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We analyze the J"=1+three-pion production amplitudes obtained from the most re-
cent diffractive, charge-exchange, and backward-production experiments. We have
found effects in the amplitudes that we interpret in terms of qq, q q 2, and q q

' interactions.
tions. The qq piece gives rise to the 2 ~ resonance whose parameters are Mq ——1230+30

1

MeV and I & ——330+60 MeV, whereas the backward-production reaction shows a strong
1

qq and q q interference effect. The e~ scattering couples only to the q q
2 and q q, and

thus argues in favor of Jaffe's four-quark model of the e.

I. INTRODUCTION

In the present paper we introduce a generaliza-
tion of the Watson theorem, first derived by
Aitchison, ' and apply it to the analyses of the dif-
fractive reaction m p~(3m. )p, the charge-
exchange reaction m p +(3m)n,—and the back-
ward-production reaction K p-X(3'), which in-

clude pm and e~ production. The present work su-

persedes an earlier paper. However, many details
will not be repeated in this paper and will rely on
the earlier paper.

The main purpose of the work presented here is
to shed additional light on two questions that arose
from previous work. These two questions are
as follows: Why does the 3

&
production cross sec-

tion peak up at lower mass (1100 MeV) in almost
all reactions (except high tdif-fractive production),
while a detailed analysis gives a higher A

&
mass,

1250 MeV? What is the true nature of the so-

called Deck mechanism and can one unify its
treatment with the production of quark states' All
previous work has answered the first question
and has sidestepped the second question. In our
attempt to address the second question, we obtain a
dual approach that parametrizes the problem in
terms qq, 2q2q, and 3q3q, poles. The pattern of
coupling of these poles argues strongly in favor of
Jaffe's four-quark model of the e.'

The paper is divided up into four sections. In
Sec. II we introduce the generalized Watson
theorem of Aitchison and discuss its application in
Refs. 5 through 8. Section III deals with a de-
tailed fit to the 1+ pm and em. amplitudes coming
from diffractive, charge-exchange, and
backward-production channels. In order to obtain

a fit three K-matrix poles are necessary. These
poles have a natural interpretation in terms of the
two-quark (qq), four-quark (2q2q), and six-quark
(3q3q) states. We further argue that the multi-
quark poles are dual to the background terms of
the previous analyses.

II. GENERALIZED WATSON THEOREM

e' s~n6
(2.1)

However for diffractive production, double particle
exchange was proposed as the dominant effect and
led to the model of Deck.

Aitchison was able to combine production
mechanisms like the Deck effect with resonance
propagation by introducing a E-matrix formalism
which is a natural generalization of the Watson
theorem. One can achieve a unitary two-body for-

The problem of how one should parametrize the
production amplitudes for two-particle systems was
first solved by using the Watson theorem, which
related the physics of production to the physics of
formation. The theorem uses the propagation and
decay of intermediate states as determined by two-
particle formation experiments through a phase-
shift parametrization (i.e., e sin5). The recipe is
to take full production amplitudes as a product of
two factors. The first describes the production
process and the second, the propagation and decay
of a particular two-body state which scatters with
phase shift 5. The Watson factor 8'f is the for-
mation amplitude with phase space and formation
barrier divided out, i.e., two-body T matrix:
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mation T matrix for the description of intermedi-
ate states by a K-matrix approach:

T =(1 iK—) 'K . (2.2)

A relationship between poles in the K matrix and
Breit-Wigner parameters is given in the Appendix.
As shown by Aitchison the two factors of Eq. (2.2)

play two distinct roles. The (1—iK) ' term de-

scribes the propagation of two-body intermediate
states, while the K term governs the formation and

decay of these states. A notation which we pursue

in the Appendix gives the K matrix for n poles
formed in channel a and decaying in channel P as

(2.3)

where the + depends on the signs of the couplings.
The generalization that Aitchison achieved was to
simply replace the (mjI'J )'~ term by a complex
number which represents the production strength
of the intermediate state. Thus by defining a P
vector

CJ(mjr jp)'~
Pj3=

j= 1 Plj —S

one can write the production amplitudes

T =(1 iK) 'P —.

