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The supersymmetry OSp(4/2) provides a natural classification group for gauge fields
and their fictitious partners, needed for gauge fixing and restoration of unitarity. When
the gravitational field and its adjuncts are so treated, with appropriate geometrical restric-
tions on the geometry of the superspace, a natural extended Becchi-Rouet-Stora {BRS)
symmetry emerges for gravity in which the ghosts appear on an equal footing. The re-

sulting action, invariant under gravitational BRS transformations and their duals, differs
from the conventional asymmetric form. The validity of the new BRS identities is veri-

fied at the tree and one-loop levels.

I. INTRODUCTION

Although of recent origin, the concept of
Becchi-Rouet-Stora (BRS) invariance in gauge
theory has proved extraordinarily fruitful. Taken
in conjunction with the fictitious field equations,
the global BRS symmetry of the action is strictly
equivalent to the original local gauge invariance, '

and it has greatly facilitated the renormalization
program of unified models as well as shedding new

light on the unitarity of the theories. Soon after
the discovery of the original BRS symmetry for
Yang-Mills theory, it became apparent that the La-
grangian admitted another "dual" BRS invariance
in which the role of ghost and antighost were

essentially interchanged. The question then arose
as to whether gravity, with its own BRS symme-

try, also admitted a dual invariance. It became
clear that simple "trial and error" methods, based
on the analogy with vector mesons, would not
work and the indications where that radical modi-
fications of the ghost Lagrangian would be needed
to permit the dual transformations.

In parallel with these developments, the ideas of
supersymmetry proved beneficial to the develop-
ment of gauge theory. It becomes possible to in-

corporate the Yang-Mills field and its ghost (+
antighost) into a natural gauge supervector by ex-

tending space-time to a six-dimensional superspace,
admitting an OSp(4/2) geometrical supergroup [see
also (Ref. 9)]. The associated supertranslation and

Sp(2) invariance of the Lagrangian then finds its
natural expression in the ordinary plus dual BRS
symmetry of the theory, where the fictitious fields

enter on a completely equal footing, a situation
which is reflected in the "Hermitian" limit of oth-
er treatments. ' " The symmetrical OSp(4/2) La-
grangian differs from that of the traditional treat-
ment by a BRS variation" which produces a renor-
malizable, four-ghost, coupling among other ef-
fects. Nevertheless, the on-shell S matrix is
deemed equivalent to the conventional one as the
changes merely imply field redefinitions. It is
worth pointing out that, although the superfield
approach to BRS symmetry differs from the
description in terms of the intrinsic gauge
geometry, ' nevertheless (in the Yang-Mills case)
the extended BRS transformations agree. "

This supersymmetric version of gauge theory has
led us to reconsider the notion of dual BRS varia-
tions for gravity. In a recent letter, ' we have
demonstrated that a supersymmetric OSp(4/2)
treatment of gravity successfully admits dual BRS
transformations and, as anticipated from the Sp(2)
structure, the ghost and antighost enter in a totally
symmetrical manner. The ghost fields interactions
with the gravitational field (and an auxiliary field)
are nontrivial and could not have been guessed be-
forehand. In this paper we would like to expose
the details of the construction which, for lack of
space, were suppressed in the letter. We shall go
further and establish fully and verify properly the
ensuing BRS identities for the Green's functions of
the new action.

In Sec. II is given the geometrical concepts
underlying the local OSp(4/2) formalism, with par-
ticular emphasis on the sechbein and "spin connec-
tion" aspects. The restrictions needed to ensure
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Aatness in the spinorial directions —a kind of di-
mensional reduction in the fermionic degrees of
freedom —are determined in Sec. III. This is the
heart of the paper and we are able to establish the
BRS transformations in terms of the restricted
metric. The associated action, gravitational plus
ghost, is constructed in the next section; it is of
course invariant under the extended BRS varia-
tions. The gauge-fixing term in general contains
an arbitrary scalar weight p; we take advantage of
the weight p =0 in order to simplify the Lagrang-
ian and arrive at a relatively simple action, associ-
ated with the de Donder gauge. Next the new
BRS identities are derived and explicitly verified at
the tree level in Sec. V. Section VI establishes the
correctness of the self-energy identities to one-loop
level, and finally Sec. VII contains a discussion of
the S-matrix equivalence of this work with the
conventional formalism. There are three Appen-
dixes: the first is very short and merely sets out
our notation; the second shows how the new action
is BRS invariant, without reference to earlier work;
and the third lists the Feynman rules required to
check the identities of Sec. VI.

