Generalized anharmonic oscillator: A simple variational approach. II. The \boldsymbol{D}-dimensional anisotropic case

G. Bozzolo,* C. Esebbag,* and A. Plastino ${ }^{\dagger}$
Facultad de Ciencias Exactas, National University, C. C. 67 La Plata (1900) Argentina
(Received 28 July 1981)

Abstract

An approximate, variational method for the study of the generalized anharmonic oscillator in D dimensions is given, where the anharmonicity is represented by a broad class of even functions of the D coordinates. The idea of the method is to introduce into the unperturbed oscillator states the correlations due to the presence of the anharmonicity via a unitary operator which is determined by the variational principle.

I. INTRODUCTION

The great relevance that the study of anharmon-ic-oscillator models has in many branches of physics cannot be doubted. Interesting and important features of numerous systems are a consequence of the anharmonic nonlinear character of vibrations that occur in those systems. The corresponding literature is, consequently, quite abundant, and different aspects of the problem are the subject of much interesting work, both from the analytical and the numerical point of view. A small sample is that of Refs. 1-29.

The purpose of the present work is to develop a very simple approximate treatment of the D-dimensional, generalized anharmonic oscillator, defined by a Hamiltonian of the form

$$
\begin{align*}
\hat{H}= & \sum_{i=1}^{D}\left(-\frac{\hbar^{2}}{2 m} \frac{\delta^{2}}{\delta x_{i}{ }^{2}}+\frac{m}{2} \omega_{i}{ }^{2} x_{i}{ }^{2}\right) \\
& +\lambda V\left(x_{1}, x_{2}, \ldots, x_{D}\right), \tag{1.1}
\end{align*}
$$

where V is an arbitrary even function of the coordinates, i.e.,

$$
\begin{equation*}
V\left(x_{1}, \ldots, x_{k}, \ldots, x_{D}\right)=V\left(x_{1}, \ldots,-x_{k}, \ldots, x_{D}\right) \tag{1.2}
\end{equation*}
$$

for $1 \leqslant k \leqslant D$ (subject to some restrictions stipulated in Sec. II).

The present work constitutes a generalization, to D dimensions, of a method recently proposed for the one-dimensional case. ${ }^{30}$ The corresponding formalism is discussed in Sec. II. Moreover, a simple treatment of the anisotropic case is given in Sec. III. Different applications are presented in Sec. IV and conclusions are drawn in Sec. V.

II. FORMALISM

A. The mapping operator

We shall rewrite our Hamiltonian (in appropriate units) in the form

$$
\begin{equation*}
\hat{H}=-\nabla_{D}{ }^{2}+\sum_{i=1}^{D} x_{i}{ }^{2}+\lambda V\left(x_{1}, \ldots, x_{D}\right) \tag{2.1}
\end{equation*}
$$

and postpone consideration of the anisotropic case to a later stage. An even more convenient expression can be given, by recourse to the definitions

$$
\begin{align*}
& \hat{H}_{i}^{(0)}=-\frac{\delta^{2}}{\delta x_{i}{ }^{2}}+x_{i}{ }^{2}, \quad i=1, \ldots, D, \tag{2.2}\\
& \hat{H}^{(0)}=\sum_{i=1}^{D} \hat{H}_{i}^{(0)}, \tag{2.3}
\end{align*}
$$

and to the Taylor expansion of $V\left(x_{1}, \ldots, x_{D}\right)$
$V\left(x_{1}, \ldots, x_{D}\right)=\sum_{j=0}^{\infty} \frac{1}{j!}\{\overrightarrow{\mathbf{r}} \cdot \vec{\nabla}\}_{\overrightarrow{\mathbf{d}}=0}^{(j)} V\left(q_{1}, \ldots, q_{D}\right)$,
$\overrightarrow{\mathbf{r}}$ being a vector whose components are x_{1}, \ldots, x_{D} and $\vec{\nabla}$ one with components $\delta / \delta q_{1}, \ldots, \delta / \delta q_{D}$. In terms of the usual boson creation operators

$$
\begin{equation*}
\hat{a}_{j}^{\dagger}=\hat{p}_{j}+i \hat{x}_{j}, \quad j=1, \ldots, D \tag{2.5}
\end{equation*}
$$

and denoting by \hat{B}_{j} the linear combination

$$
\begin{equation*}
\hat{B}_{j}=-i\left(\hat{a}_{j}^{\dagger}-\hat{a}_{j}\right), \tag{2.6}
\end{equation*}
$$

we can finally write \hat{H} in the form ($\hat{1}$ is the unity operator)

$$
\begin{equation*}
\hat{H}=D \hat{1}+\sum_{i=1}^{D} \hat{a}_{i}^{\dagger} \hat{a}_{i}+\sum_{i} \lambda_{i} \prod_{j=1}^{D} \hat{B}_{j}^{i_{j}}, \tag{2.7}
\end{equation*}
$$

where \vec{i} stands for the set of integers $i_{1}, i_{2}, \ldots, i_{D}$, so that

$$
\begin{align*}
& \lambda_{\mathbf{i}} \equiv \frac{\lambda V^{(\mathrm{i})}(0)}{2^{i_{1}+\cdots+\cdots+i_{D} i_{1}!i_{2}!\cdots i_{D}!}}, \tag{2.8}\\
& V^{(\mathrm{i})}(0)=\left.\frac{\delta i_{1}+i_{2}+\cdots+i_{D}}{\delta q_{1}^{i_{1} \cdots \delta q_{D}^{i} D}}\right|_{\overrightarrow{\mathbf{d}}=0}, \tag{2.9}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{i} \equiv \sum_{i_{1}} \sum_{i_{2}} \cdots \sum_{i_{D}} \tag{2.10}
\end{equation*}
$$

It is possible thus to put \hat{H} into the form

$$
\begin{equation*}
\hat{H}=\hat{H}^{(0)}+\sum_{\mathbf{i}} \lambda_{\mathbf{i}} \prod_{j=1}^{D} \hat{B}_{j}^{i_{j}} \tag{2.11}
\end{equation*}
$$