.(2A)

(2.5)

Additional terms such as the Deck amplitude can
be added to the P vector.

The most extensive application of the above for-
malism was to the 3m J =1+ system. Most
works only considered the pm S-wave channel for
diffractive production and introduced only one K-
matrix pole plus a Deck background which appears
in the P vector. References 5 and 6 introduced an

additional K-matrix pole which played only a
minor role in the diffractive channel. However,
Ref. 5 pointed out the importance of this addition-
al pole when one includes charge-exchange data,
which contains p exchange and thus analyzes the

pn formation channel directly. The presence of
this background term in the E-matrix was inter-

preted as a 2q2q state proposed by Jaffe.
In the next section we again pursue the analysis

of the 3+1+ system with the idea of having the
same poles in the P vector as in the K matrix and
thus generating the Deck amplitude out of these
poles. For comparison with this type of fit we will

use our previous analysis where the Deck ampli-
tude was only included in the P vector and not the
K matrix.

III. THREE-K-MATRIX-POLE FIT
TO THE J =1+ 3m. SYSTEM

In this section we simultaneously apply the E-
matrix formalism to the low-t [0.0—0.05
(GeV/c) ] and high-t [0.05 —0.7 (GeV/c) ] diffrac-
tive data of ACCMOR, along with the backward
baryon-exchange (BEX) data, and also including
the charge-exchange (CEX) data. The 1+pent state
can be either in an S wave or a D wave. However,
no substantial D wave has been observed in the
three analyses above. The ACCMOR analysis
which by far has the greatest statistical signifi-
cance, observes the 1+ D wave down to a factor of
20. For this analysis we have left out the D wave,
but if one should extend the analysis out past 1.5
GeV (which we do not) one should include the D-
wave contribution. A clear and comparatively nar-

row peak does appear around 1.65 GeV in the D
wave, where ACCMOR observes a ratio of 5 to D
of the same order of magnitude.

Let us consider the number of parameters in-

volved in the fit that we present in this paper. In
order to describe well the above-mentioned ampli-

tudes, we need three K-matrix poles and thus three
masses along with two couplings corresponding to
pa and em. decay modes (nine parameters). The
I j~ of Eq. (2.3) for the p and e couplings are as
follows. We have for the S-wave pm channel,

2
JP qP&XJP

and for the p-wave em channel,

3 . 2

(3.1)

(3.2)

1/2

p =ccEx cEx ~ (mjrj&)

J 1 mJ s
(3.3)

The q& and q, are the cm mornenta of the p~
and em, respectively.

The number of production parameters of the P
vector [(Eq. (2.4)] necessary for the ACCMOR
low t(LT) data are three -complex C;, one for
each K-matrix pole. The same number is necessary
for high t(HT) -ACCMOR data making 12 param-
eters for diffractive production. For the CEX
data, we will only consider the spin-flip natural-
exchange amplitude. This amplitude is assumed to
be dominated by p exchange and thus represents a
true picture of pm scattering (this same assumption
was used in our earlier paper ). We can achieve
this old-style Watson theorem by writing the P
vector as
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where C is a complex nu~ber, thus two addi-
tional parameters.

Finally, in principle the HEX data should add
three more complex C;, giving a total of 29
parameters. However, some of these parameters
become very small during the fit to the above-

described data. This is due primarily to the very
interesting difference the ACCMOR and the CEX
amplitudes, which have by far the most data and
the smallest errors. This difference is the total
lack of em amplitudes in the CEX data and the
comparatively large amount of em in the
ACCMOR data. This asymmetry picks out one
E-matrix pole to describe the em data almost ex-
clusively. The other interesting feature involves

the most important contribution to all the data, the
A

&
resonance. The A i ends up being totally decou-

pled from the em channel and is described mostly

by one E-matrix pole. These properties of the fit
can best be understood in terms of Jaffe's explana-
tion of the nature of the e itself. Jaffe' has
claimed the e and its SU(3) partners, the S" and

the 5 resonances, are really 2q2q states. Therefore
the E-matrix pole that decays only into em. is na-

turally associated with a 3q3q state, since it cannot
decay into pa. Also the pole which is mainly A

&

must be associated with qq, because it does not de-

cay into e~. On the other hand, the remaining

pole is more or less equally likely to decay into em

7T-'
q

FIG 1 Quark di.ag.ram for charge-exchange reac-
tions m. p~nqq and m. p~n2q2q.

