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The cylindrical Korteweg-de Vries equation is studied systematically within the pro-

longation scheme of Estabrook and %ahlquist. A non-Abelian Lie algebra associated to
the equation is exploited, without using representations, to derive a set of Backlund
transformations and a nonlinear superposition formula. These are used to provide some

examples of explicit solutions.

I. INTRODUCTION II. THE PROLONGATION CALCULATION

Several studies concerning nonlinear evolution
equations make the existence of a correspondence
between integrable equations and non-Abelian pro-
longations likely. ' Since, as far as we know, a
general theory of this correspondence has not been
set up yet, the accumulation of cases may act as a
guide to such a theory.

In this context, this paper is devoted to a sys-
tematic analysis, within the prolongation scheme,
of the cylindrical Korteweg-de Vries (cKdV) equa-
tion

V, + VV„+ V +—V=O,1
XXX

which is of interest in plasma physics.
Sec. II deals with the prolongation calculation

which gives rise to a non-Abelian Lie algebra used
to write explicit Backlund transformations (BT) for
the cKdV equation (Sec. III). These BT's, which
can reduce to a pair of Riccati equations, are de-
rived without using representations of the Lie alge-

bra associated to the cKdV equation.
In Sec. IV we give a nonlinear superposition for-

mula, which is exploited in Sec. V to obtain some
explicit solutions of Eq. (1.1), like the Calogero-
Degasperis soliton solution. Section V contains
also other examples of solutions, such as the Hiro-
ta solution and a solution in terms of hyperbolic
and rational functions.

In Sec. VI some concluding remarks are present-
ed, while Appendixes A, 8, and C contain details
of calculation.

For our purposes, it is convenient to write Eq.
(1.1) ass

ur+t uux+uxxx =O (2.1)

by means of the transformation V=t ' u.
We now introduce the following prolongation

equations' for Eq. (2.1):

y„"=F"(u,x, r;ys),
A B

Jpg =G (u&z&p&x&t;Jp ),
(2.2a)

(2.2b)

gG' gP"
[FG]A FB GB~a ~a (2.4)

Dropping the indexes for simplicity and following
the procedure of Ref. 2, Eqs. (2.2) and (2.3) yield

~uuu =O
~

[F&Fuu]+Faux =o
&

L„+t '~ uF„+[F,[F,F„]]+2[F,F„„]

(2.5a)

(2.5b)

[FL 1 ~~+Lx =o
+ [F„,F„]+F„=0, (2.5c)

(2.5d)

where A, B = 1,2. . .,E and z =u„, p =u, r =u~.
The integrability conditons for Eqs. (2.2) are

r(F„"+Gz )+(t '~ uF„"+G„")z+G,"p F,"—
+[F,G]"+G„"=0, (2.3)

where
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G = p—F„+ , F—„„z2+[F,F„]z+F„„z+L,
(2.6)

where L =L(u, x, t;y) is a function of integration.
Integrating Eqs. (2.5a) and (2.5c), we find

b„=A 1 b +A2c +A3f,

c» =81b +82c+83f,
[cf]=C 1 b+ C2c+ C3f,
d =Dlb+D2c+D3f

(2.10)

(2.11)

(2.12)

(2.13)
I =

2 au +bu+c,
L = ——,(at ' + , [a,f-j+-, [b,a„])u

, (bt--'"+-[b,f]+[c,a.]+[b,b. ]

+[c„,a]+a )u

(2.7)

—([cf]+2[c,b„]+[c„b]+b )u —d,
(2 8)

where a, b, c, and d are (vector) functions of in-
tegration depending on x, t, and the y's only, and

f=[c,b]. —
Substituting for F and L in (2.5b) and (2.5d), and

making the coefficient of powers of u equal to
zero, we obtain the non-Abelian prolongation alge-
bra.

[b,f]= C2b-,

[cf]=Clb+C2c,

[c,b]=f,

(2.14a)

(2.14b)

(2.14c)

which can be related to the Lie algebra SL(2,R)
(see Appendix C), and

where A;, 8;, C;, and D; are (scalar) functions of x
and t only.

