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The creation of massless scalar particles in asymptotically flat spacetimes containing
shell-focusing naked singularities which evolve from nonsingular initial data is studied.
In the case where the singularity is marginally naked, i.e., its Cauchy horizon coincides
with the event horizon, we are able to compute the spectrum of created particles by
Hawking's method. The spectrum of particles is no longer thermal, but can be expressed
as a quasithermal spectrum with a frequency-dependent temperature. In the high-

frequency limit the effective temperature approaches a constant value greater than the
Hawking temperature. In the more general case where the Cauchy horizon and event
horizon do not coincide, we calculate the expectation value of the stress-energy tensor of
the scalar field in the two-dimensional spacetimes obtained by suppressing the spherical
coordinates. In all cases the energy flux along the Cauchy horizon diverges in a positive
sense. This strongly suggests that the metric's back-reaction to the flux of created parti-
cles will prevent the formation of naked shell-focusing singularities.

I. INTRODUCTION

One of the principal goals of studying quantized
matter fields in classical curved-space backgrounds
("semiclassical gravity") is to understand how
quantization of matter fields affects the structure
and existence of spacetime singularities. Since
quantized matter fields need not obey the usual en-

ergy conditions, it is conceivable that quantum ef-
fects can prevent the occurrence of some classically
predicted singularities. One also expects that the
effects of curved spacetime on the quantized
matter field, e.g., particle creation and vacuum po-
larization, are strongest (and hence most interest-

ing) in the neighborhood of spacetime curvature
singularities.

A fundamental ambiguity in studying quantum
field dynamics in a singular spacetime is the choice
of quantum state at the spacetime singularity.
There is no unique or even obviously preferable
choice which resolves the ambiguity. One way to
partially circumvent this ambiguity is to study
quantized fields in asymptotically flat spacetimes
containing naked (either locally or globally) singu-
larities which evolve from regular (nonsingular) in-

itial data. Such spacetimes are, in some sense,

counterexamples to the cosmic censorship hy-
pothesis. The fact that only a few such spacetimes
are known ' is perhaps the main reason for believ-

ing the cosmic censorship hypothesis to be true.
Presumably a true and correct form of the cosmic
censorship hypothesis will exclude the presently
known "counterexamples" as nongeneric, or having
unphysical equations of state, etc.

Ford and Parker have calculated the flux of
created particles produced by a naked singularity
of the "shell-crossing" sort. This sort of naked
singularity, which can be made regular by treating
it as a distribution (5-function singularity) does not
seem to produce a large flux of particles. Hiscock
has studied particle creation by the naked singular-

ity associated with the end point of an evaporating
black hole. These singularities are not usually re-

garded as counterexamples to cosmic censorship,
since they owe their existence to quantum effects,
while the cosmic censorship hypothesis is usually
considered to be a mathematical hypothesis about
the classical theory of general relativity with classi-
cal sources. Other work has studied the effect of
black-hole evaporation on the locally naked singu-
larities in the analytically extended interiors of the
Reissner-Nordstrom and Kerr-Newman black-
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hole solutions.
In this paper we shaH study particle creation in

spacetimes containing "shell-focusing" singulari-

ties, which are in some ways the strongest present-

ly known counterexamples to the cosmic censor-

ship hypothesis. Unlike the shell-crossing sort of
singularity, shell-focusing singularities cannot be
handled by defining them as distributions (5-
function singularities). They can, however, be el-

iminated from consideration by forbidding matter
fields ( such as dust) which form singularities even

in a flat spacetime.
Since such a spacetime is nonsingular in the dis-

tant past, the existence of a complete past null in-

finity (W ) is guaranteed, and a quantized mass-

less field may be expanded into a complete set of
modes on W . This is a sufficient condition to al-

low the computation of the expectation value of
the stress-energy tensor ( T„,) up to the Cauchy
horizon, although such calculations are currently
only practical in two-dimensional spacetimes or
highly symmetric four-dimensional spacetimes.

