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An approximate, variational method for the study of the generalized anharmonic oscillator in D dimensions is
given, where the anharmonicity is represented by a broad class of even functions of the D coordinates. The idea of
the method is to introduce into the unperturbed oscillator states the correlations due to the presence of the
anharmonicity via a unitary operator which is determined by the variational principle.

I. INTRODUCTION

The great relevance that the study of anharmon-
ic-oscillator models has in many branches of
physics cannot be doubted. Interesting and impor-
tant features of numerous systems are a conse-
quence of the anharmonic nonlinear character of
vibrations that occur in those systems. The cor-
responding literature is, consequently, quite
abundant, and different aspects of the problem are
the subject of much interesting work, both from
the analytical and the numerical point of view. A
small sample is that of Refs. 1-29.

The purpose of the present work is to develop a
very simple approximate treatment of the D-di-
mensional, generalized anharmonic oscillator,
defined by a Hamiltonian of the form

2 2
H= iz-;( L —5—5+7; wfxf)

AV (%, %0, - -0 5%p) , (1.1)

where V is an arbitrary even function of the coor-
dinates, i.e.,

X)) =V (%, e ey =Xpy e e, Xp)

(1.2)

V(%yyeeosXpyooe

for 1<k <D (subject to some restrictions stipu-
lated in Sec. II).

The present work constitutes a generalization,
to D dimensions, of a method recently proposed
for the one-dimensional case.®*® The correspond-
ing formalism is discussed in Sec. II. Moreover,
a simple treatment of the anisotropic case is given
in Sec. III. Different applications are presented
in Sec. IV and conclusions are drawn in Sec. V.

II. FORMALISM
A. The mapping operator

We shall rewrite our Hamiltonian (in appropriate
units) in the form

D
H= —VDZ+E 22+ AV (%, .00y xp) (2.1)
i=l
and postpone consideration of the anisotropic case
to a later stage. An even more convenient expres-
sion can be given, by recourse to the definitions

~ 62

H§°)=—6x—2 +x,2, i=1,...,D, (2-2)
i

. D

o= ae, (2.3)

il
and to the Taylor expansion of V(x,,...,x,)
1
V(%yyeoe,%p)= Z {7~ V}é*_’(’) Vigyy+--,qp), (2.4)
J=0 '

r being a vector whose components are x,,...,x,
and V one with components 8/8g,,...,6/8q,. In
terms of the usual boson creation operators

al=p,+ix;, j=1,...,D, (2.5)
and denoting by B 4 the linear combination
B,=-i(a}-a,), (2.6)

we can finally write fl in the form (i is the unity
operator)

A A D D ~
oS aa Tl e
i=l i J=1

where 1 stands for the set of integers i, i, ..., ip,
so that

AV (o)
A =
i 2{1-0.--4-{01:1!1:2! ene 1Dl 9 (2.8)
Sirtigrestip
V() = 2.9
g1+ 0q1P |40’ (2.9)
and

ZE%‘\:EZ (2.10)
i 1 2 D

It is possible thus to put H into the form

A= H‘°’+E A~HB 2.11)

i=1
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which suggests the idea of relating the eigenstates

LP;,P’Z, ...,Pp) of H to those |7, Vo ooy ¥p) Of

H, by means of a mapping operator F (7, ...,7p),

as in Ref. 30,

| P, Py, ... B =expliF (vy, ..., 7)) |7y ey7p)
(2.12)

with (remembering that V is an even function)

© D
F (r,... ,'rD)=2'Z: Z BB (ry, ..o, 7p)

k=l nsl
x[(a])* - (a,)*].

