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Generalized anharmonic oscillator: A simple variational approach. II. The D-dimensional
anisotropic case
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I'acultad de Ciencias Exactas, National University, C C 67La Plata (1900)Argentina

(Received 28 July 1981j

An approximate, variational method for the study of the generalized anharmonic oscillator in D dimensions is
given, where the anharmonicity is represented by a broad class of even functions of the D coordinates. The idea of
the method is to introduce into the unperturbed oscillator states the correlations due to the presence of the
anharmonicity via a unitary operator which is determined by the variational principle.

I. INTRODUCTION D

a=-VD2+ xf2+XV xl, . . . , xD (2.1)
The great relevance that the study of anharmon-

ic-oscillator models has in many branches of
physics cannot be doubted. Interesting and impor-
tant features of numerous systems are a conse-
quence of the anharmonic nonlinear character of
vibrations that occur in those systems. The cor-
responding literature is, consequently, quite
abundant, and different aspects of the problem are
the subject of much interesting work, both from
the analytical and the numerical point of view. A
small sample is that of Refs. 1-29.

The purpose of the present work is to develop a
very simple approximate treatment of the D-di-
mensional, generalized anharmonic oscillator,
defined by a Hamiltonian of the form

D" g (
w* &' m , ,

)
+ ~V(x„x„.. . , x,), (1.1)

where V is an arbitrary even function of the coor-
dinates, i.e.,

V(x,y. .. j x~, . . . , xD) —V(x„.. . , -x,y. . . ,xn)

(1.2)

for 1-0~D (subject to some restrictions stipu-
lated in Sec. 11)-

The present work constitutes a generalization,
to D dimensions, of a method recently proposed
for the one-dimensional case." The correspond-
ing formalism is discussed in Sec. II. Moreover,
a simple treatment of the anisotropic case is given
in Sec. III. Different applications are presented
in Sec. IV and conclusions are drawn in Sec. V.

and postpone consideration of the anisotropic case
to a later stage. An even more convenient expres-
sion can be given, by recourse to the definitions

(0) 2, +x, , s —1).. . , D,x
$

D

~(0) ~(0)
f s].

and to the Taylor expansion of V(x„ . . . , x~)

(2.2)

(2.3)

A A

af=Pf+ ixf, j=1, . . . , D,
and denoting by Bf the linear combination

B,= -i(a~ —a~),

we can finally write H in the form (1 is the unity
operator)

(2.5)

(2.6)

H=D1+Q
D

Af Aa)a]+~ Xi Bff,
i f~l

(2.7)

where i stands for the set of integers i„i„.. . , iD,
so that

and

xv&'&(0)
2'&""Di li ~ ' ~ i1 2' D

4I) $j yf 2yo ~ ~ yfD yV&I) (0)
6q &X ~ ~ ~ 6q~&

(2.S)

(2.9)

V(x„ . . . , xD) = Q —. , {r v}&",V(q„ . . . , q~), (2.4)
f~0

r being a vector whose components are x„.. . , xD
and & one with components &/5q„. . . , 5/&qn In.
terms of the usual boson creation operators

II. FORMALISM

A. The mapping operator

We shal. l rewrite our Hamiltonian (in appropriate
units) in the form

z -=zz z
&1 ~2 iD

A

It is possible thus to put B into the form
D

H=H( + X; B)f,

(2.10)

(2.11)

26
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which suggests the idea of relating the eigenstates
l P;, P'3, . . . ,P~) of H to those

l r„r„.. . , r()) of

H, by means of a mapping operator F„()„.. . , r~),
as in Ref. 30,

l
P'„P'„.. . , Pf)) = exp[iF„(x„.. . , r())] l x„.. . , rD)

(2.12)

of our system. '
Following Ref. 30 we shall propose an approxi-

mate procedure in which one retains the k =1 part
of (2.13), thus working hereafter with a mapping
operator defined by

F( );g k. ()'), 3'g)[(&„')'- (~„)']

with (remembering that & is an even function)

F (r„.. . , ~, ) =i g g k„"'(~„.. , ~,).