From the requirement (i) and from (2.9a) —(2.9d)
one can see that a must be zero to avoid incon-
sistency.

Inserting now (2.10)—(2.13) in the commutation
relations (2.9), and exploiting the Jacobi identity,
we obtain the (non-Abelian) finite-dimensional Lie
algebra:

[a,b] =0,
[a,c]=a„,
[a [a fj]=[a,lb, a. j]=0,
[a [»f]1=[»[a».]]=o
[b, [b,fl]+ [b, [b,b. ]]=0,
—a, =t '~ (b„+f)+[a,d]

(2.9a)

(2.9b)

(2.9c)

(2.9d)

(2.9e)

b„=A 1 b+ A3f,

c„=81 b +82c+83f
bt =Xlb+r3f

c, =51b+52c+53f .

(2.15)

(2.16)

{2.17)

(2.18)

Using the Jacobi identity and the integrability
conditions b„,=b,„,c&„——c„„and the relations
(2.14), we obtain

+3{[»[cfl]+[c [»b.]]
+[b,fl. +[b,b.].),
+l»d]+[c [c fl]

+ 2[c,[c,b„]]+[c,[c„b]]
+ I c,b„„]+[c,f]„+2[c»„]„
+[c„,b]„,

—c, =d„+[c,d] .

(2.9f)

{2.9g)

(2.9h)

Although we expect that the algebra defined by
the commutation relations (2.9) is an infinite-
dimensional one, ' at present there is no rigorous
proof that this occurs. However, in order to find
explicit Bicklund transformations for Eq. (2.1), we
shall try to close algebra (2.9) assuming that' (i)
the set of variables Iy" J has one element only, say
y (pseudopotential of the first kind ), (ii) b, c, and

f=[c,b] are linearly —independent, and (iii) b„, c„,
[c,f ], and d are given by

C, = , t '"(1—+-A,)-',
A3 — (82+A 1 )( 1 +A 3 )

C1„——2(82C1 C281 ), —

C2„——C2(82+A 1 ),
A 1 t yl +C2(1 383 A 353)

A 3t ax A 352+ F3~2

Bit=51 +51{A1 82)+81(52 71)

+Cl {A353—83)'3»

82t 52»+C2{A353 8373) t

(2.19)

(2.20)

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

83t —53» 81/3 83yl +51A3 +53A 1, (2.27)

C1, ——2C1(52+D3C2 ),
C2t C2{Yl+52) '

(2.28)

(2.29)

The quantities y~, y3, 5~, 52, and 53 are defined
in terms of A;, 8;, C;, and D; as follows:
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yi
——(Ai +3AiAi„+A)i)+C2[Bi(1+A)) B—i„(1+A3) 2—B3Ai(1+Ay)+Di],

7/3 D2 [2Ai„+A i + 2( 1 +A3)B3Cp+( 1 +Ay ) Ci ](1 +A3)

5, +DiC, = [D—i„+D,A i+DpBi+D3(B3C2+A3C] )] 0

52 ———[D»+D2B2+D3C2(1+Ay�)],

5,= [D,(1+A, )+D,B,+D»+D, (B,+A, )] .

(2.30)

(2.31)

(2.32)

(2.33)

(2.34)

III. BACKLUND TRANSFORMATIONS

P= —u+p(x, t;y),

where

(3.1)

Let us look for a solution g(u, x, t;y) of Eq. (2.1)
such that u satisfies the equation itself, and the
first-kind pseudopotential y satisfies the prolonga-
tion equations (2.2).

Substituting the derivatives of P with respect to
u, x, j, and y, and requiring that the resulting
equation be satisfied in u, z, p, and r identically, we

obtain

bu —c
bu+c '

and observe that for one-dimensional prolonga-
tions, the expression

f' 2[b,flc f'
2C

c
b2 b2 b2

(3.4)

(3.5)

where F and 6 as given by (2.7) and (2.6) can be
expressed in terms of the elements b and c of the
Lie algebra (2.14).