under local OSp(4/2) transformations. [These are
simply the extension of Weyl's local SL(2,C)
transformations for gravity into superspace. ] The
spin connection P is a Lie-algebra-valued one-form,

(2)

wherein JzB are the local superalgebra generators.
Taking matrix elements of (2) and using (A. l), we
have simply (P)z Pq

——=dX /sr' Fro.m this
point of view an OSp(4/2) transformation
engenders the change

The dynamical fields are the sechsbein E~ and
the spin connection P~z and, under general coor-
dinate transformations, they naturally behave as
supervectors,

()x~ ox"
A(Xi) E A y~ AB(Xi) y

AB
M ~~M N & M

(4)

II. SUPERSPACE GEOMETRY
AND LOCAL OSp(4/2j SUPERSYMMETRY

They are of fundamental importance for treating
fermionic matter. Secondary quantities are the tor-
sion two-form,

Our development of local OSp(4/2) supersym-
metry will follow the formalism of Wess. '" The
geometrical arena is that of six-dimensional super-
space, parametrized by local coordinates
X~=(x~,8~) and equipped with a structure group
OSp(4/2). We consider a basis of local one-forms
(see Appendix for notational details),

E"(X)=dX E

which transforms into

gBU A

yA gEA EBy A

the metric tensor,

G~~ EM [AN]E~=q

and the curvature two-form

~A ~ 4 '@ac
For the case of pure gravity, the torsion can be

made to vanish (Riemannian geometry) and one
obtains relations between E and P which can be
solved algebraically as

0r~w =
g [(dz E~ [fM]r)~Er. )Ex—g [&N] [~M][&Nj('d~E—N" [MN]d~E~")E~—„[AL]

+[LN][MN](r)JvEr" [LN]'d~E~")E~„—[AM]] .

Under these circumstances the covariant derivative
for matter fields (in some representation),
(Dg)'=dg' P(P)J', reduces for—tensor fields to
the usual rule involving the Christoffel affinity,
namely, with
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I L= —,(a G +[MN]a G

—[KM][KN]aK GIN )G (9)

R, "=a,r, N [KL—,]a,r
—[MI.]r 'r„"
+ [KL][KM]I LM I zK (10)

It is possible to reexpress (9) and (10) directly in
terms of sechsbein field, but that is needless for
our purposes.

III. FERMIONIC FLATNESS
AND EXTENDED BRS SYMMETRY

where 6 is the inverse of the normal covariant
metric 6~1 . The curvature then assumes the con-
ventional form (see Also Ref. 15)

it follows from (11}that R" "~a&A"=0. Since R is
arbitrary over ordinary space-time, A" must be in-

dependent of the argument x over the region.
Hence the most general finite coordinate transfor-
lnation over superspace compatible with (11) is

x"=-P(xp)+8p co "(xp)+ , 8p B—"(xp),

8 =g (8p) .

However, g (8p) and P(xp) correspond, respective-

ly, to a trivial 0 reparametrization and an ordinary

general coordinate transformation. Therefore, in

addition to these, the most general fermion-boson

mixing transformation is

xI'=xp" +8 co "(xp)+ , 8'&"(x—p),
(13)

gm gm

The general superspace formalism describes
more component fields than are required for con-
ventional gauge fixing and ghost compensation of
the gravitational field. We know, a priori, that we
can get by with g&„ the ghost field m&, the an-

tighost co&, plus possibly an auxiliary field 8&.
Therefore we shall impose constraints which re-
strict the dependence of the superfields on the fer-
mionic variables, constraints which are reminiscent
of dimensional reduction, ' and which eventually
lead us to the minimum number of desired fields.
We achieve this end by imposing flatness in all 0
directions.

Specifically we assume that for suitable coordi-
nates, the (contravariant) curvature tensor attains
the form

g xApn g zA, mn g vlmn g klmn

with no restriction on R"" . Consider then two
coordinate systems (X) and (Xp} differing infini-

tesimally, X =Xp+A(Xp), such that (11) holds in

both. Since

R KLMN(X) R KLMN(X ) +R KLMP(X )a AN(X

+R "(X,)a A (X,)[MN]+

Being locally flat, superspace admits canonical
coordinates such that

GPv(X) ~Pv GPB(X) () gm1l(X) ~ml!

for X in the neighborhood of a given point Xo.
Allowing then for ordinary general coordinate
transformations on 6" we may corisider coordi-
nates Xo such that

G""(Xp)=g&"(xp), G" (Xp) =0,

G mlt(X ) Email

which are sufficient to guarantee (11). From this
starting point, the most general coordinate system
remaining compatible with (11) comes from the
transformation law