D

-=i+ F„(r„.. . , r,). (2.i5)

x [(gt)23 (g )23]

(2.is)

Minimization of

(P', =O, P', = 0, . . . , P' =Ol Hl P', =O, P', =0, . . . , P' =0)

(2.14)

[In those occasions in which no confusion is likely
to ensue we shall write simply E& instead of
F&(r„.. . , )"D) and h& instead of h&(r„. . . , rD).]

This approximate mapping operator I" will lead
to approximations to the eigenstates of II given by

l P„P, . . . , P ) = exp[iF(r„. . . ,r )] l r„.. . ,r ),

with respect to the quantities h of Eq. (2.13) would
lead to the exact solution for the ground state (GS)

I

which are to be obtained by minimization of

(2.16)

(2.1V)=(r„.. . , x~ l exp[-iF(r„~, rL))]Hexp[iF(r„. . . , rJ))] l
r„.. . , r())

with respect to the quantities h of Eq. (2.15). This procedure will yield a rigorous upper bound to the GS

energy

,= (P, = 0, P, = 0, . . . , P() = 0
I HI P, = 0, P, = 0, . . . , PD = 0) . (2.iS)

B. Commutation rules (H' ' F)}=0, 1 i&j (2.25)

c„=(c„„F}
If we also set

So=- H- Ho,

we see that C„can be written in the form
D

c„=g c(" s„,

(2.2o)

(2.21)

(2.22)

where

(2.23)

i.e., a part of C„ is separable, with a contribution
C'„" from each (dimensional) subindex k.

The usual commutation relationships

A simple algorithm can. be devised which allows
one to evaluate matrix elements of the type one
finds on the right-hand side of (2.17).

Let us write

(2.19)

f B,, Fy}=0, 1i' ~D,

(B) ) F)}= -4imk) 8), 1 ~j ~ D,
A A

(B„B&}= 0, 1 - i,j - D,

f H,'o), F~}=4 ih, [(a~~)3+ (a,) ], 3

((a)')'+ (a,)', F,}=16ik, (af a, +1) .

(2.26)

(2.27)

(2.28)

(2.29)

(2.so)

(2.32)

These commutation rules allow one to obtain a
general expression for the C„"'.

C (3) ( 1)n 43nk 3n(&t & + 1) (2.31)
C(3) i43n+1( 1)nk 2n+)[(n't)3+ (& )3]

The operator S„can also be given a general
form, starting with [cf. Eq. (2.11)]

D

(2.33)

and employing (2.2'I). If we let h be a, vector whose
components are h„h„.. . , hD, and similarly we
denote by j the vector of components j»j». .. ,j»
the following result ensues:

la, , aP= 2&,.„
fa„a,}=/a'„a,'}=o

lead to

(2.24) ~
~

D B
B()J,F = -4i(j h) Bn)n

j~l y j.

and, consequently,

(2.s4)
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D

S„=g (-4f)"~;(I h)", . &». (2.85)

D

+g ( I)"r" (2.av)

C, ,=f 4""(-1)"P I '""[(a',)'+(a,)']

D

-i Q (-1)"g """ i,'a.
k~l

C. Matrix elements

(2.88)

The results of the previous subsection allow us
to easily evaluate those matrix elements that are
needed in order to obtain approximate values for
the eigenvalues of H. The following matrix ele-

We are now in a position to give the commutators
C„, after introducing

g"= X&
4"(j ' h)", (2.88)

the general expressions

C,„=(-1)"4'"Q h~ "(a~a~+1)
k~1

where
0~P, ~ -, (2.41)

v'„=&r,
l

&',~l r,)j j
(2 42)

(p )I Z
l

I ug' -" ~

The approximate energy given by Eq. (2.17) can
now be evaluated:

, (h ) = (r„.. . , rD l
e '~He'~

l r„.. . , rn)

pt2 —,(r.. .r. l c„lr„. . . , r, ),
+~0 S

(2.4a)

an expression that, according to Eqs. (2.36)-
(2.42), leads to

ments are relevant for our purpose:

( A)A I
r~, . . . , rn I a&a& I r~, . . . , rn) =2r&, j=1, . . . , D,

(2.89)
(r„.. . , rn l[(at&)'+(a&)']

l
r„.. . , rD) =0,

q = I, . . . ,D, (2.40)

D

nP
l~ ' ~ D r P

jal

(h)=g (2r +1)cosh(8h~)+ Q V""(0) (, )t2', )I Q 2"sexp( Bf,k, )
"'

„ f f,
jag j ' 0!je0

(2.44)

which has the same structure as that of the corre-
sponding one-dimensional case."

Equation (2.44) can be simplified by recourse to
the &-dimensional Laplace transform

f(h) =f(h„.. . , I,)

exp -h' x x dx,dx '''dx
0 0

(2.45)

It is then seen" that the Laplace transform f» of

V(x, '~', . . . ,xn'~')/(x, . xn)'~' is given by

f, (h) =vn" exp[4(I, + ~ "+I,)]

D

e„,., „.o= g cosh(8h~)+AP(h).
k~1

(2.48)

As previously stated, this constitutes a (varia-
tional) upper bound to the ground-state energy, the
variational parameters being the components of the
vector h.

For reasons of symmetry, we also obtain an up-
per bound in those cases in which just one of the

r„ for example, rj, equa, ls one, all the remaining
r, being equal to zero:

D

e„,., „., „.,= Q (2&„~+I) cosh(8h, )
j~l

D
V(Q$ ) (0)-exp (8i ~h&)

22gy(f ) fjag
(2.48) +Zy(h)+ —

8
5Q (2.49)

which, after introducing the auxiliary function

Q(h) =v ~'exp[4(h, + ~ ~ ~ + hn)] fr(h), (2.47)

allows us to write (2.44) in a specially compact
form for the case r, = ~ ~ ~ =rD = 0,

In general, of course, the method here proposed
does not yield upper bounds to all the eigenvalues
of II. The second term of the right-hand side of
Eq. (2.44) can be expressed in terms of &f&(h) and
its different partial derivatives with respect to the
components of h. As an example, we have
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,( h) = 3g cosh(8h, ) + XP (h )

5y

'2

D+...+ —~ 5y
4 '""'D 6h ~ ~ ~ 6h

~l $D

(2.60)

with respect to the components h, of the vector h.
Equation (3.7) may be considered to constitute

the main result of the present work since it pre-
sents us with a rigorous upper bound to the GS
energy of an anisotropic &-dimensional anharmon-
ic oscillator for any even anharmonicity V which
admits of a Laplace transform.

IV. APPLICATIONS

III. THE ANISOTROPIC CASE

In order to apply the method developed in the
previous section to the B dimensional anisotropic
anharmonic oscillator, me shall interPret any
anisotroPy as ae anharmonic term.

The original Hamiltonian is

II--V'D + ~. x. +~~ x„.. . , xD
j~l

(3.1)

and we shall select a given (nonzero) frequency,
for example ~„and normalize with respect to it
by introduction of the quantities

%e shall concern ourselves mainly with the ap-
proximate ground-state vector

~
P, =O, . . . , P~=O). A. The D-dimensional anisotropic harmonic oscillator

with

Pk 2(+k 1) ' (4.2)

Thus, the "vector" h that minimizes (4.1) is the
one whose components are given by

A well-known exact solution is available in this
particular instance, which corresponds to the case
in which V(x) =0 in Eq. (3.1).

Assuming cu, c0 we can set co&=a~~„ for 2 &k
~ D. According to the results of Sec. III, the GS
energy is obtained by minimization of

~,(f„.. . , h,) = I,(-'. +P,')+ „(4.1)
1

The Hamiltonian is now rewritten as

H=-v '+Q x,.'+X.V(x„.. . ,x )

D

+P (o,' —1)x,.'
i~1

=a"'+W(x„. . . ,x,)

(3.2)

(3.3)

-1hp= —,
QA,

and our upper bound to the GS energy is then
D

which coincides uith the exact result.