801
which suggests the idea of relating the eigenstates $\left|P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{D}^{\prime}\right\rangle$ of \hat{H} to those $\left|r_{1}, r_{2}, \ldots, r_{D}\right\rangle$ of \hat{H}_{0} by means of a mapping operator $\hat{F}_{\infty}\left(r_{1}, \ldots, r_{D}\right)$, as in Ref. 30,

$$
\begin{equation*}
\left|P_{1}^{\prime}, P_{2}^{\prime}, \ldots, P_{D}^{\prime}\right\rangle=\exp \left[i \hat{F}_{\infty}\left(r_{1}, \ldots, r_{D}\right)\right]\left|r_{1}, \ldots, r_{D}\right\rangle \tag{2.12}
\end{equation*}
$$

with (remembering that V is an even function)

$$
\begin{align*}
\hat{F}_{\infty}\left(r_{1}, \ldots, r_{D}\right)=i \sum_{k=1}^{\infty} \sum_{n=1}^{D} & h_{n}^{(k)}\left(r_{1}, \ldots, r_{D}\right) \\
& \times\left[\left(\hat{a}_{n}^{\dagger}\right)^{2 k}-\left(\hat{a}_{n}\right)^{2 k}\right] . \tag{2.13}
\end{align*}
$$

Minimization of

$\left\langle P_{1}^{\prime}=0, P_{2}^{\prime}=0, \ldots, P_{D}^{\prime}=0\right| \hat{H}\left|P_{1}^{\prime}=0, P_{2}^{\prime}=0, \ldots, P_{D}^{\prime}=0\right\rangle$
with respect to the quantities h of Eq. (2.13) would lead to the exact solution for the ground state (GS)
of our system. ${ }^{30}$
Following Ref. 30 we shall propose an approximate procedure in which one retains the $k=1$ part of (2.13), thus working hereafter with a mapping operator defined by

$$
\begin{align*}
\hat{F}\left(r_{1}, \ldots, r_{D}\right) & =i \sum_{n=1}^{D} h_{n}\left(r_{1}, \ldots, r_{D}\right)\left[\left(\hat{a}_{n}^{\dagger}\right)^{2}-\left(\hat{a}_{n}\right)^{2}\right] \\
& \equiv i \sum_{n=1}^{D} \hat{F}_{n}\left(r_{1}, \ldots, r_{D}\right) \tag{2.15}
\end{align*}
$$

[In those occasions in which no confusion is likely to ensue we shall write simply \hat{F}_{j} instead of $\hat{F}_{j}\left(r_{1}, \ldots, r_{D}\right)$ and h_{j} instead of $h_{j}\left(r_{1}, \ldots, r_{D}\right)$.]
This approximate mapping operator \hat{F} will lead to approximations to the eigenstates of \hat{H} given by

$$
\begin{equation*}
\left|P_{1}, P_{2}, \ldots, P_{D}\right\rangle=\exp \left[i \hat{F}\left(r_{1}, \ldots, r_{D}\right)\right]\left|r_{1}, \ldots, r_{D}\right\rangle, \tag{2.16}
\end{equation*}
$$

which are to be obtained by minimization of

$$
\begin{equation*}
\epsilon_{r_{1}, \ldots, r_{D}}=\left\langle r_{1}, \ldots, r_{D}\right| \exp \left[-i \hat{F}\left(r_{1}, \ldots, r_{D}\right)\right] \hat{H} \exp \left[i \hat{F}\left(r_{1}, \ldots, r_{D}\right)\right]\left|r_{1}, \ldots, r_{D}\right\rangle \tag{2.17}
\end{equation*}
$$

with respect to the quantities h of Eq. (2.15). This procedure will yield a rigorous upper bound to the GS energy

$$
\begin{equation*}
\epsilon_{0, \ldots, 0}=\left\langle P_{1}=0, P_{2}=0, \ldots, P_{D}=0\right| \hat{H}\left|P_{1}=0, P_{2}=0, \ldots, P_{D}=0\right\rangle . \tag{2.18}
\end{equation*}
$$

B. Commutation rules

A simple algorithm can be devised which allows one to evaluate matrix elements of the type one finds on the right-hand side of (2.17).

Let us write

$$
\begin{equation*}
\hat{C}_{0} \equiv \hat{H} \tag{2.19}
\end{equation*}
$$

and define

$$
\begin{equation*}
\hat{C}_{n}=\left\{\hat{C}_{n-1}, \hat{F}\right\} \tag{2.20}
\end{equation*}
$$

If we also set

$$
\begin{equation*}
\hat{S}_{0} \equiv \hat{H}-\hat{H}_{0} \tag{2.21}
\end{equation*}
$$

we see that \hat{C}_{n} can be written in the form

$$
\begin{equation*}
\hat{C}_{n}=\sum_{k=1}^{D} \hat{C}_{n}^{(k)}+\hat{S}_{n}, \tag{2.22}
\end{equation*}
$$

where

$$
\begin{equation*}
\hat{S}_{n}=\left\{\hat{S}_{n-1}, \hat{F}\right\}, \tag{2.23}
\end{equation*}
$$

i.e., a part of \hat{C}_{n} is separable, with a contribution
$\hat{C}_{n}^{(k)}$ from each (dimensional) subindex k.
The usual commutation relationships

$$
\begin{align*}
& \left\{\hat{a}_{i}, \hat{a}_{j}^{\dagger}\right\}=2 \delta_{i j}, \tag{2.24}\\
& \left\{\hat{a}_{i}, \hat{a}_{j}\right\}=\left\{\hat{a}_{i}^{\dagger}, \hat{a}_{j}^{\dagger}\right\}=0
\end{align*}
$$

lead to

$$
\begin{align*}
& \left\{\hat{H}_{i}^{(0)}, \hat{F}_{j}\right\}=0, \quad 1 \leqslant i \neq j \leqslant D \tag{2.25}\\
& \left\{\hat{B}_{i}, \hat{F}_{j}\right\}=0, \quad 1 \leqslant i \neq j \leqslant D, \tag{2.26}\\
& \left\{\hat{B}_{j}^{m}, \hat{F}_{j}\right\}=-4 i m h_{j} \hat{B}_{j}^{m}, \quad 1 \leqslant j \leqslant D, \tag{2.27}\\
& \left\{\hat{B}_{i}, \hat{B}_{j}\right\}=0, \quad 1 \leqslant i, j \leqslant D, \tag{2.28}\\
& \left\{\hat{H}_{j}^{(0)}, \hat{F}_{j}\right\}=4 i h_{j}\left[\left(\hat{a}_{j}^{\dagger}\right)^{2}+\left(\hat{a}_{j}\right)^{2}\right], \tag{2.29}\\
& \left\{\left(\hat{a}_{j}^{\dagger}\right)^{2}+\left(\hat{a}_{j}\right)^{2}, \hat{F}_{j}\right\}=16 i h_{j}\left(\hat{a}_{j}^{\dagger} \hat{a}_{j}+\hat{1}\right) . \tag{2.30}
\end{align*}
$$

