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Scattering theory in relativistic quantum mechanics
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We construct a relativistic quantum scattering theory in a framework originally suggested by Stueckelberg, where
the dynamical evolution of a system in space-time is described by means of an invariant parameter ~. The wave
operator for the reduced motion of a two-body system is related to measureable cross sections. The optical theorem
is proved, and it is shown that in the nonrelativistic limit the cross section has the same interpretation as in the usual
nonrelativistic scattering theory. A perturbation expansion for the S matrix is obtained, and its form is compared
with that of the perturbative structure of quantum constraint Hamiltonian dynamics and quantum field theory. The
problem of electromagnetic scattering of two charged particles is formulated and it is shown, for a heavy target, that
the Rutherford cross section is obtained to lowest order.

I. INTRODUCTION

The problem of merging special relativity and
quantum mechanics together into a satisfactory
relativistic quantum mechanics (RQM) of interac-
ting particles has not yet been completely worked
out. On the other hand, a relativistic quantum
field theory (RQFT) has been constructed and gives
accurate results. Nevertheless, RQFT requires
one to deal with an infinite number of degrees of
freedom. One might expect to be able to describe
a finite number of particles phenomenologically
through a finite number of degrees of freedom.
It would be of great value in understanding the
foundation of RQFT if there were an underlying
quantum mechanics as in the case of nonrelativistic
quantum field theory.

Approximate nonrelativistic potential models
have been used with good results (e.g. , the spec-
trum of the hydrogen atom or of massive quark
bound states). One may conjecture that relativistic
scalar and vector potential models will be applic-
able to a wider range of phenomena.

In this paper, we shall develop a scattering
theory in the framework of a manifestly covariant
relativistic quantum theory in which there is a
canonical evolution' ' according to an invariant
parameter 7 which is a generalization of proper
time. This formalism enables us to construct a
perturbation theory which facilitates calculations;
it also makes possible a comparison with certain
aspects of RQFT and with the recently developed
quantum relativistic constraint Hamiltonian dy-
namics (QCHD),"which appears to form a bridge
between these theories in its treatment of direct
interactions.

The framework in which we shall study scat-

tering theory should be distinguished from ap-
proaches based on a relativistic particle dynamics
of the type proposed by Bakamjian and Thomas. '
Coester, ' for example, has developed a relativis-
tic scattering theory of this type which is covari-
ant, but not manifestly covariant. In this forma-
lism, the four-dimensional energy-momentum
manifold is reduced to R' by putting an elemen-
tary system in correspondence with a point in the
direct integral over mass. The mass parameter
is then replaced by an operator h [in L'(R')] rep-
resenting the rest energy of the system in its
center of mass, and is supposed to contain the in-
teractions. The coordinate operator is taken to
be the Newton-Wigner operator [as it appears in
L'(R'); see Ref. 4 for a discussion of this point].
The dynamical evolution of the system is consid-
ered to be generated by P'=H-(p'+h')' '. The sim-
ilarity between our approach and Coester s has
its source in a theorem cited by Coester, ' i.e., that
the wave operators relating H Hp are equal to
the wave operators relating It, A, The former
are defined by limits in t, and the latter are de-
fined by limits in an invariant parameter s. There
is, however, no canonical quantum-theoretical
evolution associated with this development in v'.

The formulation of the Bakamjian-Thomas theory
in the center of mass of a system leads to dif-
ficulties in assuring cluster decomposition; this
property is quite natural in the framework we
shall use.

The perturbation theory which we shall develop,
for the case of direct interaction, has a structure
in which there is one propagator for each inter-
mediate state, regardless of the number of par-
ticles. In this form, the 8 matrix exactly con-
serves the sum of the unperturbed single free-
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particle dynamical generators, corresponding es-
sentially to the sum of squares of the individual
particle masses. The conservation of individual
particle masses is a dynamical question, and the
theory can therefore describe phenomena which
appear, in the laboratory, to be inelastic (there
are, as we shall show, forms of the direct inter-
action potential for which the individual particle
masses in the two-body problem are precisely, or
almost precisely, conserved). If, however, the
correlation in 7' between different particles is
removed in the perturbation expansion, and each
particle evolves according to a different parame-
ter, the perturbation expansion decomposes into
a form in which there is a product of Feynman
propagators, one for each particle in the inter-
mediate states, with a structure, therefore, closer
to that of quantum field theory. The differential
equations giving rise to this type of perturbation
expansion are found to coincide with those obtained
in the framework of the many-time formulation of
QCHD. In its simplest formulation, when wave
operators of normal type exist, the individual
particle masses in QCHD are exactly asymptotic-
ally conserved in the S matrix.

Classical constraint Hamiltonian dynamics
(CCHD)' offers an approach to mechanics which is,
in some ways, complementary to the single-7
formalism, ' but eventually finds itself on common
ground. In order to describe the motion of an
N-particle system, CCHD specifies a set of N
first-class constraints (for which the constraint
functions, called "constrainors", have mutually
vanishing Poisson brackets), usually equations
relating p "p„of each particle to a function cor-
responding to the interaction of the particle with
all of the others (effective mass-shell conditions).
This set of N equations specifies a 7N-dimensional
hypersurface for the motion, embedded in the 8N-
dimensional phase space, consisting of the N x"'s
and p~'s. Additional constraints are, however,
required to specify a trajectory in the phase space
and, finally, to parametrize the motion along this
trajectory with an invariant "time" parameter (to
be identified with the 7 of Stueckelberg). The mo-
tion along this trajectory can be generated by a linear
combination of constrainors, a generalized invariant
Hamiltonian; the requirement that this linear cornbi-
nation have vanishing Poisson brackets with N —1 ad-
ditional constraints, and Poisson bracket unity with
theNth, for example, provides a set of invertible lin-
ear equations for the coefficients and ensures con-
servation of the constraints.

Since, in the differential geometry of CCHD, the
constrainors act as generators of motions in in-
dependent directions in the VN-dimensional con-
strained surface, ' the quantum version of the

theory associates a Schrodinger-type equation, each
with its own invariant time parameter, with each
of the constrainor operators. In the classical 1.im-
it, this system of equations reduces to the usual
description of CCHD. It can be shown' in QCHD
that the S matrix of scattering theory is indepen-
dent of the choice of the additional. constraints,
since the limit of the interaction-picture wave
function for all 7&- +~, i =1, . . . , N, is independent
of the order of limits, and coincides with the S-
matrix of a corresponding single-& theory. The
choice of the additional constraints is analogous
to the choice of an interpolating field in Lehmann-
Symanzik- Zimmermann (LSZ) quantum field
theory. " From the point of view of QCHD, the
theory that we shall be studying here (at least for
the part that concerns direct interaction) is form-
ally equivalent to that of an interpolating theory.
From the point of view of the single-& quantum
theory, where one may chose a direct action po-
tential with no restriction other than Poincare
invariance and suitable falloff in spacelike direc-
tions for the relative coordinate variables, the
QCHD appears as a self-consistent field-type
approximation.

A formulation of electromagnetic interactions
of charged relativistic particles will also be given
in the framework of RQM. We shall show that the
instantaneous form of the current density must be
integrated over all &, and that the resulting cur-
rent density (for any number N of particles) is a
conserved four-vector which can serve as the
source of electromagnetism. This result was
stated and proved (in a slightly different way) by
Stueckelberg" for the case of one particle. Since
the wave function is obtained by integrating a dif-
ferential equation containing a (r-independent)
vector potential, and the vector potential is ob-
tained from the Maxwell equations in which the
source depends bilinearly on the wave functions
integrated over all 7', the resulting semiclassical
electrodynamics is a rather implicit system of
equations. The associated perturbation theory is
expected to have at least some of the structure of
QCHD, and to resemble RQFT more than the di-
rect-interaction RQM. In this paper, we formu-
late the problem of the scattering of two charged
particles. It is shown, to lowest order, that one
obtains the Rutherford cross section, and the cor-
rections due to recoil appear to be quite reason-
able. This result verifies, in a heuristic way, the
definitions and interpretation we have given for the
S matrix and scattering cross section. The prob-
lem of electromagnetic self-interaction, and its
implication for scattering theory, will also be
discussed.