Equations (3.3) can be used to obtain some expli-

cit solutions of Eq. (2.1}. To this end, we intro-
duce the function

C 1/2 f+ xp= —2 ——3j
b b

(3.2)
is constant with respect to y. One easily sees that
(3.5) coincides with Ci.

Starting now from

and b, c, and f are ordinary functions.

From (3.1) and (3.2) we have the Backlund
transformations

Bv
U~ =VyF+ VgZ+

Bx

BU
Ug =UyG+vgug+ aj '

(3.6a)

(3.6b)

(f+u )„=p„F+p„,
(y+u), =pyG+p, ,

(3.3a)

(3.3b)
and using (2.14)—(2.29), (3.4), and (3.5), we are led
to the following relations:

Bi
u

B3
+(1+A3)W (Ci+2C2uW] + —+Ai B2 W——1/2 Z

u u
(3.7a)

—1/2—8', = ——+ ——,uj —a-
u u

(Di+53) 1/2 Z
(C, +2C,u W)'"+ ——A, (1+A, )(C, +2C,u W}

u u

+
(1+A3),~ i~~ u, C2

t ' u+(y3 D2) (Ci+2C2u—W)' +—+ ln
u Ci

(3.7b)

where W =(1—U)/(1+U), and

a=A& +A» +C(il +A)3+ , B3t ' . (3.8)—

Using now the expressions (2.15) and (2.16) for b„
and c„,c/b =u W, and f/b =(Ci+2Cqu W)'

from (3.1) and (3.2) we have

f+u =—2 (1+A3)uW —B3 3t' A,„—

(Ci+2C2u W)'
2

(3.9)
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We have proved that the system (3.7) is integr-
able, provided that the relations from (2.15) to
(2.29) are satisfied. Through the relation (3.9) one
can produce a new solution f of Eq. (2.1) in terms
of a known solution of the same equation.

We point out that in deriving Eqs. (3.7) and
(3.9), we have not made use of representations of
the Lie algebra (2.14). Our procedure is essentially
based on the fact that the quantity (3.5) does not
depend on the pseudopotential y.

In order to put Eqs. (3.7) in a form suitable for
practical use, let us introduce the functions R (x, t)
and P(x, t) defined, respectively, by

(3.11)

From (2.23) and (3.10) one has

C2
ln (3.12)

C) ——C2R (gr —2p), (3.13)

On the other hand, with the help of (3.11), Eq.
(2.21) yields

and

Rx
A1 —B2———

R
(3.10)

where y denotes an integration function of t only.
Now, in virtue of (2.19), (3.10), (3.11), (3.13), and

using the expression (AS) quoted in Appendix A,
Eq. (3.7a) can be written as

'1/2-
2

2
(3.14)

where

uWT= y —2P-
R

1/2

(3.15)

In a similar but less simple manner (see Appendix 8) we can express (3.7b) in the form

' 1/2
2

Tt
R

1 1 1

p —A~z+ —,u t +u[ —,(A~„—A~ )+ ,xt + 3pt ]—

ut ' t—E(x t)+ —, T + [ 3 (Alx —Alxx)+ 3xt + 3Pt
C2 9 3

(3.16)

(3.17)

where E(x,t} and X(x,t) are respectively given by
(83) and (87) of Appendix 8.

Performing now the change of variable
' 1/2

T+3A~t r
C2

where

h =t' '(A,„A,~)+ , xt ' '+p——(3.19)

The integrability condition for the system (3.1S)
implies that the function (3.19) has to satisfy the
differential equations

Eqs. (3.14) and (3.15) read

P„=—u+h ,'t——
—1/2

Pf , t ' u (u +h——)+—p—h

2 1/2+ —,t '"(—h„——,'z+ —,'t-'")y
+—„t '(u +2h)$2,

(3.Isa)

(3.1Sb}

and

Q, +Q~+2t 'hh„——,t 'h =0

simultaneously. The solution of these is

(3.20)

(3.21)
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g =—t '"+kt '"—2" (3.22)