A@M

gal%

g MN(X) g LK(X ) [LM]' ox,~ ox,~

with the (dimensionally) restricted variations (13).
We thereby establish

(16b)

G~"=g~ M~-+—8-[(g'"a,+a }~ ~+(g'~a, +a~)~." ~.'a, (g—~" ~~~"")]

+ 8[RKaL(gP~ —~& ~m~)+(RPa~L +/~a~"P)+2RPR~ (RP~" +R"~& )aKromL

+(a~ ")g" (a co")+a~ "(g "a co +g "a io" )+co "(—,co a„+a~ )a (g""—co" co ')], (16a)

G "=~ "+8„(~"'a,~ "+a"~.")+—,'8'[(~'a„+ —,'~"'~"„,a„a~+"' ~a"„)a~." ~+' aa"]

6mn mn
(16c)
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~p p g~m gm+ &m (17)

where the arguments on the right are x, not xo.
Now amongst the 9 reparametrizations compati-

ble with (12) are the supertranslations,

Above, e is associated with the ordinary BRS
transformations while e provides the dual- or anti-
BRS transformations. The analogy with the
Yang-Mills case is striking and complete.

E),62 =C, 6', m " o) "=co"co"'

The gravitational extended BRS variations (18) can
then be recognized in the form

5N'= e(co Bxcoc')+—e(B"+co c}xcoI'),

5col' =e(B" co c}qco") +e(c—o c}xco"),
ca~ = —~~'a,a~+~~'a,a~,
5g&"=&(g&'a,~"+g'"a,W ~'au& )

e(g~"a„V"+g'—"a,co" m'e~~ ), —

5e "=e(e c)xco" co c}xe "—)

e(e c}g—co" co dye —") .

(20)

This means that the composition of (17) and (12)
should be the same as (13) with different functions
co'" and 8'" succeeding a general coordinate
transformation x'=x+.A(x). It is straightforward
to verify that this is indeed correct and, for infini-
tesimal e, the field variations read

A,"(x)=e'co, "(x),

5co,"(x)=e,B"(x)—e cog'(x)c)„co,"(x),
5B"(x)= e'co, "(x—)c},B"(x) .

A check on these transformation rules comes
directly from the sechsbein variation,

5E„(x,8)=E„(x,8+e) E(x,8—),
where the coordinates corresponding to (15) are

E "(Xp)=e "(xp), E,"(Xp)=E (Xp)=0,
(15')

E, (Xp) =5,
The traditional notation for ghosts and an-

tighosts is recovered by putting

IV. GAUGE FIXING AND
BRS-INVARIANT ACTIONS

Given the restricted nature of the transforma-
tions (12) or (13), we only consider actions which
are supertranslation and Sp(2) invariant, as well as
being generally covariant in the ordinary sense be-
fore gauge fixing. The construction of these fol-
lows standard superfield techniques. The first part
of the action is chosen to reduce to the usual Ein-
stein form and is written

Wp —(2E )
' Jd XX v' GR —G~M, (21)

where 6=—SdetGxi =berGgL, , and R~~ ——RM gg.
The Einstein action falls out of (21), remembering
that v' —Gd X is fully OSp(4/2) invariant and
that the factor X does not destroy translation in-
variance, but is just there to select the appropriate
superfield component.

For the gauge-fixing piece we look for an action
which breaks general coordinate invariance. Since
we wish to retain the flat or Minkowskian symme-
try (rather than proceed to an axial gauge where
even this is abandoned) we have the luxury of in-

troducing the flat metric I+I. Given these prem-
ises, we will take the (two-parameter) gauge-
breaking action to be

W, =(2'')-' Jd'X(& —G )' 'G 'Iix

8'& may be simplified by moving back to the
standard coordinates (xp, 8p). The pth power of
the Jacobian enters and the result is

(23)

2''~, =( g)" ""[2g"a,B—~+2-B B~ g"'(a~~')(a„~",—)]~„,
+(—g)" ~'~'p

[ —2(c} co ')(B"co,"+g" c) co,")+(g"'+co"'co,")[c) B + —,(c)~' )(& co,")]]g„„

+(—g)" ""p'[(g"'+~"'~.")[——, ~(~~' )~(w.
"

1)n]„

The p =1 form was given in our letter, ' but the

p =0 case is an elegant alternative which also has
the correct ingredients for gauge fixing. When
p~0 the full Lagrangian simplifies to

I

gZ '[R +g '[g'—"a,B~-+B"B~-

—"g'(a ~)(a„)]q„, ](24)

and the invariance of the action under the full
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BRS transformations (20) is verified, ab initio, in

Appendix B, as confirmation of our initial deriva-
tion. The case of arbitrary p is also mentioned
there.