Although RQM has been extended in order to be
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able to treat particles with spin, '2 "we shall
restrict ourselves in this paper to the case of
spinless particles interacting either through di-
rect interaction or the vector potential of electro-
magnetism.

In Sec. II, the scattering problem is formulated,
starting with a brief review of the basic structure
of RQM. The cross section is defined in view of
the physical nature of a relativistic scattering ex-
periment. In Sec. III, the S matrix is constructed
in terms of the limit of the interaction-picture
evolution operator. This construction provides a
perturbation expansion for the 8 matrix.

The comparison of the structure of the pertur-
bation expansion in direct interaction scattering
in RQM with perturbation expansions in QCHD and

RQFT is carried out in Sec. IV. The form of the
theory with charged particles in interaction with
each other through the electromagnetic field is
discussed in Sec. V.

dp" dz p=0
dt ' dt E ' (2.4)

K=-M/2

so that

p~p„= m'=-M2,

the scale of 7 is fixed so that

(2.5)

(2.8)

—(ds)'=dx"dx = (d~)'= —(d7)', (2.7)

i.e. , 7' is essentially equal to the proper time s,
An external (direct-interaction) potential can be
added to (2.2) to give

The parameter M is not necessarily the mass of
the particle, and for free particles (or particles
with purely electromagnetic interaction) it is as-
sociated only with the scale of &. Choosing initial
conditions such that

II. SCATTERING THEORY IN RQM K= " +V(x"x )2M (2.8)

%e start with a brief review of relativistic class-
ical and quantum mechanics. 4 In classical mech-
anics, the state of each part. icle is described by
the eight independent variables x" =(x, t) and P"
= (p, E) [we shall use the metric (-1,+1,+1,+1)].
The energy & is independent of p, and the particles
are therefore not restricted to a particular mass
shell. To parametrize the evolution of the system,
a parameter ~ is introduced as an order parame-
ter; it cannot be altered or directly observed, and

should not be confused with the geometrical time
t which is a physical observable defining the state
of a particle (time of occurrence in the laboratory
frame). AnN-body system is characterized by a
scalar function of all 8N variables K(P™,x ), a
=1, . . . , 4N, which satisfies a generalized Hamil-
ton principle resulting in the canonical equations

and a particle in an external electromagnetic field
is described by

K= (P" —eA")(P —eA„) .1
(2.9)

P"P~ P"P„y( )
2M

(2.10)

where

M2pp -M,p,'
+1 ~2 & P M +1 2

The initial condition (2.5) leads to (d7')'= (ds)'asym-
ptotically for the case (2.8), and for all r for (2.9).

For the two-body problem, we may take

P1Plu PRP2ll + p(x x )+
2M,

dp SX ch aK
de ax ' d& ap

(2.1)

M &,"+M &~p 1 2 2 Qp, pg +pg,M+M1 2
(2. 11)

so that

1
~p pQ (2.2)

dP" dg"
P/M. - (2.2)

In the nonrelativistic limit, "one imposes df'/dv
=1, so that K=H QE' (i =1, .-. . , N) and the equa-
tions (2.1) reduce to the usual Hamilton equa-
tions. In the case of one free particle, one takes

M —M~+M2, m—
M +M

For the general N-body case, the center-of-mass
motion can always be extracted as in (2.10), pro-
vided that the interaction potential is a function
only of the differences between. space-time coor-
dinates.

In the quantum theory, the states of a system at
a given 7' are described in the Hilbert space
L'(R'; d'x). The operators corresponding to space-
time and energy-momentum satisfy the commu-
tation relations

Eliminating ~, these reduce to the familiar equa-
tions [x',P"]= ig'" (2.12)
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and the evolution of the system is described by
the equation

(2.13)

where K is the operator corresponding to (2.9) or
(2.10) in the cases we shall treat.

It is well known that in relativistic theories
based on the Klein-Gordon or Dirac equations, the
position operator is not represented by is(Sp, but
by a somewhat more complicated object, the New-
ton-Wigner position operator. " From Eq. (2.12),
one sees that x" can be represented by iS/Sp„and
it is reasonable to ask whether this operator can
correspond to the position of the particle. It has
been shown that the operator

(2.i4)

in the direct integral representation obtained by
transforming the momentum-space integration
(d'p) to

dm'd P
2(p'+m')

is exactly the Newton-%igner operator for each
value of m2. There is no corresponding form for
t, since this operator is not diagonal in m'. We
conclude from this result that the values of x in
L'(R') correspond to the physical positions of the
particle.

As in nonrelativistic quantum mechanics, the
Heisenberg equations are of the same form as the
corresponding classical equations of motion (2.1),
and describe the motion of the center of the wave
packet. For the case of free particles, valid, in
a system for which scattering can take place,
when the particles are sufficiently far apart, Eq.
(2.3) implies the asymptotic relation

tering theory, and the formal structure of rela-
tivistic scattering theory is therefore quite simi-
lar to that of the nonrelativistic theory. " It fol-
lows from the condition (2.16) that one can define
the operators

(2.1V)

which we shall call wave operators. As in the non-
relativistic theory, one finds that a sufficient con-
dition for the existence of the wave operator 0,
is that there exist a dense set of

~
g ) such that

f

�dr
/fVe 'ro'f gg

0
(2.18)

If V were square integrable, the spread of the
wave packet (proportional to r ' in the relativistic
case, since there are four Gaussian integrals)
would be adequate to ensure the validity of the in-
equality (2.18). The potential function V is, how-
ever, an invariant function of x~, and in the ab-
sence of other four-vectors, it must be a function
of x"x„. Such a function cannot be square inte-
grable in L'(R ) One m. ust therefore use not only
the spread of the wave packet, but also its motion.
Choosing a dense set of ~(}( ) for which (p ~(}I. ) van-
ishes (along with some of its derivatives) for
p'-0, Horwitz and Soffer have rigorously shown"
that the wave operator exists for potentials that
are bounded and decrease faster than ~x'~ ' ' as
x'-+~. Asymptotic completeness in the abso-
lutely continuous part of the spectrum of K has
recently been proved by Soffer."

With the help of the wave operators, one can
define the relativistic S matrix

(2.19)

From the intertwining relations of the wave opera-
tor, one obtains

(2.16)
[A„S]= O. (2.20)

As r-+~. it follows from Eq. (2.15) that the par-
ticle moves to remote regions of space and time,
corresponding to the usual notion of an asymptotic
region for scattering. If the particles move to
regions in which the interaction is negligible when

~r
~

is sufficiently large, they will then continue
to evolve as indicated in the asymptotic relation
(2.15). We may then state the asymptotic condition
for scattering as

For the case of a single particle in an external
potential, Eq. (2.20) implies that the S matrix con-
serves P~P = —m'. For the two-body problem,
however, with a dynamical evolution operator of
the form (2.10), Eq. (2.20) imples only that p, '/2M,
+p, '2M, is automatically conserved. Hence, the
conservation of the individual particle masses in
a several-particle problem is a dynamical ques-
tion. It follows from Eqs. (2.1) (considered as
Heisenberg equations) that

(2.16) (2.21)

where Eo corresponds to the unperturbed evolution
operator. This condition is formally identical to
the asymptotic condition in nonrelativistic scat-

where 6(r) -=e 'ee ', and, therefore, with the
help of the asymptotic condition (2.16),"'"
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(M

(M

(2.23)

so that, denoting momentum exchange by q =p' -P
=p,'-p, =p, -p', , one obtains

2M,p' =p — 'P ~ qM

p, =p2+ P q.2M2
(2.24)

In the case of a single particle in an external field,
the right-hand side of Eq. (2.22) necessarily van-
ishes. To the extent that each particle in a sev-
eral-particle problem moves in the effective field
of the others, one would expect a similar conser-
vation law to hold (we shall return to this point
later). In the classical two-body problem, for ex-
ample, Pearle' has pointed out that [using vari-
ables defined in (2.11)]

scattering process. This formalism offers the
possibility of constructing models for such pro-
cesses. In the following, we shall not assume the
existence of additional constants of the motion
specifying asymptotic particle masses, and return
to this point in our analysis of the perturbation ex-
pans ion.