Going back to Eq. (3.9) and following the same
procedure used to find (3.23), we are led to the re-
markable formula

where k is a constant of integration.
From the substitution of (3.22), (3.18) become

the pair of Riccati equations,

u+ '
xt —1/2+kt —1/2 '

t —1/2~2
2

(3.23a)

P, =p+ , t '/ —u(u+, xt '/—+kt '/2)

1/2( 1 xt —1/2+ kt —1/2)2
3 2

+ t —1/2( t —1/2
)p

+ —,
11

t '(u +xt ' +2kt '
)p

(3.23b)

Then, let us introduce the potential functions Qp,

Q1, and Q2 defined by

Ox ~
(4.3)

(4 4)

(4.5)

From (3.24), (4.3), (4.4), and (4.5) we obtain

((1=—,(Qp —Qi }

and

1

1}}2———,(Qp —Q2) .

(4.6)

(4.7)

The substitution of (4.6) and (4.7) in (4.1) and (4.2)

gives, respectively,

y, =—u+xt ' +2kit ' —„t ' —(Q —Q )

(4.8)

P=u +2((}„, (3.24)
1

g2= —u+xt '/'+2-k2t '" „t '—"—(Q, Q,)'.—

which can yield a new solution g(x, t) of the cKdV
equation (2.1) from a given solution u (x, t)

IV. THE THEOREM OF PERMUTABILITY

The Backlund transformations (3.23) can be ex-
ploited to construct solutions of the cKdV equa-
tion more elaborate than, say, those obtained in
Sec. V [see (5.8) and (5.12)]. Of course, this gen-
erally could be achieved through the integration of
more complicated differential equations (subsection
V A). However, for the cKdV equation a nonlinear
superposition formula, i.e., a theorem of permuta-
bility, holds, which gets the same goal without us-

ing quadratures.
In order to derive the superposition formula, let

us deal with two solutions of Eq. (2.1), 1(1 and 1(2,
corresponding to the same starting solution u.
From (3.24) and (3.23a) we have

(4.9)

Now our aim is to look for a function Q& such

that

Q3. = —6 (4.10a)

where $3 is required to fulfill the cKdV equation
(2.1). In doing so, let us subtract (4.9) from (4.8)
and compare the result with the expression of
$1 $2 as obtained —from (4.10). Thus we are led to
the relation

y, +xt '"—+2k, t '—"
, t '"(Q ———Q )'

(4.10b)

P, +xt ''+2k, t '"-t '"(-Q ——Q—)'-

(4.10c)

u+xt —1/2+2k t —1/2 1

t —I/2y 2
3

k) —k2
Qg ——GO+ 24

0)—02
' (4.11)

and

t
—1/2~ 2

(4.1)

(4.2}

which is consistent with Eqs. (4.10}.
Differentiating Eq. (4.11) with respect to x and

using (4.6), (4.7), (4.8), and (4.9) we obtain the su-
perposition formula

2t '/ (k2 —k 1 )(1}(1—1(2)
$3——u+

[( y u +xt —1/2+2k t —1/2)1/2
( y u +xt —1/2+2I t

—I/2)1/2]2 (4.12}
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1 x—t
2

1

g
—1f2

8

U(g, r)= —, t'—~ (u —g),

Eq. (5.2) reads

(5 3)

FIG. 1. Schematic representation of the permutabili-

ty theorem.

represented schematically in Fig. 1.

Ngg+ ( A, —U)c0 =0,
where A, = ——,k and u (g, r) satisfies the
Korteweg-de Vries (KdV) equation

U~ —6UUg+Ugg =0 .

(5.4)

(5.5)

V. EXAMPLES OF EXPLICIT SOLUTIONS

Equation (3.23a) can be linearized by putting

(5.1)

to give

cg — t ' (kt—' +—xt ' —u)co =0 .
6 2

(5.2)

This equation is the Schrodinger equation corre-
sponding to the eigenvalue problem associated to
the cKdV equation.