B. Isotropic anharmonic case with V(r) =r

(4.3)

(4.4)

with
D

W(x„.. . , x,) =~V(x„.. . , x,)+g (~,'-l)x, '.
(3.4)

Interesting studies concerning this problem can
be found in Refs. 2j. and 23. The anharmonicity is
given by

On account of the linear character of the Laplace
transform, the two contributions to W can be sep-
arately studied, i.e., we can write, in self-explan-
atory notation,

(3.6)

with

whose associated function (cf. Sec. II) is
D

N f
—. = -. 2pq)y(zi zD) =2~~,

~

z '
5 'jY p)

where, as before,

(4.5)

(4.6)

y. (h) =-.' g (~,'- I) e~(8a, ) . (3.6) N N

e ~ ~ (4.7)

The approximate GS energy &p p cp is thus
obtained by minimization of

D

& (h) =Q [cosh(8h )+—,'(n ' —1) exp(8h )]+hf& (h)

0~=o AD=0

and the restriction

(4.8)

(3.'t) is to be obeyed. As all z& are essentially equiva-
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D( 1)
e,(z) =—

i
z+

i
+ Xa„,,z" (4.9)

with

N! D (2Pf

f=l (Pf
(4.10)

Notice that an analytical solution obtains for
N =0, 1, 2, 3, and 5. Of particular interest on
account of its applications is the case N =2 (see
Refs. 24 and 25). Notice that in this instance the
following particularly simple expressions hold:

lent, it is not too unreasonable to set zf —z2 ——~

= zD ——z, and thus obtain our approximate GS ener-
gy 6p by minimizing with respect to z the expres-
sion

which leads to

Qii =Q22 = ' ' ' =ADD=0 ) (4.16)

~0(z), . . . , z~) =-,~ z, +—+ —~ (26„+1)a, f z, zf
i =i z& 2 j=i

(4.15)

which is to be minimized with respect to the z&.
We shall compare to those of Hioe et al. (for D =2}
our results for the GS and for the first two excited
states, i.e. , ~ pp &py and a». This is done in Ta-
bles II.-VI. The agreement between our approxi-
mate results and the exact ones of Hioe et al. is
very good.

In the special case of "spherical coupling" (Hioe
et al. , Ref. 26)

D
a, ,D

———(D+ 2),

~,(N=2, z)=—
~

z+ —+ ~(D+2)—z .D( 1 D 2

4

(4.11)

(4.12)

a;,. =b for alii cj,
one can guess a Priori that, on account of the
symmetry introduced by (4.16), the values of z;
which minimize the GS energy will be character-
ized by the property

Table I exhibits the corresponding results for
D = 3, which are compared to the ones obtained
by Ehlenberg and Mendelsohn ' employing Pade
approximants. The agreement between both sets
of results is excellent.

Zi Z2 —ZD —Z ~ (4.17)

Our problem then reduces itself to the one-
dimensional one. The corresponding task is thus
that of minimizing

C. A special anisotropic case e, (z) =D —z+ — + —[b(D —1)+sa]z.2
2 z 4

(4.16}

%e shall consider now the following anharmonic-
ity

D D

with respect to z. This expression coincides with
the corresponding one of Sec. IVB for a =b = j. .

V(r)=Q Qaffxfmxf (4.12)

which, for D =2, has been extensively studied by
Hioe et a/. The associated Q function is

D

y(z„. . . , z,)=-,'g g (26,, +1)a,, z, z. . (4.14}

TABLE II. Ground-state energies for the anharmonic,
anisotropic case (D=2) of Eq. (4.3), for different ani-
sotropies fas given by the parameter a&& (see text)}, as
functions of the corresponding coupling constant ~. In

all. cases the upper figure is obtained with the techniques
described in the text, while the bottom one has been
taken from the work of Hioe et al.26 The degree of
agreement (%) between the two treatments is displayed
to the right of these numbers. aii =a&2 =1.