We now turn to study the definition of the differ-
ential cross section. Let us consider the two-body
problem in terms of the variables defined in Eqs.
(2.11), and separate out the motion of the center
of mass. The problem then formally resembles
that of a particle scattering in the potential of an
external source. One should remember, however,
that the "particle" momentum P" may be spacelike,
and its coordinate is relative, e.g. , f = f, —t, is the
relative time, at a given 7', of the occurrence of
the two particles (particles of the beam and tar-
get). '4

The wave packets of the beam leaving the accel-
erator are assumed to be associated with wave
packets with relative coordinates in the asymp-
totic region. By the analog of Ehrenfest's theo-
rem, the centers satisfy the free-particle equa-
tions of motion

The condition for mass conservation is that P q
= 0. It has been suggested, "in a slightly different
context, that a potential of the form V(x"
—P"(x ~ P)/P ) will assure this condition, since the
Fourier transform is then proportional to 5(P ~ q).
A potential of this form, however, would contri-
bute to the center-of-mass motion in the Heisen-
berg equations as a term depending on the relative
motion, and the center-of-mass motion would not
decouple from the relative-motion problem. "
A potential of the form V(x&+n'(x ~ n)), where n
= —1 (see Refs. 12 and 13 for a discussion of the
possible significance of such a timelike vector)
could be considered. If the center-of-mass mo-
mentum has a direction not very different from
n~, P„q~ will be small.

The conservation of individual particle masses
can be guaranteed if K is such that other constants
of the motion are admissible. The constraint Ham-
iltonian formalism developed by Bohrlich and
others for classical mechanics (CCHD) and re-
cently extended to quantum mechanics (QCHD), "'
described in Sec. I, effectively conserves a set of
functions (constrainors) of the form P,'+m, +4 „
a=1, 2, . . . , N, where the C, play the role of po-
tentials which vanish asymptotically, assuring the
conservation of individual particle masses.

On the other hand, there are physical processes
for which mass shifts do occur, in inelastic scat-
tering or decay processes (such as P decay) with
amplitudes crossing equivalent to an inelastic

x,*,(r) =x,*,(0)+-a r,

p+(r) =p*„=const.
(2.25)

g i(p) qi, x (p) e-Ip yefx 0
y (p) (2.26)

The set of wave packets obtained in this way is
to effectively "cover" the potential, with random
spatial and temporal displacements. The corres-
ponding procedure in the nonrelativistic case is
straightforward to carry out, since the potential
is bounded, or falls off, in each direction. A re-
lativistically invariant potential cannot be bounded

in this way because of the diminishingly small re-
gions near the light cone where it is nonzero;
these prevent the possibility of "covering" it by a
beam of finite dimensions [if V(x') is nonzero for
any value of x'=s, then it will have this value for
all x, f such that x'=s+ t2; for ~x~, t-~, this re-

Working in the laboratory frame, where the accel-
erator, the source of the potential, and the detec-
tor are at rest, we choose the direction of p~ tobe
the ~ axis. The wave packets start at v =0 at a
point z, = —J, where L is the distance of the accel-
erator from the origin, but the other coordinates
x„y„and t, are random and have to be averaged
over. The wave packets displaced in t will sam-
ple the t-dependent potential, a function of x' —t',
at different points. The different wave packets to
be averaged over can be defined in terms of a rep-
resentative incoming wave function g (P) as



824 L. P. HORWITZ AN D Y. LA VIE 26

gion becomes Euclidean close to the l.ight cone].
Since, however, wave packets with no zero-mass
components move away from the light cone, "there
will be decreasingly small overlap with incident
wave packets on these tails of the potential for
larger relative time displacements. The asymp-
totic fringes of the potential can therefore be ne-
glected and a wide enough beam can cover it ef-
fectively.

The probability that a particle associated asym-
ptotically with wave function g (p) will be found
after the interaction scattered into the region d4p
around p" is given by

(2.27)

w(dydee

gl )

=«dp'
0

(2.28)

The total number of observed scatterings into
d~dP' is the sum over probabilities for each pac-
ket,

where we include in P" only the part of gt„, ac-
tually scattered. We shall be interested only in
the direction of the outgoing momentum and in the
energy, and therefore integrate over the magni-
tude of p to get the probability of the particle em-
erging with energy in dP' around P, and three-mo-
mentum in the sol. id angle d~ around p,

mensions, one therefore obtains a three-dimen-
sional cross section. " We shall show later that
under certain conditions this cross section factors
into a spatial part with the usual interpretation of
a two-dimens ional cross section, and a factor T
which describes the extension of the potential in
relative time (of the order of the spatial range
divided by c).

In the treatment of antiparticles, what happens
in the physical world in time is not always iden-
tical to the accelerator and detector picture des-
cribed here in v. To formulate the problem of
antiparticle scattering (on a particle target), we
consider the initial state to be an "uncontrolled""
state ~g, g which goes asymptotically, as 7- —~
to the future in t, i.e. , t-+, the region of the
detector. For 7'-+~, this state develops to a

controlled

~g,„,) which describes the incident beam
of antiparticles at f- —~. The (relative) momen-
tum is timelike for this process, and the physical
scattering state is 0 ~g,„,). Taking the scalar
produce with 0, ~g' ), the scattering state to be de-
tected at r- —~ (going to the essentially plane-
wave state e '«o'~P'„) in this limit) results in St
as the corresponding scattering matrix. The
cross section is then obtained by integrating the
square of the scattered part of this amplitude over
variables in ~g'„) which are not measured, and
summing over wave packets in the accelerator
beam. As can be seen from Fig. 1, a simple

N„(d&dp') = ger(dQdp' pi )

d p dx so dOdp
(2.29)

where n, is the number of packets per unit area
and unit time perpendicular to the motion of the
wave packet. Since we have assumed the beam to
effectively "cover" the potential, the limits can
be extended to infinity without changing the value
of the integral. For n„, constant, the cross sec-
tion can then be defined as

(
0 )

N (dQdp
fn

niw

d p dx K tÃdp ~
(2.30)

Note that this definition is given in terms of a
number divided by a density; it is equivalent to a
rate divided by a flux, if we define the rate as
N„/br, and the flux as n, /4r, where 4r is the
pulse length in v'. As in the nonrelativistic theory,
the beam defines a direction; working in four di-

FIG. 1. A t,7, x diagram of particle and antiparticle
scattering on a bounded potential. The difference be-
tween the two cases is evident. The form of the invariant
potential is starlike (the purely timelike or spacelike
part could be suppressed).
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transformation of the type p- —p, t- —t on the
particle variables will not; put the two cases into
physical correspondence.

In the following, we shall describe in detail the
kinematical aspects of particle scattering. Analy-
ses of antiparticle scattering, pair creation and
annihilation, and consideration of the related ques-
tion of crossing symmetry, will be given else-
where.