These commutation rules allow one to obtain a general expression for the $\hat{C}_{n}^{(k)}$:

$$
\begin{align*}
& \hat{C}_{2 n}^{(k)}=(-1)^{n} 4^{3 n} h_{k}^{2 n}\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\hat{1}\right), \tag{2.31}\\
& \hat{C}_{2 n+1}^{(k)}=i 4^{3 n+1}(-1)^{n} h_{k}^{2 n+1}\left[\left(\hat{a}_{k}^{\dagger}\right)^{2}+\left(\hat{a}_{k}\right)^{2}\right] . \tag{2.32}
\end{align*}
$$

The operator \hat{S}_{n} can also be given a general form, starting with [cf. Eq. (2.11)]

$$
\begin{equation*}
\hat{S}_{0}=\sum_{i} \lambda_{i} \prod_{j=1}^{D} \hat{B}_{j}^{i_{j}} \tag{2.33}
\end{equation*}
$$

and employing (2.27). If we let \vec{h} be a vector whose components are $h_{1}, h_{2}, \ldots, h_{D}$, and similarly we denote by \vec{j} the vector of components $j_{1}, j_{2}, \ldots, j_{D}$, the following result ensues:

$$
\begin{equation*}
\left\{\prod_{j=1}^{D} \hat{B}_{j}^{i}, \hat{F}\right\}=-4 i(\overrightarrow{\mathrm{j}} \cdot \overrightarrow{\mathrm{~h}}) \prod_{k=1}^{D} \hat{B}_{k^{k}}^{j_{k}} \tag{2.34}
\end{equation*}
$$

and, consequently,

$$
\begin{equation*}
\hat{S}_{n}=\sum_{\mathbf{j}}(-4 i)^{n} \lambda_{\mathfrak{j}}(\overrightarrow{\mathrm{j}} \circ \overrightarrow{\mathrm{~h}})^{n} \prod_{k=1}^{D} \hat{B}_{k}^{j_{k}} \tag{2.35}
\end{equation*}
$$

We are now in a position to give the commutators \hat{C}_{n}, after introducing

$$
\begin{equation*}
g_{j}^{n}=\lambda_{j} 4^{n}(\vec{j} \cdot \vec{h})^{n} \tag{2.36}
\end{equation*}
$$

the general expressions

$$
\begin{align*}
\hat{C}_{2 n}= & (-1)^{n} 4^{3 n} \sum_{k=1}^{D} h_{k}^{2 n}\left(\hat{a}_{k}^{\dagger} \hat{a}_{k}+\hat{1}\right) \\
& +\sum_{j}(-1)^{n} g_{\dot{j}}^{2 n} \prod_{k=1}^{D} \hat{B}_{k}^{j k} \tag{2.37}\\
\hat{C}_{2 n+1}= & i 4^{3 n+1}(-1)^{n} \sum_{k=1}^{D} h_{k}^{2 n+1}\left[\left(\hat{a}_{k}^{\dagger}\right)^{2}+\left(\hat{a}_{k}\right)^{2}\right] \\
& -i \sum_{j}(-1)^{n} g_{\mathfrak{j}}^{2 n+1} \prod_{k=1}^{D} \hat{B}_{k^{k}}^{j} \tag{2.38}
\end{align*}
$$

C. Matrix elements

The results of the previous subsection allow us to easily evaluate those matrix elements that are needed in order to obtain approximate values for the eigenvalues of \hat{H}. The following matrix ele-
ments are relevant for our purpose:
$\left\langle r_{1}, \ldots, r_{D}\right| \hat{a}_{j}^{\dagger} \hat{a}_{j}\left|r_{1}, \ldots, r_{D}\right\rangle=2 r_{j}, \quad j=1, \ldots, D$,
$\left\langle r_{1}, \ldots, r_{D}\right|\left[\left(\hat{a}_{j}^{\dagger}\right)^{2}+\left(\hat{a}_{j}\right)^{2}\right]\left|r_{1}, \ldots, r_{D}\right\rangle=0$, $j=1, \ldots, D$,
$\left\langle r_{1}, \ldots, r_{D}\right| \prod_{j=1}^{D} \hat{B}_{j}{ }^{p_{j}}\left|r_{1}, \ldots, r_{D}\right\rangle=\prod_{j=1}^{D} v_{r_{j}, p_{j}}^{j}$,
where

$$
\begin{equation*}
0 \leqslant p_{j} \leqslant \infty, \tag{2.41}
\end{equation*}
$$

$$
\begin{align*}
v_{r_{j} p_{j}}^{j} & =\left\langle r_{j}\right| \hat{B}_{j}^{\phi_{j}}\left|r_{j}\right\rangle \\
& =\frac{\left(2 p_{j}\right)!}{\left(p_{j}\right)!} \sum_{k=0}^{r_{j}} 2^{r_{j}-k}\binom{p_{j}}{r_{j}-k}\binom{r_{j}}{k} \delta_{p_{j} \text { even }} \cdot \tag{2.42}
\end{align*}
$$