Observe the symmetrical way in which co and co

enter above, in contrast to the conventional treat-
ment.

Make one last simplification of (24). Rescale the
auxiliary and ghost fields (without effect on BRS
transformations}.

B BE, co +Kcog—'

ggl4~ —gP"+Kgb& (26)

whereupon the BRS variation on the gravitational
field transcribes into

(25). We shall only examine the BRS variations
and the identities for them since the dual identities
can be similarly derived and just amount to conju-
gation. In fact, because of the inherent symmetry
between the ghost and antighost, the information
content in either set is the same. The graviton
field P in (25) may be defined via

and pick on the gauge parameter g= —1. Then

W=v' —g [R/K'+ri„, [g ~agB" , B—"—B"

(25)

Elimination of the auxiliary field 8 reveals that
one is working in the de Donder gauge. On the
other hand, the limit $~0 in (24) amounts to the

harmonic gauge, the gravitational counterpart of
the Landau gauge for vectors. Such a limit yields

Nakanishi's Lagrangian.

5PPv eDPv ~A,

D~;= a,y~"—g"a,—+(5,y""+5 / "~)a„

+K ~(5,„-+5",„~" &"g}a„.

Add to the action the following source terms

Ws —— Jq„P"" —stot' J—pe" K—qB"—
I„(B" to—agro" ) —I„,D" gco—

"

+r„~'a,w+~„~'a,a~,

(27}

(28)

29)

V. THE GAUGE IDENTITIES

We shall now derive the gauge identities for
Green's functions in the new symmetrical version

including the composite source couplings to I and

L; the latter will have vanishing BRS variations
due to nilpotency. Begin with the vacuum generat-

ing functional

Z[Jq„. . . , Lp]= J(dgdBdcodoo)exp i Jd ' (xW+W s

The BRS invariance of all' but the source terms yields the primitive identity

(31)

d2l~ J +J +J +g Z O
5, 5 (30)

p~5Iz p 5Iz tz 5Iz p 5Lz
pv P P jtl

As usual, pass to the effective action by going over to the connected vacuum functional i8'=lnZ and taking
the Legendre transform

I [P"',co&,to",B";I„„,I„,I„,L„]= W'[J„„.. . , L„]+Jd 'x (J„„P""+J„co"+J„to"+K„B").

[In (31) we have taken the liberty of using the
same symbol for the classical fields as for the cor-
responding functional variables; it should not cause
any confusion. ] The gauge identity (30) is reex-

pressed as

sr sr sr sr sr sr
5P"," 5I'„„5'",5I'„5m", 5I'„

I

Its elegant form has been guaranteed by the extra
source terms incorporated in Eq. (29).

Note that (32) is rather general and does not lean
on the particular values p =0 and g= —1 adopted
at the end of Sec. IV. However, in our attempts to
verify some consequences of the BRS identity we
will be obliged, in the interests of computational
simplicity, to assume these special values of p and

The special Lagrangian (25) does not contain
very many terms, leads to simple Feynman rules
(Figs. 1 and 2, Appendix C) for perturbative calcu-
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i (q„„k„+q„„k„-q~„k„)/k'lC

~ QMhN(il((HVN 0
Z

= ~&'('( '(-'"(r 'r~ "(t."(t-/' "~- (&}"'(-'&r)' '(~'& & '(r '&&"la)j
t. (p&)'v ~'lvi)'p )p"+J

FIG. 3. Tree-level satisfaction of identity (33)~

FIG. l. Propagators for graviton P (wavy line), auxi-

liary field 8 (solid line), and ghost field co (dashed line).

lations, and means that our verification of (32) at
tree and one-loop level will not be too arduous.
For the rest of this section, we shall content our-
selve with checking some identities at tree level.

One has to operate on (32) with enough fields to
leave zero ghost number. First, take 5 /5+ 5' .
Then we expect that

5'r 5'r 5'I 5'I
d 21Z

5P," 5+ 5I„',5' 5r),"5rok 5I„'5+

5 I 5 I 0 (33)
58,"5P 5I.p5coy

The satisfaction of this relation is given diagram-
matically in Fig. 3 at the classical level, using the
Feynman rules of Appendix C. Second, operate on
(32) with 5 /58 "5' to yield

52' 52' 521 52'
21Z

51 51
58,"58„"51.pe)y

l (Spa)

p
r——+

Again this is readily seen to be true at tree level;
see Fig. 4. We have tested other identities ( by
operating with 5 /5'"5'"5', etc.) at tree level
and find that they are all obeyed, giving us reason-
able confidence in the whole construction.