(2.13)

Minimization of
(PL=0,P}=0,...,P,=0| | P|=0,P,=0,...,P,=0)
(2.14)

with respect to the quantities % of Eq. (2.13) would

lead to the exact solution for the ground state (GS)
)

of our system.°

Following Ref. 30 we shall propose an approxi-
mate procedure in which one retains the 2=1 part
of (2.13), thus working hereafter with a mapping
operator defined by

1?(7’1’ .. ,'rn) =ii hn(rly oo "VD)[(a:)z - (Zl")z]
n=1l

D
iD 2 F (71 ens7p)e (2.15)

n=l

11}

[In those occasions in which no confusion is likely
to ensue we shall write simply F, instead of
F(ry,...,7p) and h, instead of (7, ...,7p).]
This approximate mapping operator F will lead
to approximations to the eigenstates of H given by
'Pupz;-- -;’VD)]"VM'-':"’D>;
(2.16)

which are to be obtained by minimization of

. Py =explif (ry, ..

€y = oy oo ey 7p| exp[-—iﬁ(frl, - ,rD)]erxp[if‘(rl, R L | T (2.17)
with respect to the quantities # of Eq. (2.15). This procedure will yield a rigorous upper bound to the GS
energy

€,...0=(P,=0,P,=0,...,P,=0| H| P,=0,P,=0,...,P,=0) . (2.18)

I
B. Commutation rules {ﬁ:m’ﬁj}= 0, 1Si#j<D, (2.25)
oni ts;n;siuzltgeo;lgtlz: Z;let:egfsv lcffe:‘hzl‘;;cpl; 3(«)1r11:WS {% i f’; #4=0, 1< ifj <D, (2.26)
finds on the right-hand side of (2.17). {BrF}=-4imh;B}, 1<j<D, (2.27)
LeAt usAwrite {Ei’ J§j}=0 , 1<i,j<D, (2.28)

Co=4 (2.19) {A® F}=tinf(@l+ (@), (2.29)
and define {(@)2+ (@, B} =16in,(aa,+1) . (2.30)

C ={C"‘1’F} : (2.20) These commutation rules allow one to obtain a

I we also set general expression for the C,ﬁ"’:

S=A-H,, 2.21) C® = (1) 4% p2 (a1 4, +1), (2.31)
we see that C, can be written in the form C® =i (L1 2 (@) + (a,)%] . (2.32)
%, e, G e nersor S ean e v g s gner

where a oA
§.=18_,, 71, (2.23) So=; M H By 239

i.e., apart of én is separable, with a contribution
C'® from each (dimensional) subindex %.
The usual commutation relationships

iz, &}}=26H ’
{a,,a}t={al,a%t=0

lead to

(2.24)

and employing (2.27). I we let h be a vector whose
components are ki, hy, ..., hy, and similarly we
denote by} the vector of components j,,5,,...,7p,
the following result ensues:
D " N D “
{I'I B}f,F}: —4i(j- ) II Bl (2.34)
i=1 k=

and, consequently,
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D

S,= 2 (~4iyn (- ny I Bia.

H kel

(2.35)

. We are now in a position to give the commutators
C,, after introducing

g=n (b, (2.36)
the general expressions
D
Cop= (<104 Y B2(ala,+1)
k=l
D
+ Y (~1refIT B, (2.37)
; k=l
N D
Cypoy =i 4% (<1)" Z thn-rl[(a;)z_{_ (a,)?]
k=1
D
—i s (<vrga T Be. (2.38)
i kel

C. Matrix elements

The results of the previous subsection allow us
to easily evaluate those matrix elements that are
needed in order to obtain approximate values for
the eigenvalues of H. The following matrix ele-

D
€r1....,rD(h) Z (27,+1) cosh(Bhk)+Z V('Zi)(o)H
j=1

i

which has the same structure as that of the corre-
sponding one-dimensional case.3°

Equation (2.44) can be simplified by recourse to
the D-dimensional Laplace transform

F(R)=f(hy, ... hp)

= f e f exp(-h* X)f (R dw,dx,*** dx, .
0 0o
(2.45)
It is then seen® that the Laplace transform f, of
V(x11/ 2 ,xpl/ %)/ (xy 'x,;,)l/2 is given by