S
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FIG. 2. Quark diagram for backward-production re-
actions E p ~X qq and E p ~X 2q2q.

and pm. ; thus it should be associated with a 2q2q
state.

In the last paragraph we have associated the
three E-matrix poles with qq, 2q2q, and 3q3q
states. Since the p only couples to the first two
poles and the e couples to the last two, we can
drop these zero couplings without changing our fit.
For the CEX and the BEX only qq and 2q2q ar-
rangements are possible; see Figs. 1 and 2. These
diagrams further reduce the number of parameters
in the BEX from six to four (CEX already had
been cut down to two by the p-exchange assump-
tion). We can further reduce the BEX parameters
by one when we realize that no phase information
makes it possible to choose one of the C; Ex

parameters real.
Let us turn our attention to the ACCMOR data

and their production mechanism. Here we clearly
need production of 3q3q in order to explain the em.

amplitude. Diffractive production proceeds by
Pomeron exchange. It has become fashionable to
think of the Pomeron as the vacuum realization of
the 0++ two-gluon glueball state. A 0++ state
will couple to either qq in a I' wave or 2q2q in an
S wave state. The four possible diagrams are
shown in Fig. 3. Thus one must retain all 12
parameters for Pomeron or diffractive production.
In examining Figs. 2 and 3 one should note that
another HEX diagram is possible which leads to a
3q3q. Since in this diagram the lower 3q state is
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FIG. 5. ACCMOR (high t), J M&=1+0+ pm S-wave
cross section.
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FIG. 3. Quark diagram for diffractive production re-
actions. The Pomeron (P) couples to either qq in a P-
wave state or 2q2q in an S-wave state.

initially associated with a baryon and must retain
its identity until after the antibaryon is exchanged,
we do not expect this to contribute until after the
baryon/antibaryon threshold around 2.0 GeV.

The final number of parameters used in the fit

5000

goes from 29 down to 24. The number of data
points in the ACCMOR LT is equal to 130 with
an equal amount in the ACCMOR HT. The
ACCMOR amplitudes account for 260 data points,
while the CEX amplitudes have 48 data points
with the BEX only adding 5 more points. This
leaves us with a grand total of 291 DF (degrees of
freedom) in the fit. The X which is obtained in
the final fit comes to 477.4. Figures 4 through 11
show the fit for ACCMOR, CEX, and BEX. One
can see in Fig. 11 that we do a very good job at
reproducing a low-mass bump. The BEX has 6.9
times as much 2q2q state produced as the CEX.
Note in Fig. 11 that the predicted phase motion is
quite large. One observes that the BEX taken in
isolation of the other reactions would be consistent
with a 1070 MeV mass A ~ with a 300 MeV width
and expected phase motion. We believe that the
so-called low-mass backward-produced A i is an ef-
fect caus& by strong qq and 2q2q interference. We
would like to encourage more experiments on the
BEX in order to help confirm or disprove our
model.

In an earlier paper we had fit the ACCMOR
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FIG. 4. ACCMOR {low t), J M&=1+0+ pm S-wave
cross section. Fit described in the main text, Sec. III.
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FIG. 7. ACCMOR (low t), J M"=1+0+ p~ S-wave
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CEX, J ~"=1+1+p~S-wave and em P-
wave cross sections.

and CEX data. In that paper, we followed the

philosophy of having the Deck-type production
only in the P vector and not in the E matrix.
However, the CEX data have a peak which is
lower in mass than the qqA ~

mass and no e~ am-

plitude at all (see Fig. 9). As in this paper the
CEX data represented pm scattering thus requiring
the addition of another pole in the K matrix. In
Ref. 5, we noted that this pole could be equally
described by a (charge-exchange but "Deck-like" )

multi-Regge background as done in Ref. 2. We
had argued that this approach and ours are dual to
each other. To the extent that CEX represents pm.