We shall now complete the computation of (2.30),
using Eq. (2.28) for ~(df)l dP'- (I,) and Eq. (2.26)
for g,',(p). To extract the scattered part of the
wave function g',„,we note that in

the kernel of the 8 matrix [due to Eq. (2.20)] can
always be written as

&Plslp ) =5'(P-P )

teP2 pin )I

(2M 2M j (2.32)

defining the "on-shell" T matrix. The scattered
part of g,„, is then

2 12

t.".,())=-e fe u e'— &'(u p')), .(-o ). '

(2. 33)

(.„,()) fe'( (p=(sl( 4',.() ),'' (2.3i) The expression to be computed is

do dQd '- OO 2 12
= fe'e fe,f el)i( p (ee)* fop e '—'e'(p-p')exp(-ip p'eix'p")(()x)

2»2
x d4p»g p —p T* p —p" exp ip p" —ix-p " p"

2M 2M

(2. 34)

Performing the p, x' integrations, (2. 34) becomes

„„";p=( )'f (ele f'( f') e(,'„,"-)e(('", -', )-"'
&& T(p- p')~*(p —p")p( p')q*( p")5'( p,' p,")5(p" —p-'"), (2. 35)

where p,' denotes the component of p' perpendicular to p*. %e now perform the integration on d'p":

12»2
d'p-5 P — 7 (P-P")P"(P")6'(P' P")5(p" -P'")-2' 2M J.

=2M d p»6 p' +p' —p ' —p" —p" +p " T* p- p p ~ p p & p -p "
J.

, T*(p-P')4*(p'»
I p'„I (2.36)

where p'„, the component of p' parallel to p~, ap-
pears in the denominator of the last expression be-
cause

5(p -p; )=,Ip. 1[5(lp I
—Ip-I)

1

II

+5(lp„l+ lp;; I» .

The second term does not contribute if the wave
packets are narrow enough around p~. Substitu-
ting Eq. (2.36) into (2.35), we obtain

,= (2v)'2M'
dQ dp'

x dpp

d4p1 p p2 p12 p p p1 2 pr
1

1 p'„I

(2.37)

The integral over ~p ~
can now be performed to ob-

tain
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, (dQdp'- tj)dn dp' ImT(p-p) = — 4 o„,(p).Ipl (2.43)

(2. 36)

where q' = (p" +p")'~', and we denote the value of

p selected by the 5 function in (2.37) as p = (q', Q, p') .
If $(p) is different from zero only in a small re-
gion around p*, and in this region the T-matrix
element does not change significantly in magnitude,
the integral can be well approximated by

T(P -P *) = ~(p'- p'*)T„(p-p*) .
Furthermore, p'=po" implies that q*= lp*l, so
that

(2.44)

We conclude this section with a remark about
the nonrelativistic limit. In the nonrelativistic
limit" (see also Pearle'), the potential V(x) be-
comes effectively independent of t, and hence
[po, S]=0. The T matrix is therefore proportional
to an energy 0 function. We therefore write

dO dp' I
p*

I

(2.39)

do(dQ -p~) " odo(dQdp -p*)
dQ ~ dQdp

-[2~~(p'*-p'*)](»)'M'l TN„(p- p*) l'

(2.45)
where we have replaced the designation of the wave

packet by its average momentum p*, since the re-
sult does not depend on its shape, and q*=(po'
+p*')'~'. Equivalently, one may write

dv(dQ dp p ) (2 )5 2 I pl
l ( g)

dg dp' I
p* I

(2.40)

As in nonrelativistic scattering theory, an optical
theorem can be proved as a direct consequence of
the unitarity of S. Starting from the relation
StS= 1 and expressing S in terms of T by (2.32),
one obtains

The infinite factor in front of the nonrelativistic
cross section corresponds to the integration over
x' required to sample the potential during its
spread in t. Since the potential becomes constant
in t in the nonrelativistic limit, the series of ex-
periments for different values of t yield the same
result, and the three-dimensional cross section
obtained in the asymptotic result (2.45) is just
proportional to the time width of this sampling
pulse of wave packets. The relevant physical quan-
tity is this cross section divided by the pulse
width, a two-dimensional cross section

3 /2

i5 — T'P'-P —T*P-P'
oNR( p ) (2+)4M2

l
T (p p4) l2 (2.46)

d4pllg P P g P

x T*(p"-p') T(P" -P)
Factoring out a common 6 function and equating

p to p' results in

&&2 2

I T(p-p) = .J/d'p"6 p -P IT(p"-p) —I'.

(2.41)

coinciding with the usual nonrelativistic cross sec-
tion. Using the expression (2.45) in the optical
theorem (2.43), one finds that both o„, and

ImT(p-p) contain the same factor of time. The
optical theorem therefore also goes over to the
usual form for nonrelativistic scattering theory in
this limit.

III. PERTURBATION EXPANSION
AND FEYNMAN RULES

Carrying out the integral over
l

p"
l

and compar-
ing the result with the expression for the total
cross section

( @) tdQd odo(dQdp p )
dO dp

we obtain the optical theorem

The most powerful and general technique for
the calculation of S-matrix elements can be found

in a perturbation expansion in successive powers
of the potential. This allows for the calculation
of approximate results, the use of the pictorial
Feynman diagram method, and a way of comparing

5 2
the structure of the theory with that of HQFT. We

=(») ~ -+ j dQdP q*lT((q ~Q~P*) -P") l', shall develop this technique for both direct action
I p*I

type of interactions and for scattering on an ex-
(2.42) ternal electromagnetic field by interaction through

a vector potential.
For a dynamical evolution operator of the form
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K =Kp+ V, we define the interaction picture

e&EpT

so that Eq. (2.13) becomes

(3 1)

equivalent to the integral equation

T

U~(r& r, ) =1 —i dr''VI(r')Ui(r'& r, ) .
Tp

(3.6)

where

V (r) —etKpvVe iKpv-

According to the asymptotic condition (2.16),

(3.2)

(3.3)

For small V, one may reasonably hope that the
iterative expansion

T

U (r, r ) =1—i dr'V (r')
Tp

T T'

+&-i)' dr' J dr"V
&

')Vr&r )rr"
Tp Tp

(3.4)lim
I

t/r, &z
=

I g,„«,„)&,
T-+ + po( a oo )

and the operator Uz(r, ro) governing the evolution
of

I $,&i satisfies the differential equation

will converge. The S operator is defined by

S= lim Uq( rr&o) .

(3.I)

(3.8)

i U—q(r, ro) = V'l(r) Uq(r, ro),
. d (3.5)

T~ +oo

Tp +apO

which, with the initial condition Uz(rp, ro) =1, is
The nth-order contribution to the matrix element
of S is

Tl n 1
«t&IS" Ig& =(-i)" dr dr ' ' ' dr «t) IeiKo'tVe iKo '& 'o)Ve 'Ko ~o 'o)V ~ ~ ~ e iKo 'p-i 'o) Ve-«o'pI(& .1 2 n

a t&O a tO a OO

(3.9)

Taking for Ig& an element of the dense set of states for which the inequality (2.18) is valid assures that the
last integration, on 7'„, is absolutely convergent. Hence, we may insert a factor e n, with the limit &-0
implied, anti replace Ig& by an improper momentum eigenvector. Inserting complete sets of such inter-
mediate states, we obtain

Tl
&p'IS(") Ip) =(-i)"lim dr, dr, dr„Jt d'q, d'q„,

+ p at. aoO a 00

x e i "(o' '1&p I
v

I qi & e t o &o) '~e t » 'i) 'o&q~
I
V

I qo &

)( e t&&(oo)&o. . . e-t&&(&&o„&)&'» &eii&(&&p g)&'»edv»&rr l Vlp&
- e( it))vo»'xn 1( (P

(3.10)

where k(q) =q'/2M. Carrying out the dv„ integral, one obtains

J 1 je «& f~(~n 1)-&(&)-~6&Tn-1~
d7 e~~ +n al) ne 6Tn e ~~ ~) n =

k(p) —k(q„,) +it (3.11)

The factor e "p-~ is therefore available for the next integration. Note also that k(q„,) cancels and is re-
placed by k(q„,). This process continues to the last integration, which results in a k(p)-conserving 6
function. The matrix element of S is therefore

1 1 1
k(p) -k(q, )+ze k(p) -k(q, )+is k(p) -k(q„,)+i~ '

(3.12)

or, in a more compact form,

&
p'IS'"'

I p) =-»i'(k(p) —k(p'»& p'1«ao V)" '
I p&

(3.13)

where

1.=- .( (P) =k( )
(3.14)

has the form of a Feynman propagator for a spin-0
particle of mass squared equal to -2Mk(p). The
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propagator (3.14) was also obtained by Feynman'
in a proper time formalism. The series

&pisip &=6'(p-p)+g&pis "lip & (3.15)

can be represented as a series of Feynman dia-
grams with the following rules (see Fig. 2).