The approximate energy given by Eq. (2.17) can now be evaluated:

$$
\begin{align*}
\epsilon_{r_{1}}, \ldots, r_{D}(\overrightarrow{\mathrm{~h}}) & =\left\langle r_{1}, \ldots, r_{D}\right| e^{-i \hat{F}} \hat{H} e^{i \hat{F}}\left|r_{1}, \ldots, r_{D}\right\rangle \\
& =\sum_{n=0}^{\infty} \frac{i^{n}}{n!}\left\langle r_{1}, \ldots, r_{D}\right| \hat{C}_{n}\left|r_{1}, \ldots, r_{D}\right\rangle, \tag{2.43}
\end{align*}
$$

an expression that, according to Eqs. (2.36)(2.42), leads to

$$
\begin{equation*}
\epsilon_{r_{1}, \ldots, r_{D}}(\overrightarrow{\mathrm{~h}})=\sum_{k=1}^{D}\left(2 r_{k}+1\right) \cosh \left(8 h_{k}\right)+\sum_{\vec{i}} V^{(\overrightarrow{2 i})}(0) \prod_{j=1}^{D} \frac{\exp \left(8 i_{j} h_{j}\right)}{\left(i_{j}\right)!2^{2 i_{j}}} \sum_{\alpha_{j}=0}^{r_{j}} 2^{r_{j}-\alpha_{j}}\binom{i_{j}}{r_{j}-\alpha_{j}}\binom{r_{j}}{\alpha_{j}} \tag{2.44}
\end{equation*}
$$

which has the same structure as that of the corresponding one-dimensional case. ${ }^{30}$

Equation (2.44) can be simplified by recourse to the D-dimensional Laplace transform

$$
\begin{align*}
f(\overrightarrow{\mathrm{~h}}) & =f\left(h_{1}, \ldots, h_{D}\right) \\
& =\int_{0}^{\infty} \cdots \int_{0}^{\infty} \exp (-\overrightarrow{\mathrm{h}} \cdot \overrightarrow{\mathrm{x}}) f(\overrightarrow{\mathrm{x}}) d x_{1} d x_{2} \cdots d x_{D} \tag{2.45}
\end{align*}
$$

It is then seen ${ }^{30}$ that the Laplace transform f_{V} of $V\left(x_{1}{ }^{1 / 2}, \ldots, x_{D}{ }^{1 / 2}\right) /\left(x_{1} \cdots x_{D}\right)^{1 / 2}$ is given by

$$
\begin{align*}
f_{V}(\overrightarrow{\mathrm{~h}})= & \pi^{D / 2} \exp \left[4\left(h_{1}+\cdots+h_{D}\right)\right] \\
& \times \sum_{\mathbf{i}} V^{(2 \overrightarrow{\mathrm{I}})}(0) \prod_{j=1}^{D} \frac{\exp \left(8 i_{j} h_{j}\right)}{2^{2 i_{j}}\left(i_{j}\right)!} \tag{2.46}
\end{align*}
$$

which, after introducing the auxiliary function

$$
\begin{equation*}
\phi(\overrightarrow{\mathrm{h}})=\pi^{-D / 2} \exp \left[4\left(h_{1}+\cdots+h_{D}\right)\right] f_{V}(\overrightarrow{\mathrm{~h}}) \tag{2.47}
\end{equation*}
$$

allows us to write (2.44) in a specially compact form for the case $r_{1}=\cdots=r_{D}=0$,

$$
\begin{equation*}
\epsilon_{r_{1}=0, \ldots, r_{D}=0}=\sum_{k=1}^{D} \cosh \left(8 h_{k}\right)+\lambda \phi(\overrightarrow{\mathrm{h}}) . \tag{2.48}
\end{equation*}
$$

As previously stated, this constitutes a (variational) upper bound to the ground-state energy, the variational parameters being the components of the vector $\overrightarrow{\mathrm{h}}$.

For reasons of symmetry, we also obtain an upper bound in those cases in which just one of the r_{i}, for example, r_{j}, equals one, all the remaining r_{i} being equal to zero:

$$
\begin{align*}
\epsilon_{r_{1}=0}, \ldots, r_{k}=1, \ldots, r_{D=0}= & \sum_{j=1}^{D}\left(2 \delta_{k j}+1\right) \cosh \left(8 h_{k}\right) \\
& +\lambda \phi(\overrightarrow{\mathrm{h}})+\frac{\lambda}{4} \frac{\delta \phi}{\delta h_{j}} . \tag{2.49}
\end{align*}
$$

In general, of course, the method here proposed does not yield upper bounds to all the eigenvalues of \hat{H}. The second term of the right-hand side of Eq. (2.44) can be expressed in terms of $\phi(\overrightarrow{\mathrm{h}})$ and its different partial derivatives with respect to the components of $\overrightarrow{\mathrm{h}}$. As an example, we have

$$
\begin{align*}
\epsilon_{1, \ldots, 1}(\overrightarrow{\mathrm{~h}})= & 3 \sum_{k=1}^{D} \cosh \left(8 h_{k}\right)+\lambda \phi(\overrightarrow{\mathrm{h}}) \\
& +\frac{\lambda}{4} \sum_{i=1}^{D} \frac{\delta \phi}{\delta h_{i}}+\frac{\lambda}{4^{2}} \sum_{i_{1} \neq i_{2}} \frac{\delta^{2} \phi}{\delta{h_{i_{1}} \delta h_{i_{2}}}} \\
& +\cdots+\frac{\lambda}{4^{D}} \sum_{i_{1} \neq \cdots \neq i_{D}} \frac{\delta^{D} \phi}{\delta h_{i_{1}} \cdots \delta h_{i_{D}}} \tag{2.50}
\end{align*}
$$

We shall concern ourselves mainly with the approximate ground-state vector $\left|P_{1}=0, \ldots, P_{D}=0\right\rangle$.

III. THE ANISOTROPIC CASE

In order to apply the method developed in the previous section to the D dimensional anisotropic anharmonic oscillator, we shall interpret any anisotropy as an anharmonic term.

The original Hamiltonian is

$$
\begin{equation*}
\hat{H}=-\nabla_{D}^{2}+\sum_{i=1}^{D} \omega_{i}^{2} x_{i}^{2}+\lambda V\left(x_{1}, \ldots, x_{D}\right) \tag{3.1}
\end{equation*}
$$

and we shall select a given (nonzero) frequency, for example ω_{1}, and normalize with respect to it by introduction of the quantities

$$
\begin{equation*}
\alpha_{i}=\frac{\omega_{i}}{\omega_{1}}, \quad i=1, \ldots, D \tag{3.2}
\end{equation*}
$$

The Hamiltonian is now rewritten as

$$
\begin{align*}
\hat{H}= & -\nabla_{D}^{2}+\sum_{i=1}^{D} x_{i}^{2}+\lambda V\left(x_{1}, \ldots, x_{D}\right) \\
& +\sum_{i=1}^{D}\left(\alpha_{i}^{2}-1\right) x_{i}^{2} \\
= & \hat{H}^{(0)}+W\left(x_{1}, \ldots, x_{D}\right) \tag{3.3}
\end{align*}
$$

with
$W\left(x_{1}, \ldots, x_{D}\right)=\lambda V\left(x_{1}, \ldots, x_{D}\right)+\sum_{i=1}^{D}\left(\alpha_{i}{ }^{2}-1\right) x_{i}{ }^{2}$.