0.01
0.05
0.2
1

BEP

1.518303
1.584 259
1.773 386
2.339 118

EM

1.518 263
1.583 613
1.769 503
2.322 655

99.99
99.95
99.78
99.29

TABLE I. Results for the three-dimensional anhar-
monic (isotropic) oscillator, where the anharmonicity is
of the form &r2~. For different values of the anharmonic
coupling constant X, the second column displays the Gs
energies obtained with the present approach, which are
compared to those of Ehlenberger and Mendelsohn
(third column). The agreement (%) between the two sets
of results is exhibited in the last column.

a&&

0.05

0.1

0.5

10

100

1.0853
1.0843
1.1526
1.1502
1.4864
1.4760
1.7401
1.7242
3.3466
3.3012
7.0161
6.9119

99.91

99.79

99.30

99.08

98.64

98.51

1.0662
1.0653
1.1206
1.1183
1.4033
1.3924
1.6250
1.6075
3.0625
3.0100
6.3848
6.2628

99.91

99.79

99.22

98.92

98.28

98.08

1.0457
1.0443
1.0853
1.0813
1.3053
1.2808
1.4864
1.4438
2.7091
2.5577
5.5937
5.2248

99.86

99.63

98.12

97.13

94.41

93.40
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TABLE III. Energies of the first excited state, in the
anharmonic, anisotropic case described by Eq. (4.3).
All remaining details are similar to those described in
the caption of Table II.

TABLE IV. Energy of the excited state &ii in the an-
harmonic, anisotropic case described by Eq. (4.3). All
remaining details are similar to those described in the
caption of Table II.

12

0.05

0.1

0.5

100

2.2412
2.2388
2.4196
2.4143
3.2500
3.2315
3.8576
3.8304
6.1250
6.0692

16.034
15.869

99.89

99.43

99.29

99.08

98.97

2.1890
2.1861
2.3355
2.3286
3.0479
3.0206
3.5832
3.5417
5.6128
5.5242

14.585
14.319

99.86

99.70

99.10

98.83

98.42

98.17

2.1324
2.1248
2.2412
2.2120
2.8066
2.6984
3.2500
3.0666
4.9772
4.5136

12.769
11.217

99.64

98.69

96.14

94.35

90.68

87.84

0.05

0.5

100

3.4580
3.4542
3.7802
3.7723
5.2204
5.1953
6.2498
6.2140

10.039
9.9687

26.444
26.237

99.88

99.79

99.52

99.42

99.28

99.21

3.3103
3.3069
3.5467
3,5390
4.6782
4.6488
5.5198
5.4759
8.6913
8.5991

22.649
22.375

99.37

99.20

98.93

3.1373
3.1289
3.2560
3.2327
3.9160
3.7746
4.4592
4.2106
6.6479
5.9848

16.781
14.489

99.73

99.28

96.38

94.42

90.02

86.34

34/3
e, (a =1,b =0) (4.19)

e,(a=1,b=1) = -', (XD)'"
X»i
D»i

(4.20)

so that the ratio between the coupl, ed spherical
result (a = 1, b =1) and the uncoupled one (a =1,
b=0) becomes independent of the coupling con-
stant y:

D j./3

eo a=i, b=0
D»i

The minimization problem posed by Eq. (4.18) can,
of course, be solved analytically, providing us
with simple expressions for any values of D and ~
no matter how large they may be.

In particular, if we call co=go/D we obtain the
following results in the limit of very large g:

This result is to be compared to that estimated
by Hioe et al. , c =0.738D'~3. Hioe et al. have
rigorously shown, for the case D =2, that both
eo(a=1, b=1) andeo(a=i, b=0) grow as y'i for
y large enough. 28 Our aPPxoximate results (4.19)
and (4.20) display the same behavior, but for any
D.

We show in Table VII results for eo(a =1,b =1),
i.e. , for the ground-state energy of D coupled
oscillators (x =1), both in order to illustrate the
corresponding energetic behavior and the power
of our approach.