(a) Draw a diagram of n vertices in a column,
with momentum p entering from below and p'
leaving above.

(b) For each vertex with momentum q,. entering
and q, , leaving, write down a factor V(q,. —q, ,)
=

&q,
~

V
~ q, , & [assuming V a local potential of the

form V(x)j. There is four-momentum conserva-
tion at each vertex for the two particles involved,
since ~ =g, -g2 and V is translation invariant.

(c) For each internal line carrying momentum q&
there is a propagator 2M(p'-q, +3ie) ' and integra-
tion on d4q, .

(d) There is an overall factor 2' 5-(p'/2M
—p "/2M).

Note that the explicit appearance of M in Eq. (3.12)
can be removed by redefining the potential as
V(q) =2MV(q); it then becomes part of the coupling
constant. This is, of course, a result of factoring
(2M) ' from the definition of K, resulting only in a
change of scale of r which changes nothing in the
physics of the potential problem.

We have so far been considering the scattering

&pls"'Ipg =-2m'i5(m'-m") v(p- p') . (3.16)

This expression contains the following four pro-
cesses differing only by the signs of p', p" or,
equivalently, according to our convention, m, m'.
(i) particle scattering m =m'&0, (ii) antiparticle
scattering rn =m'&0, (iii) pair creation —m=m'&0,
(iv) pair annihilation m =-m'&0.

From (3.16), one may also see that not all po-
tentials can be the cause of pair creation or an-
nihilation in first order. The condition is that V(qj
have nonvanishing value for q such that -q' ~ 4m'
[choosing p = (0, 0, 0, m), p

' = (p', E') with E'(0,
one has (p —p')'=- 2m'+2mE'=-2m'-2~(m~
+ p")'~2 ~ 4m'j. Higher-order diagrams have simi-
lar characteristics. Each can be decomposed into
four terms representing higher-order corrections
to the first-order approximations to the four pro-
cesses listed above. A given potential may create
pairs in the nth order term if V(q) e0 for q such
that

of two particles with direct interaction, but the
S-matrix expansion applies equally well to the scat-
tering of a single particle in an external potential.
In this case, the 5 function in (3.12) corresponds
to the conservation of m' of the particle, and one
can see in an explicit way the possibility of pair
annihilation and creation in the scattering process.
An antiparticle is characterized by a negative
sign for the 4th component of its four-momentum,
so that the corresponding particle line moves
backwards in t as 7 goes forward, as in the usual
Feynman diagram. Consider, for example, the
first-order term in the S matrix:

q„&4m'.

We now turn to a study of perturbation theory for
a particle in an external electromagnetic field.

The K operator, in accordance with Eq. (2.9),
is taken to be

K = ——(p„A"(x) +A„(x)p")+ A„(x)A"(x),

(3.17)

and hence the potential operator V is given by

2
V= — (p ' A+A ' p)+2 — A'. (3.18)

FIG. 2. The nth-order Feynman diagram for a particle
in an external potential.

Its matrix element is

2M(p [
V [q) = &p

) V) q) = -e(p„+q„)A"(p—q)

+e'A'(p —q), (3.19)

where
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A, (P —q)=(ke) ' fd'ee" ed*A„(e),

A (P —q) = Jd kd (P —k)A"(k —q)
(3.20)

IV. COMPARISON WITH PERTURBATION
EXPANSIONS IN RQFT AND QCHD

The group of change of scale of v is a symmetry
group for the evolution in all cases of a single
particle in an external potential, as originally
pointed out by Broyles and Pearle. s This sym-
metry is broken only when the system is in non-
trivial interaction with another system. Then,

The expression for &p'~S ~"
)~ p& is then a sum of

terms of orders in g ranging from e" to e'". Each
term is represented by a diagram with s single
vertices and d double vertices such that s+d =n,
while s+2d = r gives the order of the diagram in e.
All vertices are arranged in a column of increasing
v, and the Feynman rules are then as follows.

(a) A factor e(q-„+ q„')A„(g)d( q' —q —k) for each
single vertex where q„, q„', and k„are the momen-
ta of the incoming particle line, outgoing particle
line, and external potential line respectively.

(b) A factor e'di„(k)A„(k') 5'(q' —q —k-k') for
each double vertex where q„,q„', 4„,4„' are the
momenta of the incoming particle line, outgoing
particle line, and the two potential lines respec-
tively.

(c) A factor -(q'+m'-ie) ' for each internal
particle line carrying momentum q, where m' is
the mass squared of the particle line entering the
diagrams from below (m =-p~).

(d) An overall factor of -2wi5(p'- p"), where p
and p' are the momenta entering the diagram from
below and leaving it from above, respectively.

These rules closely resemble those for a spin-
less particle in an external vector potential in
QED, as given explicitly by Rohrlich. "

there are at least two mutually exclusive choices
of initial conditions, one of which makes the pro-
per time of both systems equal to 7, while the other
makes the proper time of the composite system
equal to 7.. The first choice seems to be natural
in the case of a scattering system, 4 and the second
in the case of a composite system with internal
motion. " This has also been noticed by Takabay-
asi,"who uses the term "gauge fixing" for the
choice of scale of v. %e shall choose the initial
conditions (2.5) for each particle, which imply
that asymptotically, for v -~, -py ~y M,
and -p, '—= m, '=M. ,'. In this case P'4M', and the
center-of-mass proper time does not coincide
with v.

When one considers systems of two or more par-
ticles, it is possible to choose a single 7. to de-
scribe the evolution, as we have done, or to use
a multiple 7 formalism. Feynman' proposed the
use of a separate v for each particle, and Droz-
Vincent has recently formulated the problem of
several particles in interaction in this framework.
Horwitz and Rohrlich' ' have found this approach
appropriate for the development of quantum con-
straint Hamiltonian dynamics (QCHD) . We shall
maintain the single-7 approach in our development
of a perturbation expansion for the two-body prob-
lem which makes explicit the two-body nature of
the system. In this form, the extension to N-body
systems is straightforward. We shall then study
a modification of this perturbation expansion which
leads to a structure more closely analogous to
RQFT, and obtain from this the equations of QCHD.
One finds that, from the point of view of the sin-
gle-v theory, QCHD emerges in the approxima-
tion that each particle can be considered as mov-
ing in a potential created by the others.

A direct application of the method of Sec. III,
using the form (2. 10) for K in place of the (re-
duced motion) form (2. 8) results in a perturbation
expansion for the S matrix for which the gth order
term is

2 e2)I

&P,p.'l~'"'lf, P.&=&I P l~'"'lf P&=5'(f -f")(-2.i) 5(, --, )
' d'q. -k p'I &lq, & &q„, I Vlp&(, ,

)&2
„~

p qi 29K +K qn j.
(4. 1)

There are n —1 particle propagators in the nth order term, as compared with 2(n —1) in the usual field
theory expressions. To see the difference in structure clearly, we study explicitly the second-order term.
From Eq. (3.10), we have

&PP Id'*'IPP&= e'(P P)f de f d, , fd -qe "-""'
&p lql, &.-""'",~ I*- *

~&q»)q)

~ (P g2~+~S) T,Xe (4. 2)
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which, using the identities

q~' q,
' q ' Q'

2M, 2M 2m 2M '

d'q, d'q2 = d4 d'q,

&P,P, I vl q, q.) = &'(& —q) &P I v I q)

is equivalent to

(4.3)

00 .Tl
~2

(KP'l& IPP)= f dT f d& f d q f ~ *( ( 2~ kg

q2 q2
"'P'P'I'Iq q""p -'I 2'M +2'M I'"-"' 'q q I'IPP'

xexp il 2
-+2 +i@ I7,2M, 2M2 j

Carrying out the 7 integrations in (4.4) one obtains

2 )2 2 r2

(p'p,'I&''1(,p)=-2w(& ' ' + '2 ' fd'qd'q(l'p, 'Ivlqrt)
1 2

x& I vl P'P' (P,' q, ')/2M, -+(P,'- q, ')/2M, + e

(4.4)

(4.5)

This result corresponds to the diagram of Fig. 3(a), in terms of the relative motion coordinates [i.e. ,
the formula for S ' obtained from Eq. (4.1)]; the corresponding diagram in quantum field theory would
have a structure of the type shown in Fig. 3(b). We have assumed in these figures that the (phenomeno-
logical) two-body amplitudes (P,'P,' I VIP,P,) occur in field theory as two vertices connected by a propaga, —

tor, and represented this structure by a wavy line.
The generalization of the result (4.5) to the case of fq particles is evident. For any number of particles

in the intermediate state, S will contain only a single propagator with a sum of quadratic terms in the
denominator.