On account of the linear character of the Laplace transform, the two contributions to W can be separately studied, i.e., we can write, in self-explanatory notation,

$$
\begin{equation*}
\phi_{W}=\phi_{V}+\phi_{\alpha} \tag{3.5}
\end{equation*}
$$

with

$$
\begin{equation*}
\phi_{\alpha}(\overrightarrow{\mathrm{h}})=\frac{1}{2} \sum_{i=1}^{D}\left(\alpha_{i}^{2}-1\right) \exp \left(8 h_{i}\right) \tag{3.6}
\end{equation*}
$$

The approximate GS energy $\epsilon_{0, \ldots, 0} \equiv \epsilon_{0}$ is thus obtained by minimization of
$\epsilon_{0}(\overrightarrow{\mathrm{~h}})=\sum_{k=1}^{D}\left[\cosh \left(8 h_{k}\right)+\frac{1}{2}\left(\alpha_{k}^{2}-1\right) \exp \left(8 h_{k}\right)\right]+\lambda \phi_{V}(\overrightarrow{\mathrm{~h}})$
with respect to the components h_{k} of the vector \vec{h}.
Equation (3.7) may be considered to constitute the main result of the present work since it presents us with a rigorous upper bound to the GS energy of an anisotropic D-dimensional anharmonic oscillator for any even anharmonicity V which admits of a Laplace transform.

IV. APPLICATIONS

A. The D-dimensional anisotropic harmonic oscillator

A well-known exact solution is available in this particular instance, which corresponds to the case in which $V(\vec{x})=0$ in Eq. (3.1).

Assuming $\omega_{1} \neq 0$ we can set $\omega_{k}=\alpha_{k} \omega_{1}$, for $2 \leqslant k$ $\leqslant D$. According to the results of Sec. III, the GS energy is obtained by minimization of

$$
\begin{equation*}
\epsilon_{0}\left(h_{1}, \ldots, h_{D}\right)=\sum_{k=1}^{D}\left[h_{k}\left(\frac{1}{2}+\beta_{k}^{2}\right)+\frac{1}{2 h_{k}}\right] \tag{4.1}
\end{equation*}
$$

with

$$
\begin{equation*}
\beta_{k}^{2}=\frac{1}{2}\left(\alpha_{k}^{2}-1\right) \tag{4.2}
\end{equation*}
$$

Thus, the "vector" $\overrightarrow{\mathrm{h}}$ that minimizes (4.1) is the one whose components are given by

$$
\begin{equation*}
h_{k}=\frac{1}{\alpha_{k}} \tag{4.3}
\end{equation*}
$$

and our upper bound to the GS energy is then

$$
\begin{equation*}
\epsilon_{0}=\sum_{k=1}^{D} \frac{\omega_{k}}{\omega_{1}} \tag{4.4}
\end{equation*}
$$

which coincides with the exact result.

B. Isotropic anharmonic case with $V(r)=r^{2 N}$

Interesting studies concerning this problem can be found in Refs. 21 and 23. The anharmonicity is given by

$$
\begin{equation*}
V\left(x_{1}, \ldots, x_{D}\right)=\left(\sum_{i=1}^{D} x_{i}^{2}\right)^{N} \tag{4.5}
\end{equation*}
$$

whose associated function (cf. Sec. II) is

$$
\begin{equation*}
\phi\left(z_{1}, \ldots, z_{D}\right)=\frac{N!}{2^{2 N}} \sum_{\vec{p}} \prod_{j=1}^{D}\binom{2 p_{j}}{p_{j}} z^{p_{j}} \tag{4.6}
\end{equation*}
$$

where, as before,

$$
\begin{equation*}
\sum_{\overrightarrow{\mathfrak{p}}} \equiv \sum_{p_{1}=0}^{N} \cdots \sum_{p_{D}=0}^{N}, \tag{4.7}
\end{equation*}
$$

and the restriction

$$
\begin{equation*}
\sum_{j=1}^{D} p_{j}=N \tag{4.8}
\end{equation*}
$$

is to be obeyed. As all z_{i} are essentially equiva-
lent, it is not too unreasonable to set $z_{1}=z_{2}=\cdots$ $=z_{D}=z$, and thus obtain our approximate GS energy ϵ_{0} by minimizing with respect to z the expression

$$
\begin{equation*}
\epsilon_{0}(z)=\frac{D}{2}\left(z+\frac{1}{z}\right)+\lambda a_{N, D} z^{N} \tag{4.9}
\end{equation*}
$$

with

$$
\begin{equation*}
a_{N, D}=\frac{N!}{2^{2 N}} \sum_{\overrightarrow{\mathfrak{p}}} \prod_{j=1}^{D}\binom{2 p_{j}}{p_{j}} . \tag{4.10}
\end{equation*}
$$

Notice that an analytical solution obtains for $N=0,1,2,3$, and 5 . Of particular interest on account of its applications is the case $N=2$ (see Refs. 24 and 25). Notice that in this instance the following particularly simple expressions hold:

$$
\begin{align*}
& a_{2, D}=\frac{D}{4}(D+2), \tag{4.11}\\
& \epsilon_{0}(N=2, z)=\frac{D}{2}\left(z+\frac{1}{z}\right)+\frac{D}{4} \lambda(D+2) z^{2} . \tag{4.12}
\end{align*}
$$

Table I exhibits the corresponding results for $D=3$, which are compared to the ones obtained by Ehlenberg and Mendelsohn ${ }^{21}$ employing Padé approximants. The agreement between both sets of results is excellent.