It is easy to extend our treatment to the follow-
ing generalization of the anharmonicity (4.18)

g Af D D

V(x„. . . ,x )=g Q g pa,'," "x,'x,',
n=o fest=0 i =i

(4.22)

the associated Q function being

(4.28)

D. The doubly anharmonic oscillator $(z) Xia2, o 8 + X2a3 o 22 3 (4.25)

v(r) =z,r'+ x,r',
D

x
(4.24)

Here we also have "spherical" symmetry and,
consequently, just one variational parameter z,

As a final example we shall discuss the following
anharmonicity which has been studied in the one-
dimensional case' '0 but not, as far as we know,
in the D-dimensional one,

a2 o= ,'D(D+2), —
(4.26)

(4.2 t)

a, ~=-.'D(D+2)(D+ 4).
The GS energy a,rises from the minimization of

., =-i, +- +—D(D+ 2).+—D(D+ 2)(D+ 4),3.D(
z 8
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TABLE V. Ground-state energies for the anharmonic, anisotropic ease of Eq. (4.3) for af f 0.8, a~~ =1. All remain-
ing details are similar to those of Table Q.

0.8 0.6 0.4 0.2

0.05

0.1

0.3

0.5

0.7

10

50

100

500

5000

1.0787
1.0796
1.1409
1.1432
1.3215
1.3281
1.4523
1.4621
1.5587
1.5709
1.6913
1.7065
2.6117
2.6450
3.2200
3.2641
5.3693
5.4490
6.7314
6.8330

11.446
11.622
24.604
24.984

99.92

99.80

99.50

99.38

99.22

99.11

98.74

98.65

98.54

98.51

98.48

98.48

1.0750
1.0758
1.1347
1.1368
1.3092
1.3156
1.4363
1.4457
1.5398
1.5517
1.6691
1.6839
2.5692
2.6017
3.1652
3.2083
5.2730
5.3512
6.6095
6.7092

11.287
11.409
24.151
24.524

99.92

99.82

99.51

9S.35

99.28

99.12

98.75

98.65

98.54

98.51

98.49

98.48

1.0712
1.0720
1.1284
1.1303
1.2966
1.3027
1.4196
1.4288
1.5202
1.5318
1.6460
1.6605
2.5245
2.5568
3.1075
3.1505
5.1716
5.2496
6.4811
6.5805

11.016
11.188
23.674
24.047

99.93

99.83

9S.58

99.86

99.24

99.13

98.78

98.64

98.51

98.49

98.46

98.45

1.0673
1.0681
1.1218
1.1238
1.2884
1.2895
1.4028
1.4115
1.4997
1.5118
1.6217
1.6363
2.4773
2.5102
3.0465
3.0908
5.0642
5.1439
6.3449
6.4465

10.781
10.958
23.168
28.549

99.93

99.82

99.53

99.35

99.23

99.11

98.69

98.58

98.45

98.42

98.39

98.38

1.0634
1.0641
1.1151
1.1170
1.2697
1.2759
1.3841
1.3935
1.4781
1.4901
1.5961
1.6112
2.4272
2.4616
2.9815
3.0275
4.9495
5.0385
6.1996
6.3067

10.531
10.7-17

22.627
28.080

99.93

99.83

99.51

99.83

99.19

99.06

98.60

08.48

98.30

98.26

98.25

1.0594
1.0601
1.1082
1.1102
1.2553
1.2619
1.3649
1.3750
1.4553
1.4681
1.5689
1.5852
2.3784
2.4109
2.9118
2.9620
4.8260
4.9180
6.0429
6.1604

10.261
10.465
22.044
22.486

99.93

99.82

99.48

99.27

99.18

98.97

98.44

98.30

98.18

98.09

98.05

TABLE VI. Ground-state energies for the case Off 0,4, a&&=1. For further details see
Table II.

