follows from Eqs. (7.3) and

(7.6) that to second order in 5 and xz,

i [Aq(x~ ——O,xz,x3 ——0)]))

7T25' —3— '+ (7 7)
16 2 4

which shows that, to this order, H has two zeros at

(zeros of H for small 5): xz ——+5(24—2m )

(7.8)
Thus, as asserted, the zeros of H are on the xq
axis. Note that to obtain the higher-order terms in
Eqs. (7.7) and (7.8) we must directly expand Eq.
(6.12).

In order to study H for large values of 5 and xq,
it is again convenient to use the parametrization
(6.15). For large 5 we have the following Fourier
series expansion for Eq. (6.15a):

+1+k =4k
sn t'

rr g rrt'
2

coth
4E'

and since E~ln5 for large 5, we can consistently
make the following approximation for Eq. (6.15b):

S= —cnt'
snt'dnt'

(7.10)

Inserting Eq. (7.10) into Eq. (6.16) and expanding
the resulting expression in a Fourier series valid for
large 5 we obtain

i [A&—(x
&
——O,xz, x3 ——0)]),

I

= —k'E+k'sinh, +.0(k' ) . (7.11)

At this point, we note that the limit
~
xq

~

&&
~

5
~

corresponds to t'~0, and comparing Eqs. (7.9) and
(7.11) we obtain

(7.12)

in complete agreement with Eqs. (2.2e) and (4.4).
Equation (7.11) shows that for large 5, with an er-

ror of 1/5, the zeros of H are at
n.t'/K'= sinh 'K=lnln5 and inserting this into

Eq. (7.9) gives

(zeros of H for large 5): xz ——+5/2 . (7.13)
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APPENDIX A: NORMALIZATION

From Eq. (3.1) it follows that

d d =dfi= »(fr+f3), fg »(f1+f3), f3 —— »(f&+fz), ——
dz dz ck

(A1)
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so that any equation of the form

dg
dz

=(cifi+c2f2+C3f3)g,

where c„c2,and c3 are constants, can be integrated (within a constant factor} to give

g =(f2+f3} '(fi+f3} '(fi+f2} '.
Let us now consider Eq. (3.7) at the origin x, =x2 —x3 =0:

(A2)

(A3)

1 000
0100

dz 0 0 j. 0 2
000 1

fi f2+—f3
0 f3 fi+f2—
0 0 fi+f2 f3—

0 -fi -f2-f3
&=0. (A4)

Equation (A4) has the following four linearly independent solutions:

Wi 0 0 0
0

2= 0
0 0

P"4——
W3

(AS)

0 0 0 W4

where

k, snu cnu 2, , snu dnu 2 1 cnu dnu
W& = — snQ cnQ nQ, W2 =—

3 W3 k
3 W4 3 3dnu cn(u) k' snu

(A6)

Note that (wi, w2, w3, w4 ) & 0 for E&u &0.—Since cn( —E)=sn(0}=0, only Wi and F2 will be normal-

izable. Now on the x2 axis the normalizable solutions of Eq. (6.2) must become Fi and F'2 as x2~0.
Thus, one can search for normalizable solutions of Eq. (6.2} in the form of Eq. (6.3).

APPENDIX B: DERIVATION OF EQ. (6.12)

(Bl)

where

In this appendix integrals will be indefinite. In order to compute [A4]ii defined by Eq. (6.4b), one must
know how to compute the integrals

Il =x2 f (wi + I w41 )dz, I2=x2 f (wi +—
I w41 )zdz,

(fi+f3)'" l dA
wi A(fi+f3)', w4 ———— . —,(f3+fl)A+

lX2 dz
(B2)

where A satisfies Eq. (6.7}. If we substitute Eq. (B2) into Eq. (Bl), repeatedly integrate by parts, and use
Eq. (6.7) we find

Ii ——(fi+f3) —,(fi+f3 —f2)A +A +I3,1 dA
(B3)

*

I2 ——(fi+f3) z —,(fi+f3 f2)A +A ———,A +I4,1 dA
(B4)

where

1 k2
I3 z A (f3+f1}[f2(fi—f2+f3)—fif3]dz= —,f A snu cnu dnu du, (BS)
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I4 ————, I A (f3+f~)Iz[f2(f~ f—2+f3)—f~f 3]+(f~+f 3
—2')Idz

2

, f A (2u+E)snu cnu dnu du ——,f A [—(1+k )+2k sn u]du . (86)

In order to evaluate I3 we multiply both sides of Eq. (6.7) by d A/du and integrate by parts to obtain

I A snu cnu dnu du = — +(B+2k sn u )A
4k dQ

If we multiply both sides of Eq. (6.7) by A and integrate by parts, we obtain

J +(B+2k sn u)A du=A
dQ dQ

We can now integrate I4 by parts and use Eqs. (87) and (88) to obtain

dA
'
+(B+2k sn u)A +I5,

dQ

where

I,= , (B+—1+k')I A'du .

(87)

(88)

(89)

(810)

In order to evaluate I5 we regard B as a free parameter in Eq. (6.7) and consider A as a function of B.
Then A(B) and A(B+e) will satisfy the following equations:

d AB =(B+2k sn u)A(B), (Bl la)

d AB =(B+e+2k2sn u)A(B+e) . (Bl lb)

Multiplying Eq. (Blla) by A(B+e) and Eq. (81 lb) by A(B), subtracting, and then integrating gives

f A(B+e)A(B)du =—A(B) —A(B+e) (812)

We now take the limit e~O on both sides of Eq. (812) to obtain the desired integral:

dB dQ dB dQ
(813)

We have thus exactly computed I& and I2. It only remains to evaluate I~ and I2 at the limits Q =0 and
u = E, which, thou—gh tedious, is completely straightforward leading to the result quoted in Eq. (6.12).
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