C. A special anisotropic case

We shall consider now the following anharmonicity

$$
\begin{equation*}
V(\overrightarrow{\mathrm{r}})=\sum_{i=1}^{D} \sum_{j=1}^{D} a_{i j} x_{i}^{2} x_{j}{ }^{2}, \tag{4.13}
\end{equation*}
$$

which, for $D=2$, has been extensively studied by Hioe et al..26 The associated ϕ function is

$$
\begin{equation*}
\phi\left(z_{1}, \ldots, z_{D}\right)=\frac{1}{4} \sum_{i=1}^{D} \sum_{j=1}^{D}\left(2 \delta_{i j}+1\right) a_{i j} z_{i} z_{j} \tag{4.14}
\end{equation*}
$$

TABLE I. Results for the three-dimensional anharmonic (isotropic) oscillator, where the anharmonicity is of the form $\lambda r^{2 N}$. For different values of the anharmonic coupling constant λ, the second column displays the GS energies obtained with the present approach, which are compared to those of Ehlenberger and Mendelsohn (third column). The agreement (\%) between the two sets of results is exhibited in the last column.

λ	E_{BEP}	E_{EM}	$\%$
0.01	1.518303	1.518263	99.99
0.05	1.584259	1.583613	99.95
0.2	1.773386	1.769503	99.78
1	2.339118	2.322655	99.29

which leads to
$\epsilon_{0}\left(z_{1}, \ldots, z_{D}\right)=\frac{1}{2} \sum_{i=1}^{D}\left[z_{i}+\frac{1}{z_{i}}+\frac{\lambda}{2} \sum_{j=1}^{D}\left(2 \delta_{i j}+1\right) a_{i j} z_{i} z_{j}\right]$,
which is to be minimized with respect to the z_{i}. We shall compare to those of Hioe et al. (for $D=2$) our results for the GS and for the first two excited states, i.e., $\epsilon_{00}, \epsilon_{01}$, and ϵ_{11}. This is done in Tables II-VI. The agreement between our approximate results and the exact ones of Hioe et al. is very good.
In the special case of "spherical coupling" (Hioe et al., Ref. 26)

$$
\begin{align*}
& a_{11}=a_{22}=\cdots=a_{D D}=a, \tag{4.16}\\
& a_{i j}=b \text { for all } i \neq j,
\end{align*}
$$

one can guess a priori that, on account of the symmetry introduced by (4.16), the values of z_{i} which minimize the GS energy will be characterized by the property

$$
\begin{equation*}
z_{1}=z_{2}=\cdots=z_{D}=z . \tag{4.17}
\end{equation*}
$$

Our problem then reduces itself to the onedimensional one. The corresponding task is thus that of minimizing

$$
\begin{equation*}
\epsilon_{0}(z)=D\left[\frac{1}{2}\left(z+\frac{1}{z}\right)+\frac{\lambda}{4}[b(D-1)+3 a] z^{2}\right] \tag{4.18}
\end{equation*}
$$

with respect to z. This expression coincides with the corresponding one of Sec. IV B for $a=b=1$.

TABLE II. Ground-state energies for the anharmonic, anisotropic case ($D=2$) of Eq. (4.3), for different anisotropies [as given by the parameter a_{12} (see text)], as functions of the corresponding coupling constant λ. In all cases the upper figure is obtained with the techniques described in the text, while the bottom one has been taken from the work of Hioe et al. ${ }^{26}$ The degree of agreement (\%) between the two treatments is displayed to the right of these numbers. $a_{11}=a_{22}=1$.

$\lambda \quad a_{12}$						-1
0.05	1.0853	99.91	1.0662	99.91	1.0457	99.86
	1.0843		1.0653		1.0443	
0.1	1.1526	99.79	1.1206	99.79	1.0853	99.63
	1.1502		1.1183		1.0813	
0.5	1.4864	99.30	1.4033	99.22	1.3053	98.12
	1.4760		1.3924		1.2808	
1	1.7401	99.08	1.6250	98.92	1.4864	97.13
	1.7242		1.6075		1.4438	
10	3.3466	98.64	3.0625	98.28	2.7091	94.41
	3.3012		3.0100		2.5577	
100	7.0161	98.51	6.3848	98.08	5.5937	93.40
	6.9119		6.2628		5.2248	

TABLE III. Energies of the first excited state, in the anharmonic, anisotropic case described by Eq. (4.3). All remaining details are similar to those described in the caption of Table II.

λa_{12}	1		0		-1	
0.05	2.2412	99.89	2.1890	99.86	2.1324	99.64
	2.2388		2.1861		2.1248	
0.1	2.4196	99.78	2.3355	99.70	2.2412	98.69
	2.4143		2.3286		2.2120	
0.5	3.2500	99.43	3.0479	99.10	2.8066	96.14
	3.2315		3.0206		2.6984	
1	3.8576	99.29	3.5832	98.83	3.2500	94.35
	3.8304		3.5417		3.0666	
5	6.1250	99.08	5.6128	98.42	4.9772	90.68
	6.0692		5.5242		4.5136	
100	16.034	98.97	14.585	98.17	12.769	87.84
	15.869		14.319		11.217	

The minimization problem posed by Eq. (4.18) can, of course, be solved analytically, providing us with simple expressions for any values of D and λ no matter how large they may be.
In particular, if we call $e_{0}=\epsilon_{0} / D$ we obtain the following results in the limit of very large λ :

$$
\begin{equation*}
e_{0}(a=1, b=0) \underset{\lambda \gg 1}{\longrightarrow} \frac{3^{4 / 3}}{4} \lambda^{1 / 3} \tag{4.19}
\end{equation*}
$$

and

$$
\begin{equation*}
e_{0}(a=1, b=1) \underset{\substack{\lambda \gg 1 \\ D \gg 1}}{\longrightarrow} \frac{3}{4}(\lambda D)^{1 / 3} \tag{4.20}
\end{equation*}
$$

so that the ratio between the coupled spherical result ($a=1, b=1$) and the uncoupled one ($a=1$, $b=0$) becomes independent of the coupling constant λ :

$$
c=\frac{e_{0}(a=1, b=1)}{e_{0}(a=1, b=0)} \xrightarrow[\substack{\lambda \rightarrow \infty \\ D \gg 1}]{ } \frac{D^{1 / 3}}{3^{1 / 3}} \simeq 0.693 D^{1 / 3} .
$$

$$
\phi\left(z_{1}, \ldots, z_{D}\right)=\sum_{n=0}^{N} \sum_{m=0}^{M} \frac{1}{4^{n+m}}\left(\sum_{i=1}^{D} a_{i, i}^{(n, m)} \frac{[2(n+m)]!}{(n+m)!} z_{i}^{n+m}+\sum_{i \neq j}^{D} a_{i j}^{(n, m)} \frac{(2 n)!(2 m)!}{n!m!} z_{i}{ }^{n} z_{j}^{m}\right) .
$$