VI. ONE-LOOP VERIFICATION

The real test of (32) lies in the quantum correc-
tions. We shall therefore provide a check of (33)
and (34) at the one-loop level since these identities
are the only ones not involving full three-point (or
higher) vertex corrections, which are notoriously
unmanageable in gravity. For the self-energies in
(33) we can also lean on previous research' to
lessen our labor. The work is nevertheless consid-
erable, so much so that we would contend that the
demonstration is totally nontrivial. Nakanishi and
Yamagishi' have checked the "choral" invariances
associated with the /=0 Lagrangian, complement-
ing our work.

For obvious reasons we shall rely on dimensional
continuation as the regularization method of
choice. That is, we continue our basic superalge-
bra to OSp(21/2) and then proceed to the limit
l~2 in order to expose the proper infinities; re-
mark that the ordinary space-time is being extend-
ed, not the fermionic dimensions. There is nothing
we have developed in previous sections which does
not generalize in an obvious way to a full (2l +2)-
dimensional superspace. No obstacles occur which
prevent our replacement of d X by d '+ X and d x
by d 'x. Certainly the BRS variations (20) are
equally valid when l is arbitrary.

The graviton self-energy,

FIG. 2. Primary three-point vertices. Algebraic
values of I are quoted in (C7).

1 -t
) '+NW4 - ——— y (- ———-) ~I 1' I

k (Pj iK + }'v )ala) '((pxPv+ (vA)p (pv)a) — ) gg~. 6 K

FIG. 4. Tree-level satisfaction of identity (34).
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FIG. 5. Graviton self-energy due to intermediate

gravitons, ghosts, and auxiliary fields. Tadpole graphs

are neglected here and subsequently. FIG. 6. One-loop contribution to 5 I /5I„,5~ .

$2+
z

= [d„pdq, +d„Pqp —2d„~dp, /(2/ —1)]n.&+(d„pe~„+d„e~p+e„pdq +e„dip)rr2KP V K P K PV

+eKgepvrr3+d„t„dpvn4+(eKgdpv+dKt, ep )rr5, (35)

with

2=dpv(P) = fpv PpPv/P = /pv epv(P) ~

receives three distinct kinds of contributions, depicted in Fig. 5: from intermediate gravitons, from inter-
mediate auxiliary fields, and from intermediate ghosts. The intermediate graviton contribution to it has
been isolated in Ref. 18 and for us it is sufficient to abstract a subset of their results, translated into our

decomposition, viz.

Q"'"=p I/16(2/ —1), nf" (2l —1)r—r$""=p I(7l —5)/8(l —1),
rr5"'" (2/ —1)rr—f"" p I (5/ ———3)/8(l —1)(21—1)

with

I~'( —p')'-'r(2 —l)r(l —1)r(l —1)
(4m. )'r(2l —2)

The auxiliary field contributions must, however, be worked out from scratch. The answer is

(36)

(37)

5 1'"" P I 5l —3d d +(d„e „+d, „)l +3l —2 (l+1) „e „
gyKggypv 16(l 1)2 2/ 1

KA pv+ KX pv+ pv KX
2/ 1

+ + KA pv (38)

Last but not least there is contribution from intermediate ghosts which, for our ghost-symmetric Lagrang-
ian, turns out to equal

g2I ghost

$$Klj.6+V
Ip4I

8(4/ 1)—2 [d„pdt„,+d„„d~p+d„~dp„+(2/+1)(e„qdp„+ep„d„t„)+(4/ 1)e„pep„] . —(39)

From (38) and (39) we note the relevant combina-

tions,
aux ~host

tr3""—(2/ —1)tr5""—— p I (l +3)/16(/ ——1),
rr5""—(21 —1)m.4""———p I (9l —5)/16/ —1)(2/ —1),

(40)

The next vertex function of interest is

6I p.(dP"I'+eP 6—)+(p'd".+p"d')0
6I„5co

In one-loop order, using the effective interaction

Ip„DP"geo =BgIp„PP'ro +2Ip,g "BgroP,

(41)

Q""'—(2/ —1)n.sg""'——rr(""'—(2l —1)m I""'

=0.
we have calculated (Fig. 6) the scalar functions of
(41) to be

FIG. 7. Ghost self-energy in one-loop order, zero by
dimensional regularization. FIG. 8. One-loop contribution to 8'1/5I„8$~ .
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~-+~
/

FIG. 9. One-loop contribution to o5I /51.„5co . FIG. 11. Mixed graviton —auxiliary-field self-energy.