The Cauchy horizon associated with the forma-
tion of the singularity will generally intersect fu-
ture null infinity (W+) at some finite value of the
retarded time coordinate (asymptotically, u =t r). —
Since the Cauchy horizon is an absolute barrier to
prediction, there is no justification for even assum-

ing that the totality of W+ exists (i.e., the entire
range oo & u & —ao ). It is thus generally improper
in such spacetimes to assume that the quantized
field may be expanded in terms of a complete set
of basis functions on W+. Techniques such as Bo-
goliubov transformations may be used rigorously
only in spacetimes where complete sets of basis
functions are known to exist in the asymptotic past
and future; there must be no Cauchy horizon inter-
secting W+.

To overcome this problem, we collapse a spheri-
cally symmetric cloud of matter in such a way that
a curvature singularity forms inside and just on,
but not outside, the absolute event horizon. Since
the Cauchy horizon associated with the singularity
then coincides with the event horizon, the existence
of a complete future null infinity is guaranteed,
and the problem of choosing boundary conditions
on the singularity is avoided. The initial vacuum
state on W can then be expanded into a complete
set of modes on W+, yielding the created particle
spectrum there exactly as in Hawking's original
calculation of black-hole radiance. ' The crucial
difference between our work and Hawking's origi-
nal calculation is that regions of arbitrarily large

curvature are visible from W+ in our model space-
times; the singularity formed in the collapsing
matter is "marginally naked. "

The quantum particle creation in this model is
computable and finite as seen by distant observers,
except in one special case. The spectrum is no
longer thermal, due to two separate effects: (I)
%ave packets scatter in the region of intense cur-
vature very near the singularity. (2) Even neglect-
ing such scattering, the geometrical optics approxi-
mation to wave propagation near the singularity
differs from that in weakly curved spacetime. The
resultant spectrum can be expressed as quasither-
mal, with a frequency-dependent temperature
T(co). If scattering near the singularity is neglect-
ed, the spectrum becomes purely thermal, but at a
temperature greater than Hawking's value

T~ ——1/8aM.
In the more general case where the shell-

focusing singularity can also be locally naked (Cau-
chy horizon inside the event horizon) or globally
naked (Cauchy horizon outside the event horizon),
two-dimensional stress-energy tensor calculations
show that the created energy flux always diverges
(with positive energy density) on the Cauchy hor-
izon. It thus seems likely that the gravitational
back-reaction to this diverging flux will prevent
the shell-focusing type of naked singuarlity from
forming.

Our conclusions depend, of course, on our as-
sumptions. Spherical symmetry is probably not a
key assumption here. The most important assump-
tion we make is that the gravitational collapse is
self-similar, i.e., spacetime admits a homothetic
Killing vector in some region around the point of
formation of the event horizon, and that the Cau-
chy horizon of the singularity is also a surface
where the homothetic Killing vector becomes null.
Furthermore, in the case for which we compute
particle creation at late times, namely, the case of a
marginally naked singularity, we are also assuming
that this same null surface is the absolute event
horizon. We expect all of our results to be sub-
stantially different in non-self-similar collapse. Fi-
nally, we work entirely within the semiclassical ap-
proximation, and the results may be greatly dif-
ferent in some respects, e.g., for late-time particle
creation, in a better approximation to full quantum
gravity.

In Sec. II of this paper the properties of the
model spacetimes containing shell-focusing singu-
larities are detailed and discussed. In Sec. III the
spectrum of created particles in the marginally
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naked case is calculated. Section IV derives the
two-dimensional quantum stress-energy tensors in
the more general case.

II. SPACETIMES WITH
SHELL-FOCUSING SINGULARITIES

The model spacetimes we will consider in this
paper are described by spherically symmetric, im-

ploding null fluid Vaidya metrics":

ds = — 1 — dv +2dv dr+r d0

where —oo &u & ~, 0& r & ~, and dQ is the
metric of the unit two-sphere. The mass is chosen
as a function of advanced time to be

0, v&0
m(v)=. pv, 0&v&vo

M u&vo

(2)

g=v +r
Bv Br

is a homothetic Killing vector, i.e., satisfies

Vqg„+V g~ ——2g„, .