Furthermore, performing the change of vari-
ables

A. The Hirota solution

Let us put u = , xt '—~ [a special solution of
Eq. (2.1)] in Eq. (5.2). Then, after integrating the
resulting equation, from (5.1) one obtains

P =(6k}'~ tanh[(6k) '~ [kxt '~ +q (t)]I,
(5.6)

where k g0.
Inserting (5.6) in (3.23) one has

(5.7)

m being an integration constant.
Then Eq. (3.24) provides the following solution

of the cKdV equation:

P(x t k)= —xt ' +2kt ' sech [(6k) '~ (kxt ' + k t ' +m)—] (5.8)

The expression (5.8) has been found also by Hirota through a different procedure.
Since Eqs. (3.23) (for u = , xt '~

) a—re invariant under the replacement P~kl(6$), the cKdV equation
affords also the solution

P(x t'k)= —,xt 'i —2kt ' csch [(6k) ' (kxt ' +—k t 'i +m)] (5.9)

Now let us go back to the superposition formula
(4.12). Choosing P, =g(x, t;k&) and g2= P(x,t;k2)—
as given, respectively, by (5.8) and (5.9), where

k1 & k2, we find a solution for the cKdV equation
which corresponds, through the transformation
(5.3), to the two-soliton solution of the KdV equa-
tion. ' This procedure can be extended to build

up solutions of the cKdV equation corresponding
to multisoliton solutions of the KdV equation.

To conclude, we observe that starting from
u = , xt '~ and k=0, E—qs.(5.1), (5.2), (3.24), and

(3.23b) provide the rational solution

(5.10)

where co is an arbitrary constant.

B. Solutions in terms of Airy functions

Setting u =u =const (the trivial solution of the
cKdV equation), Eq. (5.2) becomes the Airy equa-
tion. " Then, from (5.1) one has
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1/3 ]/6Ai(sk)+CBi(sk)
( 18 )1/3t 1/6

Ai(sk)+CBi(sk) ' (5.11)
1(=u+(18)' 't'"s

0 2
Ai(sk)+C Bi(sk)

Ai(s], ) +C Bi(s], )

where Ai(sk) and Bi(sk) are two linearly indepen-
dent Airy functions, " and Ai and Bi denote their
derivatives carried out with respect to the variable
s„=(12t) '/ (x +2k —Zut '/ ).

Substitution from (5.11) in (3.23b) (with u =u )

implies that C must be constant.
In virtue of (3.24), Eq. (5.11) yields

(5.12)
For ]T=O, (5.12) reproduces the solution reported

in Ref. 12. Furthermore, using the permutability
theorem of Sec. IV we are able to find a soliton
solution of the Calogero-Degasperis (CD) type for
any value of the constant u. Specifically, from
(4.6) and (5.11) we can write

Ai(sk ) +C (k —k] )Bi(sk )

Ai(sk)+C(k —k])Bi(sk)
'

where Qp„———u, and the replacement (t}]~/ has been performed.
(k)) (k))

Then, exploiting (4.11) where Q2—=Qk
'

(sk) and Q]=nk, '
(sk ), and taking the limit k~k], we get

(k))
an, ' (s, )

Q] (sk, ) =Qp+24

(5.13)

(5.14)

which yields the soliton solution of the CD type:

Ai(sk )Ai(sk )ycD u 2( 12)1/3t —1/6

A] (sk) —skA] (sk)+(C/]r)( —,t)' '

( 12)1/3t —I/6 Ai (sk)

Ai (sk) —skAi (sk)+(Cl]r)( , t)'/—
(5.15)

This procedure is also followed in order to determine multisoliton solutions. This can be achieved apply-
(k)) (k)) (k ) (k@ )

ing the superposition formula (5.6) to the potentials Qk,
'

(s],, ), Qk„',(sk„,), . . . , Qk„" (sk„), Qk" (sk ),
and making the limits k]v+] —+k], . . . , k2~~k~. For example, the potential for the double-soliton. solu-
tion reads

(k] k2} (Q12 np)[(n]2 np} (Q]2 Qp}(n] +Q2 }+(Q1 np}(Q2 Qp)]
Oiz —Oi2-

(k] —k2) (Q] —Qp)(n2 —Qp}+k]k2(Q]2—np)2 CD

(5.16)

where

k2 —k)
Q)2 ——Qo+24 (k,

Qk
'

(sk ) —Qk,
'

(sk )

(5.17)

C. Solutions in terms of combinations of hyperbolic and rational functions

Let us put in (5.2) the expression (5.10}. After some manipulation, Eq. (5.2) becomes
r

2 1
co ——+ co =0

22
(5.18)
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where

z =(-,' k)'"(-,'xt-'"+c, ) .