I. =-,p r, G = ——,p I, H =O.1

(42)

Next there is the ghost self-energy 5 1 /5'"5' .
We have discovered that the one-loop correction
(Fig. 7) vanishes identically by dimensional regu-
larization. We do not know whether the result
persists in higher loop order but remark that it has
a character similar to the last equation (40). The
one-loop contribution (Fig. 8) to

with (42), (44), and (46) the reader can convince
himself that indeed they are. In fact the complex
character of the manipulations and the almost
miraculous combinations in (47) convince us that
no serious error has occurred in our work.

The second identity (34) is perhaps easier to
check. There are just three new vertex functions of
interest,

52r
p&(d& F—'+ez G')+(pzd "+p d&")H'

5I„5+
(43)

has likewise had to be computed ab initio. We
find

5I =d"gD" +eI'gE",
5Iq5B

the auxiliary field self-energy,

5'r
5B~5B"

=dp„D'+ep E', (49)

F'= p I/16(2—1 —1),

G'= —p I/16, H'=0 .
(44)

and the mixing self-energy,

5'r
d I'+ e G"

5~@~5~g pK pv pic pv

For the remainder it is not necessary to determine
5 I /58 "5+ beyond the tree level because
5 I /5L&5' is purely one loop. Let

5I =d"gD +e"gE .
5L„5'

Via the effective interaction L&co B~B"we derive
the vertex rule

(45)

I [Lq(p)B"(q)co (r)]=iq 5q"

and go on (Fig. 9) to evaluate

D = —p I/8(21 —1), E = p I/8 . —(46)

mg —(21 —l)m4+ +p F'=0p'(F +G)
2(1 —1)

(47)

are obeyed. By adding (36) to (40) and comparing

Putting all these computations together, the identi-

ty (34) devolves upon finding if the relations

2~, +D =0, G'=(2l —1)F',

+(p„d.v+pvd. ~)H" . (50)

and

D'=p I/4(21 —1), E'=p 2I/4 (51)

F"=—p I(91—5)/8(l —1)(21—1),
G"=p I(l —5)/8(l —1),

H"=p I/8(21 —1) .

The one-loop level of identity (34) requires that

p H+p H"+D=O,

p G+ —,p [G"—(21 —1)F"]+E=0

(52)

(53)

be obeyed. Again this is borne out by the compu-
tations.

The first quantum loop makes D" and E" equal to
zero because there is no d&'rect interaction between
auxiliary field and ghosts. For the rest we have
evaluated (Figs. 10 and 11)

VII. S-MATRIX EQUIVALENCE

FIG. 10 Auxiliary-field self-energy.

With the introduction of a multiplier B field we
may write the conventional gauge-fixing and
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Faddeev-Popov ghost terms of gravity, [we have
needed to use g rather than g as defining the gravi-
ton field here in order to enable a comparison with
(57) below] as

W =a~&"8,+ , gZ—'8~8„m"d—t'u„„~' .(54)

This Lagrangian is invariant under the BRS
transformation

We want to compare this with the Lagrangian (23)
having p =1, corresponding to the gauge-fixing
term chosen in a recent letter, ' up to an integra-
tion by parts. After appropriate partial integration
of (23) the resulting Lagrangian is invariant under
the transformations (20), to which we can add the
extra transforrnations

oB" =5(8" co —deco")=0,
(56)

5gq, =e„„geo, 5' = —ee"B„co

59 =F8", 58&=0.
(55)

58~+ 5(8"—+co dt„co")=o

in the BRS case and dual BRS case, respectively.
The gauge-fixing Lagrangian (23) becomes

~,=ay„g» ,
'
a,~~—'g—~ a.~„.+ ,

'
F8~8„—SC' ,

' (B~a—,+——,
' W'~;a, a.+W'a,~;a.)g""g„„

,'Z'PB—~—a,~~'~„.+ ,'W'~;a—,a.~~'~„.+W"a,~,a.~~'~„.