In the derivation of the expansion containing the term (4.4), the development of the entire system was
assumed to be governed by a single parameter v. A generalization of Eq. (4.4) to

1
~

1
~~7

I
I

~
~

2
4

I
4

2 ~I~

I

2M
~

I 2~
2

I

~

II 21 l 2d7, d7., do, dv, d'q, d'q, exp i
2M

&, + ' o, I &P,'P2 I Vlq~q2)
ao ~ oo oo 2M 1 2M ')

2 2

~exP -i
2M v, —72 +2M ~1-02 qlq2 ~ Ply

p2 p2
xexp -i P~

v + P' o
I

e'~"e'~'2,
2M, ' 2M

(4. 6)

in which a different 7 is associated with each particle, will yield, upon integration over 'T1 72 o1 (T2

2 t2 2 r2

x( V )
1 1

P'P' (P ' — ')/2M, +z~, (P '-q')/2M, +i~, (4.7)

This expression coincides with the second-order Feynman diagram of Fig. 3(b) with momentum conserva-
tion assured at each vertex by the form of V, and conservation of individual masses by the two 5 functions.

We remark that the expression (4. 7) can also be obtained by "gluing" together two Feynman diagrams
of the type shown in Fig. 2 for scattering in an external field, with appropriate 5 functions equating their
momenta. For the second-order term we would obtain the diagram of Fig. 4(a) and its crossed counter-
part, Fig. 4(b). The second-order composite matrix element for Fig. 4(a) is
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U U~ AHA~

(b)

hnnrV m (~~
U

i
U

I

(b)

FIG. 3. A second-order diagram in (a) RQM and in
(b) BQFT.

FIG. 4. A diagram and its crossed counterpart.

2 I2 2 12
&PPPP

I
S't2&IP P & (2 )26I

Pl Pl 6 P2 P2

2

1&«d'q, &P,
'

I ~, I q, &&q, I ~, IP,&

( 2 2)&2M +,,

Xdqp2

x&q. I .IP.& (P. ..2~ . 6'(Pl -q, +Pl q.)6'(q, -P, +q. -P.) . - (4. 8)

%'ith the definition equation

v(q) =u, (q)u, (-q) . (4.10)

In the crossed diagram of Fig. 4(b), the 6 func-
tions also combine in the proper way to ensure
agreement with the corresponding field theory ex-
pression [crossed diagrams arise in solutions of
Eq. (4. 12) containing advanced limits in the inte-
grals']. We infer from this discussion of "gluing"
that expressions of the form (4.7) can be inter-
preted, from the point of view of the single-7
formalism, in terms of each particle moving in
the field of the other as if it were an external field.
The examination of the differential equations giving
rise to a perturbation expansion of the form (4.6)
leads to a similar conclusion.

The interaction-picture wave function, in the
generalization corresponding to Eq. (4. 6), is of
the form

I tt„&I = &r(7o, ~,o,) I g...,&r, (4. 11)

where the second-order term in the perturbation
expansion for Uq is of the form (4. 6) with finite
upper (v, v) and lower (v2, vo) limits. Differentia-
ting with respect to both variables, we find the

=6'(P;+P; -P, -P.&&P; I, IP,&&P.'I .IP.&, (4.9)

the expression (4. 8) becomes identical to (4. 7).
Note that the potential V is given in terms of the
single vertex potentials I by

(4. i2)

where

E ev, (2., o) = e'«"e' 2 ve '«2'e '«~'. (4. 18)

li —,
' -2',

III i ,
'

x;)I &i&.
=—- (4. iS)

which is clearly of noncanonical form.
Equation (4.15) has the appearance of the compo-

sition of two separate differential equations, one
for the motion of each particle in the effective
field of the other, of the form

(i
—-2) I i&,.&, =@,Is,.&*

(4. 16)

The condition that these equations be integrable,
and that there can exist a V independent of the or-
der of application of the operators on the left. side
of Eq. (4. 15), is that

[K, ,K2] I tl&„&2 ——0, (4. i7)

where

For the Schrodinger picture wave function, defined
by

(4. 14)

Eq. (4.12) becomes
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K =K +@', K =K +@'

If these conditions are satisfied, then

vl j,.&, =([4„~,]+C,c.) le,.&.

= ([C., &,]+4,c,) le,.&, .

(4. 18)

(4. 19)

These are precisely the equations of QCHD, ' '
where K„K, are the constrainors discussed in
Sec. I 2s

In the course of our modification of the pertur-
bation expansion for which the second-order term
is given in Eq. (4.4), it was necessary to destroy
the correlation in 7' between different particles.
Such a situation might be imagined to occur when
the forces between particles are mediated by dy-
namical emission and absorption processes, so
that the exact correlation between g, and x, in
V(x„x,) may be altered by dynamical effects". A
total loss of correlation is perhaps, however, an
idealization at the opposite extreme of a single-7
formalization. It has, in fact, been argued by many
authors, ' that the parametric description of a world
liner equires the selection of some curve in the spac e
of many 7's (the imposition of a correlation), and
this selection is often called a "gauge" condition.
It was shown by Horwitz and Rohrlich' that with
a wide choice of such conditions (satisfying a pos-
itivity requirement), the S matrix for scattering
processes is independent of this choice. They
used an asymptotic condition of the form

ly, „,& = lim lg[T]&, (4.2o)

where [7] is the set of all of the v's. The detailed
description of the development of a state, how-

ever, wouM require some choice of gauge which
could replace l tj[~]&~ by a function of a single 7,
and thus describe, for example, the Ehrenfest
motion of a wave packet along some world line in
space-time.

Considerations from quantum field theory indeed
offer some understanding for the difference in the
structure of Eqs. (4.4) and (4.6), and hence of the
difference between RQM and QCHD from the point
of view of the canonical single v formalism. De-
note by ~ the 7 difference of the points connected
by the potential; this quantity can be considered
as conjugate to the mass parameter v'appearing
in the corresponding field theory propagator. The
4 =0 potential in Eq. (2.10), for example, would
be represented by a propagator with all values of
g, this is to be contrasted with the "naive" field
theory description of the interaction as mediated
by a particle of a distinct mass. An interaction of
the latter type would connect points of all possible

In the Kallen-Lehmann spectral representation, "

the dressed propagators are not of a distinct v'
value. For example, if the interaction is medi-
ated by a meson of mass p. , the dressed propaga-
tor for such a meson line carrying momentum q is

G(q') = d~'p(z')
Q' —K + SE

(4.21)

where f, p(K')dx'=1. The weight function p(z')
contains a 5 function at the mass of the single
particle and a continuum from (2tj.)' on. Thus G

may be written as

V. THE ELECTROMAGNETIC INTERACTION

A particularly interesting system in which par-
ticl.es are linked by a interaction which is not de-
scribed by an equal-v potential is that of a sys-
tem of charged particles with electromagnetic in-
teraction. The basic dynamical equations for
charged particles in electromagnetic interaction
with each other are Eq. (2.13}, where

" l~,"-.,~"(,)][p,.—,A. (., )]
2M;

and the Maxwell equations

6 I "(x)=Z (x) (5.2)

which determine„up to gauge transformations,
the field A„(x). In the absence of external sources,
the charged particles themselves form the cur-
rent J'(x), and it will be the first task of this
section to determine how this is done.