scattering all poles should go into the E matrix.
With this additional pole in the E matrix, the en.

amplitude of ACCMOR now had the two-com-

ponent structure necessary to explain data (except
near threshold). This two-component structure in

the e~ amplitude could not come from the A
&

(as
in Ref. 8) because of the lack of em. in CEX. The
pa amplitude of ACCMOR already had the pm

Deck effect to shift its mass and thus necessarily
reduced (compared to CEX) the coupling of the
second K-matrix pole in ACCMOR. The possibili-

360'
I'0+ high t

270'—

180'
IJJ

90'

0a

I'I'per S wave

180'—

90'—

I I

II

ty that this second E-matrix pole could be dual to
the Deck amplitude in the diffractive channel was

the main motive for the present paper.
Let us compare the approach of placing the

Deck amplitudes in the P vector only to the
present work. Our present fit has 291 DF and a
X of 477.4 or X /DF of 1.64. The P-vector Deck
aproach has 282 DF with a 1 of 683.1 (or X /DF
=2.42). It is true this paper considers HEX, add-

ing 2 DF, but this is only a 1% effect. The reason
the Deck fit had such a bad 7 was entirely due to
the em ACCMOR data near threshold. The em.

ACCMOR amplitudes (see Figs. 6 and 8) have

phase motion near threshold, which cannot be at-
tributed to the A

&
resonance, because there is no em

amplitude in the CEX data. In Ref. 5 we resorted
to an admittedly ad hoc procedure of introducing
rescattering effects into the Deck amplitudes alone.
For these rescattering effects we used the results of
Ref. 8. This introduced the desired phase motion
without changing the rest of the fit and X~ fell

from 683.1 and 460.9 (or X /DF=1.63). In retros-
pect, one must admit that rescattering is more than
a kinematic effect and is related to underlying
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FIG. 10. CEX, J M~=1+1+ pm S-wave phase.
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dynamics. The purpose of a E-matrix pole is to
introduce dynamical behavior that cannot be attri-
buted to kinematics. Thus Ref. 5 in a way had in-

troduced a K-matrix pole which created phase
motion in the em. channel alone. The most irnpor-
tant aspect of the 3m. data coming from Refs. 2 —4
is the decoupling of pnscatterin. g from en. scatter-
ing. This is the major reason Ref. 8 went so
wrong and all other analyses that assumed em was
unimportant went so right (Refs. 6 and 7). We be-
1!eve that the present work isolates the underlying
dynamics into three E-matrix poles which can be
interpreted in terms of quark states (qq, 2q2q, and

3q3q), where other exchange (Deck effect) and re-
scattering effects are a dual approach which gives
an equally good fit. Table I gives the E-matrix
pole parameters that were obtained in the three-
pole fit. However as discussed in Ref. 1 the E
matrix poles are not equal to the poles of the S
matrix. In the Appendix we have derived a rela-
tionship between the K matrix and Breit-Wigner
parameters based on a method of Goebel and
McVoy. " This method gives an exact prescription
of how one E-matrix pole shifts the derived Breit-
Wigner parameters of the other E-matrix pole. In
our case we have three poles and are interested in
the Breit-Wigner parameters of one in the presence
of the other two. In order to obtain a better
understanding of how the poles affect each other,

0 I I ~ I I I -90' I I I

0.8 0.9 1.0 I. I 1.2 1.3 1.4 1.5 0.8 0.9 1.0 1.2 1.3 1.4 1.5
M (GeV)

FIG. 11. BEX,J M"=1+0+ pm S-wave cross sec-
tion. The phase is predicted by the fit described in Sec.
III of the main text.

we first consider the interaction of only two of the
poles. The first entry in Table I is the A i K-

.matrix pole which only couples to the pm channel.
The first entry in Table II shows the effect of
second E-matrix pole (2q2q) using Eqs. (A22) and
(A23) of the Appendix. Since the second pole cou-
ples to both pn and en, we have picked up a 4%
coupling of the A i to em. The third E matrix
(3q3q) which only couples to cored. uces the em

coupling of the A i by a factor of 10 [using Eqs.
(A26) and (A27) of the Appendix). A similar ef-
fect takes place for the third pole in the presence
of the second and then the first and second pole.
The final Breit-Wigner parameters are completely
decoupled such that p~ scattering only gives a pm
final state and en scattering only gives an em'final
state for the J =1+ partial wave.