(57)

(58)

and maximal cancellation of terms in the dual BRS transformation was found for

If we rewrite W&, in terms of the 8 field, then &2 and W are invariant under the usual BRS transforma-
tions, i.e., set (55) (just exchange 8 and 8 ). Hence the ttvo Lagrangians differ by a term, that is itself invari

ant under the BRS transformation.
We can now invoke an argument of Zinn-Justin" which states that if we add a term to the action which

is invariant under BRS transformation, it is equivalent to a redefinition of the field coupled to the source.
Further, Lee shows that generating functionals differing only in the terms coupled to their sources, lead to
the same S matrix. We find then, that the OSp(4/2) Lagrangian (57) and the c'onventional choice (54) have
the same S matrix Naka. nishi ' has also shown this to be true for a variant of the (=0 Lagrangian. In
Ref. 5 conventional gauge fixing in gravity was shown not to be dual BRS invariant in general. In that
work the gauge-fixing and Faddeev-Popov terms were

~,=a„y~"B.+ ,
' F8~8„rC' a—"a~„„~'—,

5$~ = —ED~ gco, 5co =eco 8~co

5co =e(B"+co&pco +co deco ), 58"=0,
the leftover part of (58) under the dual transformations (59) being

5Wp ——ec)Q'"[c)gco —co c)+'] .

(59)

In Ref. 5 it was pointed out that 5&2 is identically zero in the longitudinal limit g~ cc,' however, there is a
second limit in which 5&2 is zero, namely, $~0, which corresponds to the harmonic gauge. The 8 equa-
tion of motion is

gE 8"=—c)„P"'. (61)

Therefore as g tends to zero, we find that c)„P =0 so the offending piece (60) vanishes and indeed the vari-
ations (59) leave &2 invariant. If the other limit, g tending to infinity, is taken we find instead that 8 =0,
and 5&2——0 again, as previously reported.

It is worth remarking that the /=0 limit in the Lagrangian W~ also reduces it to the harmonic gauge:

W, ()=0)=c)P„g»—, B~d@"'rt„, , d co—"'gI' c} co—,+—co 'd g»B co„,+g»co 'd d co„,

——,( —,co»co, c)~c) +cot"Bzco,c) )g""g„„. (62)
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Here the B equation of motion leads to

/@PAL+.
dV—gP~rI —0 (63)

ticommute (with commutation in all other cases).
With this notation, the matrix elements of the in-
finitesimal generators JAB of OSp(4/2) are

which is the linearized version of the harmonic

gauge expressed in terms of the field g"". That the
/=0 limit reduces the p =0 version of (23) to the
conventional harmonic gauge of (58) can also be
shown trivially. Hence the p =0 gauge-fixing
choice and conventional gravity are one and the
same in the harmonic gauge.

The gauge-fixing choice W& is obtained from the
second variation of g" +co"'co', .' It is interesting
to note by the Zinn-Justin argument that dropping
the terms which arise from the variation of cl'co&,
will still lead us to a theory with the same 5 ma-
trix as the original. Doing this, we find that this
gauge-fixing choice is nothing more than expres-
sion (62). So if we wish to deal with gravity in a
general covariant gauge, and retain extended BRS
the invariance, the co 'co&, Uariations are essential.

APPENDIX A

(JAB)M IMA 5B [~B]IMB5A

and they satisfy

(Al)

EM Ew =5M, Ea E~ ——5 (A3)

Tangent indices may be raised and lowered by
means of the flat metric IAB, and world indices by
the Riemannian metric

GMn =EM"[~N]&bA (A4)

and their respective inverses.
Finally, exterior derivatives of one-forms are ob-

tained through the rule

[JAB ~JCD ) IBCJAD [~B)IACJBD [C&)IBDJAC

+l~B)[CD)IADJBC .

Conversion between tangent space indices and
world indices is made via the sechsbein E~ and
its inverse Ez

Inhomogeneous OSp(4/2) is the group of all su-

perlinear transformations preserving the distance

(X—Y) =(X—l')"IAB(X —Y)

between points in superspace. Taking
X"=( x8'), where

dE'=dxMdx"B„EM',

with dXMdX"= [MN)dX~dX—M, XMdX"
=[MN]dX X, etc.

APPENDIX 8

(AS)

a,P, y, . . . =0, 1,2, 3

are Lorentz indices, and

a, b, c, . . .=1,2

are symplectic indices, we have

X =x ri pxB+8'e, b8

where rt~~ is the Minkowskian (symmetric), and

e,b is the symplectic (antisymmetric), part of IAB.
In the text, early capitals 2, B, C, . . . are reserved
for tangent space indices, while world indices are
denoted by late capitals E, I., M, . . . . Thus

&A,p, . . .=0, 1,2, 3

are Lorentz world indices, and

k, l, m, . . .—1,2

are symplectic world indices. Finally there is the
matter of sign factors [AB), [MN], . . . . We define

[pv] = [pn] = [m v) = 1 and [mn) = —1 correspond-
ing to the rule that two fermionic quantities an-

We would like to demonstrate directly that the
ghost-symmetric action

fd 'x(2g" d~B" 2B"B"& g— —

g'a~&'a, ~".)—r)„, ,

where

5'"'= eb(B"5'b co b'dg~"'), —

SB~=—e~'.a,B~ .