The wave function P, (x) corresponds to the prob-
ability distribution for finding a particle at a point
in space-time, at a particular value of ~. If the
particle is charged, its motion will be associated
with a current. One can easily show, however,
that this current cannot be determined from a
knowledge of g, at just one v. Consider, for ex-
ample, the following classical argument. Suppose
that, corresponding to the information contained in

P, (x), a charged particle occurs at a point (x„t, )
in space-time. The charge density for this event
is e5'(x —x,)5(t —t,). Since the Maxwell equations
(5.2) require a divergenceless current, the space
part of the current associated with this event is
determined by

~ J+—[e6'(x-x.)6(t- t,)]=0.

G(g ) =
2 2 . + dK

+&& (2y)2 g K +$6
(4.22)

where 0 ~ Z, - 1. This expression is intermediate
between the single-v' field theory and the single-
~ potential theory, and would correspond to an
effective potential acting over a range of &'s.
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Up to an undetermined curl, the solution of Eq.
(5.S) is

J( )=-—' ', 5'(f-f,).4r lx —xo(2
(5.4)

p, (x) =Qe, 5'(x —x, (~)), (5.5)

Hence the space part of the current at a point x
is zero except for a short time before t„when a
surge of current passes inward from infinity, and
a short time after t, when it goes out again. Plac-
ing two charged events infinitesimally close to
each other does not require a transport of charge
in between, but only before the first and after the
second (the charge can just be transferred from
one event to the other). An infinite sequence of
charged events, placed along some world line with
no finite end points is therefore required for the
construction of a conserved current which can be
a source for the Maxwell equations, if we do not
wish to accept the transport of charges to and
from infinity which is unrelated to the motions of
the particles that we can describe with our dynam-
ical equations. Let us consider the construction
of such a current for a classical system of N-
charged particles. The charge density is

8 J"(x) = 0 . (5. i2)

In calculating the vector potential from Eq. (5.2),
in the neighborhood of a space-time point x, the
retarded solution, for example, will depend on the
function JI' only near the past light cone of the
point x. Termination of the integral (5.11) at val-
ues of 7 such that the x, (v) are exterior to this re-
gion will suffice for this result. Each region in
space time will receive contributions from cor-
responding segments of the world lines of the
source particles.

For a single particle,

(P" —eA")(p, —eA ) 2Z m'
~2 ~ ~2

(5. ia)
and hence we may replace the integral over ~ in

Eq. (5.11)by an integral over proper time to ob-
tain"

gion of space-time where we sha1. 1 be studying
the effects of the current (the range of x), lim, ,„p,(x)
is effectively zero (this argument was given by
Stueckelberg"), and hence

where x((r) is the function describing the world
line of the ith particle. Then,

N

=P -e, , „5'(x-x,(~)) '(~) . (5.6)

J'(x) = ds &'(x —x(8)) (5 14)

The Lienard-Wiechert potentials are derived from
(5. 14) by using

For an evolution function of the form (5.1), it fol-
lows that

x( (x) 4xf a 'x n(=x — )Z''(xx''), (5.15)

dx,". 8K P(~ —e(A~ (x()
()p,. M,

so that Eq. (5.6) becomes

(5. 7)
where

D(x-x') =—5((x -x')') .1

2r (5.16)

ep'=-8. q~(x),
27

(5.8)

where

j,"(x)=peg ' ' ' 5'(x-x;(~)) .P," —e(A'(x, ),
M]

(5.8)

Equation (5.8) shows that the "instantaneous" cur-
rent (5.9) is not conserved. Integrating both sides
of Eq. (5.8) with respect to v, however, to obtain
the current associated with the whole world line,
we obtain

(5. iV)

Equation (5.15) yields half the retarded plus half
the advanced potential. "

We now turn to the quantum case. As in Eq.
(5.5), we define the Heinsenberg operator

N

~p(x) =Q e,.5'(x -x~(~)),
j=l

where 8 =—e'"'Se 'x', and K is of the form (5.1).
Then,

Bp, (x)
ie. K, 5 g —g) 7

j=1

B„J"(x)=-p (x) —p „(x),
where

(5. iO)

(5.11)

N

5'(x —x .(~)),P (~)

—x, x(„(*,( ))I, (5. 18)

Assuming that, as ~- +~ the x, (~) leave the re-
where it has been assumed that A(x „.) commutes
with x, (v) at equal v (A" is a c-number function of
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x,.). Now, let

(»I2M,
(5.19)

It then follows from Eq. (5. 18) that

(5.ao)

The operator J~ cannot be the source of the elec-
tromagnetic field, since it would lead to an opera-

tor-valued electromagnetic potential which would
not be consistent with Eq. (5.18). Furthermore,
the electromagnetic potential should depend on the
actual state of the system, i.e. , the configuration
of charge at each 7.. %e therefore identify as the
source of the electromagnetic field

~ (x) =&+le (x) I+), (5.al)

where + is the Heinsenberg state of the N-body
system. Representing + in terms of configura-
tion-space wave functions,

N

d" (x) =f de Qk~ . fd k, d'''k...d'i„; d',k„d.e((„.. . (,,„x,k„.„.. . ke)
j=l j

—eed (x)),(("(i . . . („,,„, x, (,.„.. . k„)

~ ~ ~ ~+ee,.d (x) ();((„.. . k,. „«,k, .„.. . („)I(),(k„. . . k,. „«,(,.„, , k„), (5.as)

This current is a sum of one-particle currents
due to each world line, where the positions of the
other particles have been integrated over. For a
single particle, it has the form"

00

d (x)=f dekM. d,"(x)
k

-(ed (x) (),(x)
xg

-+(ed (x) (d;(x) (),(x)I.
8

Bx j
(5.as)

Note that the fourth component, for the case that

g, (x) is an approximate eigenfunction of four-
momentum (and we neglect the vector potential),
ls

I

the probability that one of the particles remains in
a bounded region of space-time goes to zero. A
more rigorous argument can be given for the
quantum case, assuming the spectrum of K to be
absolutely continuous (the total K carries the cen-
ter-of-mass motion as well). Let k, n label the
representation in which K acts as multiplication
(n is a degeneracy index). Then,

P, (x)= ek f diidk e" '"d(k, e) 'd(k', e')
e, 0.'

&& &» I &i, . . . ], „x,(,.„.. . („)
Z'(x) — d~eM p, (x), (5.a4)

p, (x) = &~ I p, (x)l ~&

=pe; d(, '. . .d$;, 'd'$, ., d'$„
$~1

(5.a5)

Stueckelberg" argued, for the one-particle case
that he treated, that

lim p, (x) =0,
in analogy to the classical arguments presented
above for the result (5.12), i.e., that as ~- ~,

(5.a8)

proportional to the (v-integrated) probability den-
sity at the point x', but weighted by the factor
eE/M inducing a sign change for the antiparticle.

The matrix element of p, (x) is

(5.av)

Provided that the integral over the (&'s is a con-
tinuous function of A, k', it follows from the Bie-
mann-Lebesgue lemma that p, (x) goes to zero as

A final integration over x would produce a
5 function, leading to the result

d'xp, (x) =1

for all 7. Hence the vanishing of p, (x) pointwise
can be understood as a spreading of the wave pack-
ets. The expectation value of Eq. (5.20) therefore
results in

&,P'(x) = 0.
'The equations that must be solved are therefore
(5.1) and (5.2), with J'"(x) define by Eq. (5.aa).

Since J'"(x) may depend on g,(x,. . .x„) for all r,
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one may ask whether this system of equations
forms a well-posed problem. This question will be
discussed below for the two-body case.