Fr(R) =12/ 2exp[4(h, ++++ + hp)]

x z V(Z”(O)H exp(Sz,h,) ,

o (2.46)

which, after introducing the auxiliary function
¢ (R) =12/ 2expld(hy+ oo v+ Bp)l fy (R), (2.47)

allows us to write (2.44) in a specially compact
form for the case 7= «++ =7, =0,

ments are relevant for our purpose:

A*"A .
(Fyyoeesrplalag|ry, ... 7p)=27,, j=1,...,D,

(2.39)
<rl?'"’VDI[(aj)Z"‘(aj)z]lrl,"-,TD>=0,
j=1,...,D, (2.40)
D
<rl,...,rb HB‘,’; Vyyeo rD> Hv R
jeul =1 Tty
0sp;s=, (2.41)

where

—('rj!BfM)

(zp,))‘l E Y ’f)sjtw (2.42)
by =0 v;—k/\R

The approximate energy given by Eq. (2.17) can
now be evaluated:

€r1,...,rD(H) = <7’1a

_2 " S,

n=0

“n s
7| € FHeF | vy, )

..,rplé,,lrl,...,r,,),

(2.43)
an expression that, according to Egs. (2.36)—
(2.42), leads to
exp(8i,h,) — i \[7; @
——J—J—(l T55 E 27 , 44)
7= 2\

r

€120,y 10 E cosh(8k,) + 1 (R) . (2.48)

k=1

As previously stated, this constitutes a (varia-
tional) upper bound to the ground-state energy, the
variational parameters being the components of the
vector h.

For reasons of symmetry, we also obtain an up-
per bound in those cases in which just one of the
v;, for example, 7;, equals one, all the remaining
7, being equal to zero:
€r1=0, vany Tp=lyuen,

D
rp=0= 3" (25,,+1) cosh(8h,)
j=1

% (2.49)

+)\¢(h)+4 o,

In general, of course, the method here proposed
does not yield upper bounds to all the eigenvalues
of H. The second term of the right-hand side of
Eq. (2.44) can be expressed in terms of ¢ (h) and
its different partial derivatives with respect to the
components of h. Asan example, we have
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D
€1,,,,,1(H)= 3 Z cosh(8h,) + ¢ (h)

k=l

x 0%
E 42 Oh, Oh;
2

i=1 iy #i,

+...+—AD-‘Z 5D¢

4 ll#--.*,-D méhil.' . 5}1,-0 -

(2.50)

We shall concern ourselves mainly with the ap-
proximate ground-state vector |P,=0,...,P,=0).

III. THE ANISOTROPIC CASE

In order to apply the method developed in the
previous section to the D dimensional anisotropic
anharmonic oscillator, we shall intevpret any
anisotvopy as an anhavmonic term.

The original Hamiltonian is

D
H= -VD2+Z wx 2+ AV (xy, .o, xp) (3.1)
i=1

and we shall select a given (nonzero) frequency,
for example w,, and normalize with respect to it
by introduction of the quantities

ai=—i, i=1,...,D. (3.2)
The Hamiltonian is now rewritten as

D
H=—vy24 ), 22 4AV(xy, .00, xp)

i=1

D
+E @®-1)x*

i=1
=HO 4 W(x,,...,xp) (3.3)
with

D
.,xD)+Zl @2-1)x.2.
' (3.4)

On account of the linear character of the Laplace
transform, the two contributions to W can be sep-
arately studied, i.e., we can write, in self-explan-
atory notation,

W(xyyeonyxp)=AV(xy,..

Pw=dy+da (3.5)
with
. D
ba(D=32 (@2-1)exp(@n,). (3.6)

i=1

The approximate GS energy €,
obtained by minimization of
D

€(0)=2_ [cosh(8h,) +3(@,? - 1) exp(8h,)] +Apy (R)
k=1l
(8.7

o= € is thus

with respect to the components %, of the vector h.

Equation (3.7) may be considered to constitute
the main result of the present work since it pre-
sents us with a rigorous upper bound to the GS
energy of an anisotropic D-dimensional anharmon-
ic oscillator for any even anharmonicity V which
admits of a Laplace transform.