(B3)

For the proof we first note that' in 2l dimen-
sions,

is invariant under the extended BRS transforma-
tions,

5g~'= d'(BqcP, "g+ Bqco', g" —co,B~" ),
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5g =gg„„5g""/(1—I )

=ggpv&( ~ a()xg +(3x~ ag

+a,~."g~" a,—~',g~")/(1 I )—

e (~ gBxg+2g()geo g ) .

Therefore

5( —g)' = ——,( —g) ' —e'(co, ()~+2g Banco", )

= —&~x[~'.( —g)'"J .

Hence

Q[( g))/2B2] — QI (i [~A ( g)1/2]B2

+2ri„,( —g)' 'B"co () B'I
= —~~x[ '.B'( —g)'"]

is a total derivative. We have only to establish
that the remaining part of (Bl) leads again to a
pure divergence. This is straightforward, and we
obtain

(B5)

a[~ ] =—wa, [~"~~,
again establishing the extended BRS invariance from scratch.

g2g~'a, B" g'a~—'a,~".)q„„= ea, (~—'.2g»ag ~'.g"~a~~'a,~;)q„,
where ()"=ri""()xin (B5). Taken together, (B4) and (B5) show that the action is invariant under the extended
set of transformations (20). The generalization to the Lagrangian W in (23) is straightforward but tedious,
and we find that

APPENDIX C

The bilinear parts of (25), comprising the gravitational and auxiliary field, read

~2.= 2 [p'4( v(p»0""( p) 2p) p A—"I (p—»A"( p) p'0„"—(p)4v—"( p)/(21 —2—) J

iKp'P„„—(p)B"(—p) —,
' K'B„(p—)B"( —p),

where the metric now is purely Minkowskian. Adding source terms

~s2= (t)~ (p)J~"—( p) B„(p)J~—( —p—)

we can derive the propagators of the theory, in standard fashion, by inverting the equations of motion,

k (I)&,(k) —k„k (t)„x(k)—k,k P„x(k)—k (I)& (k)/(21 —2) ——,iK [k„B,(k)+k„B„(k)]=J&„(k),

iKk "P„„(k) , K B„(k)=J——q(k) .

By manipulating the left-hand side of (C2) appropriately, we can reduce the field-current equations to

Kk B,=i(2k&J„„kQ„&), k (t)„—,=(Jp„,ri„gx ) iK—'—(k„J+k—g„ri„JcJ) . —

Then without further ado we may read off the gravitational propagators

2 —1, (k ) (..;-,+..-.., ...,.), -
((|„„,Bx)= —(Bx,(I)„„)=i (Kk ) '(k„ri„x+kqg„x —k)(re, ), (B„,Bx)=0

(C2)

(C3)

(C4)

confirming that we have chosen the de Donder gauge. These rules appear in Fig. 1, where they are supple-
rnented by the ghost propagator

(ci)~,co ) = —'))~ /k (C5)

It only remains to give the Feynman rules for the vertices, which arise directly from (25) and (27),

Kyyrxg yg —( K2B BP( Trln()~EQ)/(21 —2)

(C6)
+Kg~"[ ,

'
a„y„,aP"' a,y„„a-'y,"+ay„,a—'y„.+(2a,y„,a'y„"—a„y,'OP„)/4(1 —I)]+~»„,„...„, .
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We may read off the three-point vertices (Fig. 2),

I'[B„P„xB,]= K—r)„gr)„,/4(1 —l ),
I [gp(P}p„&(q) co(r)]= —, Krl—& (P„r~+Pxr„),

r[y„,(P)y„„(e)yp.(r)]= ,'K—g—(ppq +P 9p)(R„„9q,+q„„g,„) , —K(P—'+~'+r')g9p„g„.g,q

1

,K—g—~gpxx+npxq. )(r)opP. +n P&)

K 2+
& 1 l

X[(Pplo+Pcr 1p) 1ak, 1pv+r 'gapa( l~p'VAy+'9~v lAp)] ~

(C7)

the summations being taken over distinct permutations of indices and momenta. The higher point vertices
are not used in the text and have therefore been suppressed in (C6).
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