0,8 0.6 0.4 0.2

0.05

0.1

0.3

0.5

0.7

10

50

100

500

5000

1.0630
1.0637
1.1141
1.1158
1.2662
1.2717
1.3788
1.3870
1.4713
1.4817
1.5875
1.6006
2.4072
2.4370
2.9548
2.9946
4.9005
4.S732
6.1369
6.2297

10.422
10.583
22.391
22.740

99.94

99.85

99.57

99.41

99.80

99.18

98.78

98.67

98.54

98.51

98.48

98.47

1.0596
1.0597
1.1073
1.1089
1.2524
1,2574
1.3604
1.8681
1.4494
1.4592
1.5614
1.5738
2.3558
2.3844
2.8881
2.9264
4.7825
4.8527
5.9873
6.0769

10.165
10.320
21.834
22.171

99.94

99.85

99.60

99.44

99.83

99.21

98.80

98.69

98.55

98.53

98.50

98.48

1.0550
1.0556
1.1004
1.1019
1.2379
1.2427
1.3410
1.3484
1.4262
1.4357
1.5338
1.5459
2.3008
2.3290
2.8165
2.8545
4.6556
4.7256
5.8263
5.9158
9.8871

10.042
21.234
21.571

99.94

99.87

99.61

99.45

99.34

99.22

98.79

98.67

98.52

98.49

98.45

98.44

1.0509
1.0515
1.0933
1.0947
1.2227
1.2275
1.3204
1.8279
1.4016
1.4112
1.5043
1.5166
2.2413
2.2706
2.7390
2.7786
4.5177
4.5910
5.6512
5.7449
9.5851
9.7481

20.581
20.935

99.95

99.87

99.61

99.48

99.32

99.19

98.71

98.57

98.40

98.37

98.33

98.31

1.0467
1.0473
1.0859
1.0874
1.2066
1.2117
1.2986
1.8066
1.3752
1.3856
1.4725
1.4859
2.1762
2.2087
2.6538
2.6979
4.3654
4.4475
5.4577
5.5629
9.2509
9.4342

19.859
20.256

99.94

99.86

99.58

99.89

99,25

99,10

98.52

98.36

98.15

98.11

98.06

98.04
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TABLE VII. Ground-state energy of D coupled oscil-
lators {in units of D) for ~ =1 [see Eq. {4.18)].

e0/D

1
2
3

5
10
100
1000
10'
1020

1040
1050

10"

1.4033
1.4864
1.5594
1.6250
1.6849
1.9288
3.6105
7.5549
34.823
3 481 192
1.6158 x 10~3

3.4812 x 10 6

7.5 x10

V. CONCLUSIONS

A simple variational procedure has been pre-
sented which allows one to obtain an aPpxoxirna-
tion to the energies and wave functions of the
Hamiltonian (1.1). The method is based upon the
idea of introducing into the uncorrelated harmonic-
oscillator states the correlations induced by the
presence of anharmonic terms via a unitary oper-
ator e', which is determined by the variational
principle. This approach can be applied to any

even function of the D coordinates that admits of
a Laplace transform. In particular, it is seen
that our treatment is able to deal with anisotropies
by considering them as special types of anharmon-
icities. A rigorous upper bound to the GS of the
Hamiltonia, n (1.1) is provided by the present ap-
proximation.

Some advantages of the present approach de-
serve special comment. It allows one to deal, in
a very simple way, with the whole unperturbed
basis, without truncating it. The numerical work
involved is, in most instances, quite simple.
Neither difficult numerical integrations nor large
diagonalizations (as required by other methods)
are necessary here (as a matter of fact, all cal-
culations reported here where carried out with a
Texas Instruments TI59 calculator). Further-
more, in many interesting cases the solution can
be found analytical/y and, consequently, large
values of & or D do not pose any problem. Finally,
comparison with exact results, as illustrated in
Sec. IV, shows that our approximation yields rath-
er good results. One may thus assert that our
method may prove to be useful to obtain upper
bounds to the GS energy in those cases in which
exact treatments become too invol. ved an.d, in
other situations, provides a quick estimate of the
corresponding results.
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