D. The doubly anharmonic oscillator

As a final example we shall discuss the following anharmonicity which has been studied in the onedimensional case ${ }^{16-20}$ but not, as far as we know, in the D-dimensional one,

$$
\begin{align*}
& V(r)=\lambda_{1} r^{4}+\lambda_{2} r^{6}, \\
& r^{2}=\sum_{i=1}^{D} x_{i}{ }^{2} . \tag{4.24}
\end{align*}
$$

Here we also have " spherical" symmetry and, consequently, just one variational parameter z,

TABLE IV. Energy of the excited state ϵ_{11} in the anharmonic, anisotropic case described by Eq. (4.3). All remaining details are similar to those described in the caption of Table II.

λa_{12}	1		0		-1	
0.05	3.4580	99.88	3.3103	99.89	3.1373	99.73
	3.4542		3.3069		3.1289	
0.1	3.7802	99.79	3.5467	99.78	3.2560	99.28
	3.7723		3.5390		3.2327	
0.5	5.2204	99.52	4.6782	99.37	3.9160	96.38
	5.1953		4.6488		3.7746	
1	6.2498	99.42	5.5198	99.20	4.4592	94.42
	6.2140		5.4759		4.2106	
5	10.039	99.28	8.6913	98.93	6.6479	90.02
	9.9687		8.5991		5.9848	
100	26.444	99.21	22.649		16.781	86.34
	26.237		22.375		14.489	

This result is to be compared to that estimated by Hioe et al., $c=0.738 D^{1 / 3}$. Hioe et al. have rigorously shown, for the case $D=2$, that both $e_{0}(a=1, b=1)$ and $e_{0}(a=1, b=0)$ grow as $\lambda^{1 / 3}$ for λ large enough. ${ }^{28}$ Our approximate results (4.19) and (4.20) display the same behavior, but for any D.

We show in Table VII results for $e_{0}(a=1, b=1)$, i.e., for the ground-state energy of D coupled oscillators ($\lambda=1$), both in order to illustrate the corresponding energetic behavior and the power of our approach.
It is easy to extend our treatment to the following generalization of the anharmonicity (4.13)

$$
\begin{equation*}
V\left(x_{1}, \ldots, x_{D}\right)=\sum_{n=0}^{N} \sum_{m=0}^{M} \sum_{i=1}^{D} \sum_{j=1}^{D} a_{i j}^{(n, m)} x_{i}^{2 n} x_{j}^{2 m}, \tag{4.22}
\end{equation*}
$$

the associated ϕ function being

$$
\begin{equation*}
\phi(z)=\lambda_{1} a_{2, D} z^{2}+\lambda_{2} a_{3, D} z^{3} \tag{4.25}
\end{equation*}
$$

with

$$
\begin{align*}
& a_{2, D}=\frac{1}{2} D(D+2), \tag{4.26}\\
& a_{3, D}=\frac{1}{8} D(D+2)(D+4) .
\end{align*}
$$

The GS energy arises from the minimization of

$$
\epsilon_{0}=\frac{D}{2}\left(z+\frac{1}{z}\right)+\frac{\lambda_{1}}{2} D(D+2) z+\frac{\lambda_{2}}{8} D(D+2)(D+4) z^{3}
$$

TABLE V. Ground-state energies for the anharmonic, anisotropic case of Eq. (4.3) for $a_{11}=0.8, a_{22}=1$. All remaining details are similar to those of Table II.

$\lambda \backslash a_{12}$	1		0.8		0.6		0.4		0.2		0	
0.05	1.0787	99.92	1.0750	99.92	1.0712	99.93	1.0673	99.93	1.0634	99.93	1.0594	99.93
	1.0796		1.0758		1.0720		1.0681		1.0641		1.0601	
0.1	1.1409	99.80	1.1347	99.82	1.1284	99.83	1.1218	99.82	1.1151	99.83	1.1082	99.82
	1.1432		1.1368		1.1303		1.1238		1.1170		1.1102	
0.3	1.3215	99.50	1.3092	99.51	1.2966	99.53	1.2834	99.53	1.2697	99.51	1.2553	99.48
	1.3281		1.3156		1.3027		1.2895		1.2759		1.2619	
0.5	1.4523	99.33	1.4363	99.35	1.4196	99.36	1.4023	99.35	1.3841	99.33	1.3649	99.27
	1.4621		1.4457		1.4288		1.4115		1.3935		1.3750	
0.7	1.5587	99.22	1.5398	99.23	1.5202	99.24	1.4997	99.23	1.4781	99.19	1.4553	99.13
	1.5709		1.5517		1.5318		1.5113		1.4901		1.4681	
1	1.6913	99.11	1.6691	99.12	1.6460	99.13	1.6217	99.11	1.5961	99.06	1.5689	98.97
	1.7065		1.6839		1.6605		1.6363		1.6112		1.5852	
5	2.6117	98.74	2.5692	98.75	2.5245	98.73	2.4773	98.69	2.4272	98.60	2.3734	98.44
	2.6450		2.6017		2.5568		2.5102		2.4616		2.4109	
10	3.2200	98.65	3.1652	98.65	3.1075	98.64	3.0465	98.58	2.9815	08.48	2.9118	98.30
	3.2641		3.2083		3.1505		3.0903		3.0275		2.9620	
50	5.3693	98.54	5.2730	98.54	5.1716	98.51	5.0642	98.45	4.9495	98.33	4.8260	98.13
	5.4490		5.3512		5.2496		5.1439		5.0335		4.9180	
100	6.7314	98.51	6.6095	98.51	6.4811	98.49	6.3449	98.42	6.1996	98.30	6.0429	98.09
	6.8330		6.7092		6.5805		6.4465		6.3067		6.1604	
500	11.446	98.48	11.237	98.49	11.016	98.46	10.781	98.39	10.531	98.26	10.261	98.05
	11.622		11.409		11.188		10.958		10.717		10.465	
5000	24.604	98.48	24.151	98.48	23.674	98.45	23.168	98.38	22.627	98.25	22.044	98.03
	24.984		24.524		24.047		23.549		23.030		22.486	

TABLE VI. Ground-state energies for the case $a_{11}=0.4, a_{22}=1$. For further details see Table II.