IV. APPLICATIONS

A. The D-dimensional anisotropic harmonic oscillator

A well-known exact solution is available in this
particular instance, which corresponds to the case
in which V(%) =0 in Eq. (3.1).

Assuming w, #0 we can set w,=o,w,, for 2 <k
< D. According to the results of Sec. III, the GS
energy is obtained by minimization of

D
R ) I
R=1 R
with
B=3(a=1). (4.2)

Thus, the “vector” f that minimizes (4.1) is the
one whose components are given by

1
hk=a—; ’ (43)

and our upper bound to the GS energy is then

w
€O=ZUIZ’ (4.4)
k=1 "1

which coincides with the exact result.

B. Isotropic anharmonic case with V(r) =p2N

Interesting studies concerning this problem can
be found in Refs. 21 and 23. The anharmonicity is
given by

D
VX, ... %) =(; x,.z)N , (4.5)

whose associated function (cf. Sec. II) is

Y H(Z”> 2, (4.6)

B b;

¢(Zl,... ,ZD

where, as before,

Z }: 53 (4.7)

$p=0

and the restrlctlon

;:Pf =N (4.8)

is to be obeyed. As all z; are essentially equiva-
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lent, it is not too unreasonable to set z;=zy=" "
=zp=2z, and thus obtain our approximate GS ener-
gy €, by minimizing with respect to z the expres-
sion

Go(z)—D <Z+1> +)taN'DZN (4.9)
with
ay,p= —z—zn< ) (4.10)
P j=1

Notice that an analytical solution obtains for
N=0, 1, 2, 3, and 5. Of particular interest on
account of its applications is the case N =2 (see
Refs. 24 and 25). Notice that in this instance the
following particularly simple expressions hold:

az,u=% (D +2), (4.11)

(N=2,2)=2 (z+1) a2, (@)

Table I exhibits the corresponding results for
D =3, which are compared to the ones obtained
by Ehlenberg and Mendelsohn?! employing Padé
approximants. The agreement between both sets
of results is excellent.

C. A special anisotropic case

We shall consider now the following anharmonic-
ity

D D
VE) =2, Za PRI (4.13)
j=1

i=1

which, for D =2, has been extensively studied by
Hioe et al.®® The associated ¢ function is

%Z Z (26,,+ Vi, z:2,, (4.14)

?(z1,...,2p)=

TABLE I. Results for the three~-dimensional anhar-
monic (isotropic) oscillator, where the anharmonicity is
of the form A»?Y, For different values of the anharmonic
coupling constant A, the second column displays the GS
energies obtained with the present approach, which are
compared to those of Ehlenberger and Mendelsohn
(third column)., The agreement (%) between the two sets
of results is exhibited in the last column,

A Eppp EEM %
0.01 1.518303 1.518 263 99.99
0.05 1.584259 1.583 613 99.95
0.2 1.773 386 1.769 503 99.78

1 2.339118 2.322 655 99.29

which leads to

D
1
EO(Z!,-",ZD :EZ[

1=

D
A
+§ Z (20;; + l)a”ziz,-],
2 7=

(4.15)

which is to be minimized with respect to the z;.
We shall compare to those of Hioe et al. (for D =2)
our results for the GS and for the first two excited
states, i.e., €g9, €,,, and € ;. This is done in Ta-
bles II-VI. The agreement between our approxi-
mate results and the exact ones of Hioe et al. is
very good.

In the special case of “spherical coupling” (Hioe
et al., Ref. 26)

fuTan=1 =4o0=a (4.16)
a;;=b for all i #j ,

one can guess a priori that, on account of the
symmetry introduced by (4.16), the values of z;
which minimize the GS energy will be character-
ized by the property

Zy=29=‘‘'*=2p=2z. (4.17)

Our problem then reduces itself to the one-
dimensional one. The corresponding task is thus
that of minimizing

eo(z)=p[l

: (z +§)+%[b(D ~1)+ 3a]z2] (4.18)

with respect to z. This expression coincides with
the corresponding one of Sec. IVB for a=b=1.