Equation (5.18) is a special case of the Whittaker equation" whose general solution can be written as

(5.19)

1 2 . 1 2 1 . 1to(x, t)=Ci(t) cosh —,z ——sinh —,z +Ci(t) —cosh —,z —sinh —,z
z z

(5.20)

where Ci and Cz are functions of integration.
Substituting (5.20) in (5.1), we find

1

2 C sinh —,z —cosh —,z'

+
C [cosh —,z —(2/z)sinh —,z]+(2/z)cosh —,z —sinh —,z

(5.21)

where C=Ci/Cq can be determined from (3.23b).
Using now (3.24) and (5.21), we finally obtain

the solution

1+ 4z sech zf= z xt —2kt
(1——,z tanhz)

(5.22)

where z=(6k} '~(kxt '~+ , k t '~ +—ao)and

ao is an arbitrary constant.

VI. CONCLUDING REMARKS

The prolongation calculation carried out in this
paper is a notable example of the correspondence
between integrable equations, such as the cKdV
equation, and non-Abelian prolongations. Al-
though there is at present no general theory of this
correspondence, the accumulation of cases could be
important for indicating the way to build up such
a theory. Concerning this, we observe that in deal-
ing with a specific prolongation example, we had

the opportunity to develop a straightforward pro-
cedure for the practical use of the non-Abelian Lie
algebra associated to a nonlinear evolution equa-
tion, which avoids the use of representations at all
(see also Ref. 2).

Many problems remain to be tackled, such as for
instance the role (if any} played by the dimension
of the non-Abelian Lie algebra in connection with
the complete integrability of the nonlinear evolu-
tion equation to which this algebra is associated.
A more general work around this problem is in
progress.

APPENDIX A
I

In order to derive an expression for B&(x,t)
which does not contain the unknown functions D;,
let us differentiate Eq. (3.13) with respect to t.
With the help of (2.28), we obtain

[lil
~

R (Ip —2p)
~ ]g —— yi+5$+2D3c—g . (Al)

On the other hand, from the constraint (2.24) one
has

A3, 2 ]/p 2 ]/p —1/25$+D3Cz+~ i»» 3 i 3 t 3 iB3 + —,t '
B3» (2Ai +Bz )—,t —( 1 +As )R (p —2p}i+33

+ —,t ' (1+As)R, (tp —2P) ——,t '~ (1+2,)RP„.

Since [see (2.19)]

~3t 1 ) ~2t
1+2 ' C

comparing (A2) with (A3) and taking into account (2.28) we get
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t + +2A] —A] ] t A]B3+ ] r B3» (2A, +Bi)—,r '
( 1 +A3 )R (]p—2p)

Cp 2Ci

+ ,
'

r —]"(-1+A,)R„(q 2p—) , r——'"-(I+A,)RP. . (A4)

From (3.13) we have

+[ln
I
R(g) —2j3)

I )] .
1 2

Having in mind (2.29), substituting (AS) in (A4) we obtain

[ln
~
R(y —2p)

~ ],=t ]+y]+5p—2[2A]»» A] ] r A]B3+ ] t ' B3„—(M]+Bp)—,t ' (1+Ay)

xR(&—2p)+ —,
r-' '(I+A, )R»(g —2p) ——,r ' '(1+A, )Rp»] .

The comparison between (A6) and (Al) yields

B3„r—' (A—]~+—,A] +2A]»)»+ 3 ~ P»+ i r + 3~ r ('P ~) ] '

(AS)

(A6)

(A7)

where (2.30) has be exploited.
Integrating Eq. (A7) by parts, we finally obtain

(A8)

where p =p(t) is an, integration function.