One can understand the notion of the integration
over ~ from a physical point of view for the con-
struction of the electromagnetic current by noting
that T itself is not an observable, and no observa-
tion is performed at a given v'. One has to inte-
grate over all T's that could have possibly con-
tributed to a given measurement. A simple exam-
ple" is the case of a pair creation at t= 0: The
result of a measurement of the total charge at a
time t0& 0 is composed of two contributions from
the two points on the world line of the particle
where t(r)=t, . The two contributions are positive

d"(x)= f dxd,"( ) jx"I )+=)x"*( ), x (5.28)

with j"(x) given by the integrand of (5.22) applied
to the two-body case:

and negative, corresponding to positive and nega-
tive energy [c.f. Eq. (5.24)] and cancel each other.
'Thus the total charge is zero for all t.

We now wish to investigate the case of two
charged particles interacting electromagnetically,
i.e. , moving under the influence of the potential
created by their current (no external potential).
We shall discuss this problem in terms of the
s-integrated current given by

A

(y,*(x,x,)[s"-ie,A"( x)]g, ( x, x) -[(s'+is,A" (x))4,*(x,x,)]4&(x,x2))
1

df x,A(y,*(x„x)[e" i dp—"( x)] )))( x„x)
2

(5.29)

'The potential A" is given in terms of the current
J"by

IA"( )= . d'* f ';D(.—;)dx(;).
(2W)d

,D(q)J "(q) . (5.31)

For the function awe shall take the solution of
the Maxwell equations that was chosen by Feyn-
man".

1
D(y) = v5, (y') = —

) ds e'~'
0

(5.32)

with the Fourier transform

XD(q) = df'xD(x)e@" =
+ ZC

(5.33)

We now turn to the question of whether the problem
of solving the system of equations (5.1), (5.2), and

A" (x)= fd x D(x-x )d"(x'')=A(x)+A", (x),

(5.30)

and its Fourier transform by

[P, —e,A, (x,) —e,A, (x,)]'
2M2

(5.34)

where A, (x&) is the potential acting on particle j
due to the current of particle i; in particular,
A&(x&) for i =j describes self interaction, i.e. , the
quantum effect of a particle acting on itself through
the electromagnetic interaction. Note that in the
classical case this effect can be made to disappear
by defining Az(xz) = 0 for i= j." In the quantum
case, however, the position variable occurs in a
distribution. These terms will cause a redefini-

r
(5.29) is well posed, where the wave function of
future &'s may influence the wave function at a
given 7 through J "(x), which depends on the wave
function for all T. Recalling the discussion for
the classical case one realizes that Z~(xo, 4) does
not, e.g. , depend on P,(x,x, ) for all r but only for
those r that satisfy g, (x„t„x,) 0 0 (for example,
the vertical intervals in Pig. 5). Moreover, the
integration on 7 does not take us into the physical
future (in t); the causal nature of the theory is
fixed by the function D(x -x') in (5.30). In the
classical case the problem has been discussed
by Wheeler and Feynman. "

We now turn to the problem of self energy. In-
serting the decomposition of A"(x) in (5.30) into
(5.1), one obtains

[p, —s,A, (x, ) —s,A, (x,)l'
2M,
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t
Tft

plo. 5. The 7-t plane projection of the wave packet for a free particle (a) and pair creation (b). The horizontal line
is the spread of the wave packet in time; the vertical one is the range of integration in v. .

tion of the free particle's motion in the following
way.

The term A,"(x,) is a proper interaction term
that goes to zero as the particles get infinitely
separated when r-~. The term A1~(x,), on
the contrary, does not and remains with the
particle even when it is very far from the
other, and assumed free. Thus the squared
mass of the free asymptotic particle is not
given by m, '=lim, „(-P')„,but rather by m'
= lim, „(—[P —eA(x)]2),„, where A(x) denotes the
action of the particle on itself.

In the perturbation theory we therefore take
Eo tobe

[P1 elA1(xl)l [P2 e A2(x. )]' P,', P2

(5.35)

and the S-matrix elements are taken between ap-
proximate improper eigenstates of the new opera-
tors P"„P", [whose components commute up to
O(e )], asymptotically the kinetic (noncanonical)
momenta. Note that in choosing D as in (5.32)
we chose to work with the single ~' potential; this
also agrees with the fact that in integrating the
current over r, we lose all dependence on 4, the
& difference between the particles. For a com-
plete, consistent scattering theory, one would
have to start again from the beginning. However,
we shall apply the scattering theory developed
here to one simple case, that of Rutherford scat-
tering, for the sake of illustration.

Assume one of the particles to be very heavy
compared with the other. As a first approxima-
tion we shall consider the heavy particle as almost

classical, having a sharp p", and suffering no re-
coil. Denoting the trajectory of particle 2 by (to
lowest order) x2(v) =x,(0)+ (P2/M2)r, we have for
the current due to particle 2,

J"(q)= Jd'xex'J"(x)

d4ge""e, d7 ' 5 g -x, v
P' v)

2

*('(r)
M2

(5.36)

Using the assumption that P2(v) =P",= const, one
may perform the v' integration to obtain

Z ( )=q» P".e""2"—'5l 'ep (p pl
M, '

I M) (5.37)

A "(q) =-,D(y )J"(q)'
~ ~agX2(O) g ~1 e, P" /P2.

(2 )'M, q' (5.38)

We shall consider this case as a problem of a
particle in an external potential [the separation of
the K operator of (5.34) into a center-of-mass
(c.m. ) and the relative part may occur only in
special cases].

From Eq. (3.13) we have for the first-order T
matrix element,

(P(IT IP, )=~ (P,+Pl).A"(P,'-P, ),
1

(5.39)

which upon using (5.38) and working in the rest

From (5.31) and (5.33), the potential acting on par-
ticle 1 is
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frame of particle 2, gives

(5 4»

and the cross section from (2.41) is

= (2v) 'e, 'e, 'E, ' (, ), [5(E, -E,')]'. (5.41)2 2 2

Following the arguments of Sec. II one gets

II. Apart from f, the cross section (5.42) is just
the Rutherford cross section for the electromag-
netic scattering of a spinless particle off a heavy
target (nucleus). Relaxing the assumption of an
infinitely heavy target, we now assume its mo-
mentum does change so as to satisfy conservation
of momentum. For the lowest order we assume
that at t'= 0, the momentum p, changes into pI so
as to satisfy p, +p, =P', +p', . The integral over 7

is now of two parts as we have
(5.42)

dA 4p~ sin'(8 j2) '

where u = e'/4w
p p = lp, l, 8 is the scattering angle

in the laboratory frame (rest frame of particle 2),
and t is an infinite constant denoting the infinite
time of exposure to the beam, as discussed in Sec.

x,(r)=x, (0)+—'v, r &0

x,(v)=x, (0)+—r 7')0 ~
P2

The integral in (5.35) gives in this case

(5.43)

0 f'c~ p

d (e) 'f=d—ep*",(e)e" x'= —'*e"*""p", de exp iq —*e ep,'" I exp e
' 'e de

p

~ w ~1e2 -"2(0) .go q.p2,P5 q P2
2 2 2

. ""'"'[P,"5,(-4' P )+Pl"5,(pf P,')]. (5.44)

The T-matrix element then becomes
I

and III, for which a systematic perturbation
scheme to all orders remains to be developed.

-(Pi P, )5,((1 P.)]
(5.45)

and may be further simplified by the use of P,'=p,
-q and of the laboratory frame where p, is pure
timelike.

Expression (5.45) constitutes a first correction
to (5.40) due to recoil, but it still treats particle
2 as classical (its momentum and position are
assumed to have no spread). The treatment pre-
sented here, though it gives good results in lowest
order, cannot constitute a satisfactory theory for
two particles interacting electromagnetically.
Such a theory has to be based on a nontrivial modi-
fication of the scattering theory given in Secs. II
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