TABLE VII. Ground-state energy of D coupled oscillators (in units of D) for $\lambda=1$ [see Eq. (4.18)].

D	e_{0} / D
1	1.4033
2	1.4864
3	1.5594
4	1.6250
5	1.6849
10	1.9288
100	3.6105
1000	7.5549
10^{5}	34.823
10^{20}	3481192
10^{40}	1.6158×10^{13}
10^{50}	3.4812×10^{16}
10^{90}	7.5×10^{29}

V. CONCLUSIONS

A simple variational procedure has been presented which allows one to obtain an approximation to the energies and wave functions of the Hamiltonian (1.1). The method is based upon the idea of introducing into the uncorrelated harmonicoscillator states the correlations induced by the presence of anharmonic terms via a unitary operator $e^{i \hat{F}}$, which is determined by the variational principle. This approach can be applied to any
even function of the D coordinates that admits of a Laplace transform. In particular, it is seen that our treatment is able to deal with anisotropies by considering them as special types of anharmonicities. A rigorous upper bound to the GS of the Hamiltonian (1.1) is provided by the present approximation.

Some advantages of the present approach deserve special comment. It allows one to deal, in a very simple way, with the whole unperturbed basis, without truncating it. The numerical work involved is, in most instances, quite simple. Neither difficult numerical integrations nor large diagonalizations (as required by other methods) are necessary here (as a matter of fact, all calculations reported here where carried out with a Texas Instruments TI59 calculator). Furthermore, in many interesting cases the solution can be found analytically and, consequently, large values of λ or D do not pose any problem. Finally, comparison with exact results, as illustrated in Sec. IV, shows that our approximation yields rather good results. One may thus assert that our method may prove to be useful to obtain upper bounds to the GS energy in those cases in which exact treatments become too involved and, in other situations, provides a quick estimate of the corresponding results.
*Member of Comision de Investigaciones Cientificos Buenos Aires, Argentina.
\dagger Member of Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina.
${ }^{1}$ J. P. Boyd, J. Math. Phys. 19, 1445 (1978).
${ }^{2}$ S. Graffi and V. Grecchi, Phys. Rev. D 8, 3487 (1973).
${ }^{3}$ S. N. Biswas, K. Datta, R. P. Saxena, P. K. Srivastava, and V. S. Varma, J. Math. Phys. 14, 1190 (1973).
${ }^{4}$ S. N. Biswas, K. Datta, R. P. Saxena, P. K. Srivastava, and V. S. Varma, Phys. Rev. D 4, 3617 (1971).
${ }^{5}$ F. R. Halpern, J. Math. Phys. 1 $\overline{4}, 219$ (1973).
${ }^{6}$ C. Bender and T. T. Wu, Phys. Rev. 184, 1231 (1969).
${ }^{7}$ C. Bender and T. T. Wu, Phys. Rev. $\overline{\mathrm{D7}}, 1620$ (1973).
${ }^{8}$ P. Lu, S. S. Wald, and B. L. Young, Phys. Rev. D 7, 1701 (1973).
${ }^{9}$ S. Graffi, V. Grecchi, and B. Simon, Phys. Lett. 32B, 631 (1970).
${ }^{10}$ G. H. Gillespie, Lett. Nuovo Cimento 16, 86 (1976).
${ }^{11}$ Y. T. Fung, Y. W. Chan, and W. Y. Wan, J. Phys. A 11, 829 (1978).
${ }^{12}$ K. Banerjee, S. P. Bhatnager, V. Choudhury, and S. S.
Konwal, Proc. R. Soc. London A360, 375 (1978).
${ }^{13}$ A. M. Jaffe, Commun. Math. Phys. 1, 127 (1965).
${ }^{14}$ I. G. Halliday and P. Suranyi, Phys. Rev. D 21, 1529 (1980).
${ }^{15}$ S. I. Chan, D. Stelman, and L. E. Thompson, J. Chem.

Phys. 41, 2828 (1964).
${ }^{16}$ G. E. Sobelman, Phys. Rev. D 19, 3754 (1979).
${ }^{17}$ M. Lakshmanan, Lett. Nuovo Cimento 8, 743 (1973).
${ }^{18}$ F. T. Hioe, D. Mac Millen, and E. W. Montroll, J. Math. Phys. 17, 1320 (1976).
${ }^{19}$ J. M. Kincaid and E. G. D. Cohen, Phys. Rep. 22C, 57 (1975).
${ }^{20}$ E. Stryjewsky and N. Giordano, Adv. Phys. 26, 487 (1977).
${ }^{21}$ A. G. Ehlenberger and L. B. Mendelsohn, J. Chem. Phys. 56, 586 (1972).
${ }^{22}$ M. Lakshmanan and P. Kaliappan, J. Phys. A 13, L299 (1980).
${ }^{23}$ V. L. Eletsky and V. S. Popov, Phys. Lett. 94B, 65 (1980).
${ }^{24}$ P. Lu and B. P. Nigam, J. Phys. B 2 , 647 (1969).
${ }^{25}$ S. Bell, R. Davidson, and P. A. Warsop, J. Phys. B 3, 113 (1970); $\underline{3}, 123$ (1970).
${ }^{26}$ F. T. Hioe, Don MacMillen, and E. W. Montroll, Phys. Rep. 43C, 307 (1978) and references therein.
${ }^{27}$ F. T. Hioe, Phys. Rev. D 15, 488 (1977).
${ }^{28}$ F. T. Hioe, Phys. Rev. B $\overline{16}, 4112$ (1977).
${ }^{29}$ F. T. Hioe, J. Chem. Phys. 69, 204 (1978).
${ }^{30}$ G. Bozzolo and A. Plastino, Phys. Rev. D 24, 3113 (1981).