TABLE II. Ground-state energies for the anharmonic,
anisotropic case (D=2) of Eq, (4.3), for different ani-
sotropies [as given by the parameter ay, (see text)], as
functions of the corresponding coupling constant A, In
all cases the upper figure is obtained with the techniques
described in the text, while the bottom one has been
taken from the work of Hioe et al.?® The degree of
agreement (%) between the two treatments is displayed
to the right of these numbers. ay;=ay;=1.

>\“12 1 0 -1

1.0853 1.0662 1.0457

0.05 1.0843 99.91 1.0653 99.91 1.0443 99.86
or I oo I g L g
05 Y ses0 T g 1 g
LI e 1 s S g
o D e D00 e 2T aum
o0 IO e 030 e ENT s
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TABLE III. Energies of the first excited state, in the
anharmonic, anisotropic case described by Eq. (4.3).
All remaining details are similar to those described in
the caption of Table II.

Nm 1 0 -1

0.05 zziggz 99.89 ngzg 99.86 iigig 99.64
0.1 Zﬁzg 99.78 zgg:z 99.70 ;;gi 98.69
0.5 332‘1’2 99.43 g:g;zz 99.10 zzggi 96.14
L Sas0a P2 gy 98 gocce 9435
5 gooes MU oapep 9842 4 hiic 90.68
100 iggig 98.97 iizgfg 98.17 ﬁ;;‘;’ 87.84

The minimization problem posed by Eq. (4.18) can,
of course, be solved analytically, providing us
with simple expressions for any values of D and )
no matter how large they may be.

In particular, if we call ey=¢€,/D we obtain the
following results in the limit of very large x:

34/3
egla=1,b=0)—-——2"/3

(4.19)
a1
and
egla=1,b=1)—3(1D)!/3 (4.20)
A1
D>»1

so that the ratio between the coupled spherical
result (a=1,5=1) and the uncoupled one (e=1,
b=0) becomes independent of the coupling con-
stant 1 :

_eo(a=1,b=1) D1/3~ 1/3
@=L 5=0) T 0.693D'/3, (4.21)

D>»1

NoM g 2 o [2+m)]1
¢(ZI,...,2D)=E 2 471”"(21“("""’. )L(:lq*'f‘;ﬂn—q)—!]—

D. The doubly anharmonic oscillator

As a final example we shall discuss the following
anharmonicity which has been studied in the one-
dimensional case!®-?" but not, as far as we know,
in the D-dimensional one,

Vir)=agot+agt,
(4.24)

Here we also have “spherical” symmetry and,
consequently, just one variational parameter z,

TABLE IV. Energy of the excited state €; in the an-
harmonic, anisotropic case described by Eq. (4.3). All
remaining details are similar to those described in the
caption of Table 1I.

bos T gy DA oo B0TD G,
01 S gorm ST g0re 320 s
05 T s LT oy D90
LR e s 5% i
S NE e SO s 2T e

TR TS

This result is to be compared to that estimated
by Hioe et al., ¢ =0.738D!/3. Hioe et al. have
rigorously shown, for the case D =2, that both
efa=1,b=1)andeya=1,b=0) grow as »'/3 for
A large enough.?® Our approximate results (4.19)
and (4.20) display the same behavior, but for any
D.

We show in Table VII results for ejla=1,b=1),
i.e., for the ground-state energy of D coupled
oscillators (A =1), both in order to illustrate the
corresponding energetic behavior and the power
of our approach.

It is easy to extend our treatment to the follow-
ing generalization of the anharmonicity (4.13)

N M D D

V(xy,...,xp)= A T T
n=0 m=0 i=1 j=1
(4.22)
the associated ¢ function being
3 (2n)1(2m)1
n+m (n,m) : n, m
23 +;a“ nim 2% ) . (4.23)
I
¢(2)=n83,p 2* +29a3,p2° (4.25)
with
az'DZ'%D(D +2), (4.26)

as,p=3D(D +2)(D+4).
The GS energy arises from the minimization of

1
Eo=§-(z +;>+%D(D +2)z +z\81D(D +2)(D +4)z3.

(4.27)
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TABLE V. Ground-state energies for the anharmonic, anisotropic case of Eq. (4.3) for a(;=0.8, ayy=1. All remain-
ing details are similar to those of Table II.