APPENDIX 8

Here we shall derive Eq. (3.16). To this end, we need to express the function D]+5i appearing in (3.7b)
first as a quantity which does not contain either the functions D; or their derivatives explicitly.

In doing so, from (2.30) and (2.24) one has

p p 3
r +B3 +2B3„A]+2B3A]

2

—(D]+53)=3t' (A]~+3A]A]„+A] )„—,t-
Cp

+3t]~'A] +B, 2A,„+A,'+ —,t-]~'B, + —,t '
(q —2P)

2

Using now (A8), (3.11), and (3.12), (Bl) becomes

—(D]+53)=——,t ' (y —2P) [—,(A]„—A]~)+ , xt '+ , pt ' —)+E(x,t—),
2

(B2)

where

E(x,t)=t'~ (A,„A]„»)„„+2t'—~A](A]» A]~)„+A—]t '~ +3t'~A]

+ , r]~'(A]„A, + —,xr '+p—r ]")(A—]„A,+ -, xr ]+@—r '"——,—A,') . (83)

Furthermore, the quantities a and y3 Dq, defined, respec—tively, by (3.8) and (2.31), read

2

(B4)
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and

2

y3 D—2 ————,( 1 +A i )(A 1„—A 1~

+ —,xt +lj,t ) .

concerned, we can see that both C~ and C2 cannot
be constants.

In fact, let us suppose that this is the case.
Since we have

(85) A 1
——a, (t) +a&(t)e"+ (k lz—t '/z) t (Cl)

Now, from (A2) with the help of (A3) we can
find an expression for 5z+DiC2 where the func-
tions D; and their derivatives do not appear. Sub-
stituting such an expression in (Al) and taking ac-
count of (2.30) and (A8), we are led to the relation

[ln
~

(R/Cz)(y —2p)
~ ],= , t '+—X(x,t),

(86)

where

X(x, t) = , [(A 1~ —A1„)„—
+A, (A,„Ai~+—, xt '+—lLt ' )]. (87)

Finally, using (82), (84), (85), (86), (3.13), and
(2.19), from (3.7b) we obtain the Eq. (3.16).

from (3.19) and (3.22), where ai and az are func-
tions of integration, with the help of (Cl) one can
obtain Bz, R, Bi, and p from (2.22), (3.10), (2.21),
and (3.11), respectively.

Then, using (3.13) we deduce that
Ci ——Bi ——p=0, which is not consistent with the
condition (86).

However, this result does not imply that the lo-
cal structure of the algebra (2.14) is time depen-
dent. For instance, let us put

b'=p1b+p2c,

c =gib+'Qc,
(C2)

where p; =p;(x, t), y; =y;(x, t), and piy2 —p2yi@0.
Inserting (C2) in (2.14) we obtain the SL(2,R)

algebra:

APPENDIX C

[b',f']= b' 1,'c',— —

[c',f']=A, b'+c',
[c'»'] =f'

(C3)

As we have seen in Sec. II in the case of pseudo-
potential of the first kind one can associate to the
cKdV equation the non-Abelian Lie algebra (2.14).
The generators b and c of this algebra depend on
both the pseudopotential and the variables x and t
through Eqs. (2.10), (2.11), (2.17), and (2.18), which
could be tackled only if one were able to find the
functions A;, B;, C;, and D; from the algebraic
constraints (2.19)—(2.29). Fortunately, we do not
need to know all these functions specifically. For
example, we have shown that we can make practi-
cal use of the Backlund transformations (3.7)
without knowing the quantities D;.

As far as the functions C; appearing in (2.14) are

1 —(1—A, )'/

1+( 1+.$&)1/z

—C, C, -'P, (1—X')'/'Z-', (C5)

1/2

1 —(1—A, )' (C6)

where f'=C2 '(1 —A, ), A, is a constant such that
~0

p (2C )
—1C 1/2(p —1C —1/2g p Cl/2)
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