IV. SUMMARY

The analysis presented in this paper has shed
light on two outstanding questions of the A i sys-
tem: Why does the A

&
production cross section

peak up at lower mass (-1100MeV) in almost all
reactions (except high-t diffractive production),
while detail analysis gives a higher A

&
mass, 1250

MeV? What is the true nature of the so-called
Deck mechanism and can one unify its treatment
with the production of quark states? All previous
analyses have answered the first question by in-
troducing a background (the Deck mechanism)
which interferes with the A i resonance and causes
a shift in the 1250-MeV mass peak of the A i to
lower masses. In this work we have argued that
the Deck mechanism is dual to the direct produc-
tion of a very broad 2q2q state proposed by Jaffe. '

The fact that the interference is such that it shifts
the mass always in the same way is a fundamental
property of pm. scattering itself in the J =1+
channel. The backward production of the pm sys-
tem shows a dramatic mass shift which is antici-
pated by the quark diagrams of Fig. 2. These dia-
grams demonstrate that baryon exchange leads na-

turally to the production of 2q2q states. We have

TABLE I. The three E-matrix poles (in MeV units).

Type Mass

2g 2g
3g 3g

1180+30
5000+2000
1180+60

290+60
8000+4000 2000+ 1000

420+80
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TABLE II. Two different sets of Breit-Wigner parameters (in MeV units).

Type Background Mass

qq

qq
3q 3q

3q 3q

2q 2q
2q2q+3q3q

2q 2q

2q2q+qq

1230+30
1230+30
1190+60
1200+60

325 +60
330 +60

9 +10
0.1+1

12+10
1+1

511+90
530+90

also shown the J =1+ em scattering is completely
orthogonal to per scattering, thus explaining why
analyses which ignored this channel still achieved
the correct answer. On the other hand, the one
analysis which requried the em channel to couple
to the A

&
resonance gave a wrong result for the

mass of the A i and predicted that pm. scattering
would lead to large amount of e~ production.
This possibility is excluded by the CEX data.

Finally, the generalized Watson theorem first
developed by Aitchison can be applied to other
production processes that may contain multiquark
states which in general appear to be very broad.
This feature arises from the superallowed decay
modes in which color-singlet subunits fall apart
without feeling an overall confining force. ' In or-
der to compare these states with theory, one would
have to resort to methods derived in Ref. 12 and

applied in Refs. 5 and 12.
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APPENDIX: A RELATIONSHIP
BETWEEN THE E-MATRIX POLES

AND BREIT-WIGNER PARAMETERS

In this appendix we present a relationship be-
tween the J( -matrix poles as introduced in the main
text and Breit-Wigner resonance parameters. This

o( —— (21+1)
i Ti i

(A 1)

where k is the center-of-mass momentum of one m

in the appropriate units. The E matrix as intro-
duced in the main text is related to the above T
matrix by

T( (1 i' ) 'K———i . (A2)

The T matrix written in terms of a single-channel
relativistic Breit-Wigner form in given by

mr
Tl 2 ~

m —s —imr
(A3)

The above two equations lead to the E matrix be-

ing written as

mIl=
m —s

(A4)

For the remainder of the Appendix we will drop
the subscribed l. If two poles occur in the K ma-
trix, then Eq. (A4) becomes

E=
2 2mi s m2 s

(A5)

Substituting this K matrix into Eq. (A2) we ob-
tain

relationship is achieved using Ref. 11 in which one
focuses on the situation of an isolated resonance in
the presence of a background. All the formulas in
this appendix will be based on a simple single-
channel elastic m-m. scattering. The final part of
the Appendix will generalize to the multichannel
case with two E-matrix poles as part of the back-
ground paramatrization.