Nﬂ

1 0.8 0.6 0.4 0.2
005 Uoe %9 lirss 999 gy 9999 gy 9995 Upgy 93 gy 9989
01 g 0 ylgw 992 oo 98 g % (g 998 Qg 999
05 Ywr N i 9091 gy 95 hgs W oy 951 gy 9948
08 i B lgg 9995 lge 0 (Gg 95 g 999 g, 997
0T e T ipn OB e 2 G 92 gy 99 g 99
Do fnoss S s 92 igss 0N oy %M1 g, 905 gy 9697
S Seme S low ST GG 98T Tl S Jugy S0 il 9944
0 Toen %6 ey 98 g 9886 g 95 [y 0845 gy 9830
W Shme W Shgi 994 e 9881 iy S5 gy 8833 g 98
100 ghgs SSL ghngy 951 ghys S48 gingg 9842 gy 9980 g 9609
W0 s 945 iihg 940 e U6 ogn 9999 go7p 9926 g 9809
W00 Diges AP Gigy 9840 Dl 9 Tl 980 nilm 9825 Gl 99
TABLE VI. Ground-state energies for the case ay;=0.4, ayy=1. For further details see
Table II.
AT 0.8 0.6 0.4 0.2 0
005 M0 au 100 ot MU oo MO a1 aes
ox T poss M gpup IS g MO g 10 g
05 I g IS geae 1D g LI 10 g
o7 TS s 1O gogy MO goq M g 12 g
DL g MM g LI g 1 s T
ST a2 s B an ZEE an PN g
0 R S S T st 2 s
o AN e MES s M gum BT g 30 g
00 oy Tl gy BB gy 949 g 9937 g v
0 lgSes S ighp W gl 95 ghggy 9997 gy 9900
W00 Gyhae 9T ol P8 piGn 98 jogi 9841 pohgy 9604
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TABLE VII. Ground-state energy of D coupled oscil-
lators (in units of D) for A =1 [see Eq. (4.18)].

D ey/D
1 1.4033
2 1.4864
3 1.5594
4 1.6250
5 1.6849
10 1.9288
100 3.6105
1000 7.5549
10° 34.823
1020 3481192
10% 1.6158 x 101
10% 3.4812 x 1016
10% 7.5 x102°

V. CONCLUSIONS

A simple variational procedure has been pre-
sented which allows one to obtain an approxima-
tion to the energies and wave functions of the
Hamiltonian (1.1). The method is based upon the
idea of introducing into the uncorrelated harmonic-
oscillator states the correlations induced by the
presence of anharmonic terms via a unitary oper-
ator e'¥, which is determined by the variational
principle. This approach can be applied to any

even function of the D coordinates that admits of

a Laplace transform. In particular, it is seen
that our treatment is able to deal with anisotropies
by considering them as special types of anharmon-
icities. A rigorous upper bound to the GS of the
Hamiltonian (1.1) is provided by the present ap-
proximation.

Some advantages of the present approach de-
serve special comment. It allows one to deal, in
a very simple way, with the whole unperturbed
basis, without truncating it. The numerical work
involved is, in most instances, quite simple.
Neither difficult numerical integrations nor large
diagonalizations (as required by other methods)
are necessary here (as a matter of fact, all cal-
culations reported here where carried out with a
Texas Instruments TI59 calculator). Further-
more, in many interesting cases the solution can
be found analytically and, consequently, large
values of x or D do not pose any problem. Finally,
comparison with exact results, as illustrated in
Sec. IV, shows that our approximation yields rath-
er good results. One may thus assert that our
method may prove to be useful to obtain upper
bounds to the GS energy in those cases in which
exact treatments become too involved and, in
other situations, provides a quick estimate of the
corresponding results.
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