The partial wave cross section for musca. t-tering

in a given angular momentum state l is related to
the T matrix by

m i 1 i(mq —s —im21 2)+m2I 2(m i
—s —im i I l)+2im lm2I &I 2T=

(m
&

—s —im
&
I'&)(m2 —s —im21 2)+m lm21'&I 2

(A6)
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and

U/=(mjrj)'~,

D/k =i(m~ I/mr, I k )'

(A7)

(A8)

Equation (A6) is quite messy and tends to obscure
the relationship we wish to obtain. We can achieve
a simplification by defining three new symbols,

I r
——Qrj, (A17)

tions to the multichannel problem by introducing
the concept of partial widths into the channels a,
b, c, etc. The total width is defined as the sum of
the partial widths over all open channels for the
jth E-matrix pole

mlT=
2m —s —tml

UU

D

and Eq. (A6) is simplified to

2
DJ =mJ —s —lmJI J

Equation (A3), the relativistic Breit-Wigner
form, would then be written as

(A9)

(A10)

Equation (A7) then becomes

U,.=+(m, r,.)'", (A18)

where the plus or minus depends on the sign of the
coupling.

Equation (A13) is now written as

UiaU~b
Tab

Dj

T= U)D2UI + U2D) U2+2U)D)2U2
(Al 1)

D)D2 —D)2

We are now in the position to make a connection
with the above E-matrix formalism and Ref. 11.
In Ref. 11 it is assumed that a smooth unitary
background exists and can be parametrized by
some well defined procedure. In our case we will

choose one of the E-matrix poles to describe our
background. When a resonance is introduced into
the above-mentioned situation, Ref. 11 shows that
it takes the form

U~+Di2Ui, /D, U2b+Di2Uib/D,
+

(A19)

m P &/2I &/2e
R a b

Tab
m —S —im I

(A20)

Reference 11 writes the multichannel resonance in
the form

mre"'
TR 2 ~

m —s —im l
(A12) where

where 8 is a function of energy and depends on the
background parametrization. We can achieve ex-
actly this solution if we rewrite Eq. (Al 1) as

Ui Ui (Dp+Di2Ui/Di)(U2+Di2Ui/Di)T= +
D] D2 Di2 /Di—

(A21)

Relating the second term in Eq. (A19) with Eq.
(A20), we obtain

In our case the second term in Eq. (A13) is
equivalent to Eq. (A12); thus

2
2 D&2

m —s —/mI =D2-
Di

2
D)2U)

mI = U2+
D)

and

(A13)

(A14)

(A15) and

2
Di2Uiaml, = U2, +

1

i8
e

(U2, +DizUi /Di)
U2+D]2 U]a/D]

2D
m —s —imI =D2-

D]
(A22)

(A23)

(A24)

(U2+Di2Ui/Di)

i U2+Di2Ui/Di
i

(A16)

We can easily generalize the above set of equa-

In the final part of this appendix we will write
down the analogous equations [Eqs. (A22) —(A24)]
for a background made up of two E-matrix poles.
Equation (A19) for three E-matrix poles becomes
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U1aD2 U1b + U~D1 U2b+ U1,D12 U2b + U~D12 U1 b
Tab 2D1D2 —D12

D1D23+D12D13 D2D13+D12D23

D1D23+D12D13
X U3b+ 2 U2b+

1 2 12

D2D13+D 1PD23
1b

D1D2 —D1z

D1D23 +D2D13 +2D12D23D13
2

therefore

(A25)

2m —s —tmI =D—

D1D23 +D12D13
U2 +

DiD2 —Di2
mI ~ = U3~+

D)D23 +D2D)3 +2D)2D23D/3

DiD2 —Di2'
T 2
D2D~3 +

U1a
D)D2 —D)2

(A26)

(A27)

and

U3, +

U3u+

D]D23 +D)2D]3
2 U2a+

D(D2 —D)2
r

D)D23+D)2D)3
U2a+

D)D2 —D)2

r

D2D)3+D)2D23
Uia

D&D2 —D&2

D2D )3+D )2D23
U]a

D)D2 —D)2
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