(3)

This symmetry makes it possible to explicitly con-
struct double-null coordinate systems in all three
portions of the model spacetime. In the initial
Minkowskian region (v &0) we simply use the usu-
al advanced and retarded time coordinates:

where M, vo, and p are constants. The mass of the
final, Schwarzschild black hole is M. The causal
structure of the spacetime depends on the relative
values of the three constants M, vo, and p.

The causal structure of the model spacetimes is
easily studied because of the linearity of the mass
function m (v) in the region 0 & v & vo. In this re-
gion the vector field g, defined by

ds'=e'& — 1 ———2pz dg'
Z

2——dgdz+ —dQ
1

Z2 Z2

dZdz~ =
z(2pz —z+2)

yielding finally

(10)

ds =e & — 1 ———2pz dgdg+ —dQ, (11)
Z Z2

where z is now to be considered an implicit func-
tion of g and r). The maximum analytic extension
of the metric given by Eq. (11) (except v &0) is il-
lustrated in Fig. 1 for 0&p & —„.The null sur-

faces defined by the zeros of gz~, at coordinate
values

z =z+ — [1+(1—16p)' ],
4p

are homothetic Killing horizons'; the homothetic
Killing vector [Eq. (3)] becomes null there. The
surfaces defined by z =z+, g= —ce, and z = oo (g
arbitrary) are curvature singularities. This is easily
seen by examining the quantity

2
p s 48m (v)

apy5 6 pZ 8

(12)

(13)

A double-null coordinate system is obtained by de-

fining

g=g —2z*,

ds =—dUdu+r dQ

where U =v —2r. In the null fluid region
vo & v & 0, we first adopt new coordinates g and z,
defined by

g=lnv .

The metric in this region then takes the form

(6)

FIG. 1. Maximum analytic extension of the self-
similar (homothetic) Vaidya metric (0 &p & —, ), except

for region m &0. Dashed lines indicate surfaces of con-
stant z. Bold lines are curvature singularities.
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The outer homothetic Killing horizon, at z =z (g
varies), is also the Cauchy horizon. When @=—„,
the two homothetic Killing horizons coalesce. For

p p —„,spacetime is globally hyperbolic; i.e., the

singularity is not even locally naked.
In order to obtain a model spacetime which is

asymptotically flat and vacuum in the distant fu-

ture, we cut the homothetic Vaidya solution along
a v =vo ——constant (hence, (=constant) null sur-

face and attach it to a portion of a Schwarzschild
spacetime [see Fig. (2)]. The mass of the final
Schwarzschild black hole (M) is chosen such that
the Cauchy horizon coincides with the event hor-
izon of the black hole. Quantitatively, this means

that at u =up and r =2M we have

or

uo
Z=Z

2M
(14)

M 1+(1—16@)'

uo 8

Note that for all values of p (0&@& —„),Eq. (15)

implies that

M&puo .

(15)

(16)

FIG. 2. Vaidya model spacetime of collapse to a
marginally naked shell-focusing singularity. Spacetime
to the past of v =0 is described by the Minkowski
metric; to the future of v =vo, by the Schwarzschild
metric with mass M. The central region {0&v & vo) is
the homothetic Vaidya null fluid.

This simply means that there is a 5-functional shell

of null fluid at v =vo, whose mass (M —pvo) is
chosen such that Eq. (15) is satisfied. The 5-
functional nature of this shell does not affect our
results. We could equally well have used a match-

ing region in which the density smoothly rolls off
to zero. If the mass of the shell is chosen to be
less than the value determined by Eq. (15), then the
Cauchy horizon lies outside the event horizon of

the black hole, and a globally naked singularity re-
sults. If the mass is chosen to be greater than the
critical mass, the Cauchy horizon lies inside the
event horizon and the singularity is visible only to
observers who fall into the black hole.

In the final Schwarzschild region we can of
course adopt the usual double-null coordinates u

and u, where

0 =u —2T ) (17)

r*=r +2M ln —1
2M

and the metric has its usual form

ds = — 1 — du du+r dQ
2M 2 2

r

III. PARTICLE CREATION
BY A MARGINALLY NAKED

SHELL-FOCUSING SINGULARITY

There are two features of our model spacetime
which seem to be important for the success of the
particle creation calculation. First, the marginally
naked character of the shell-focusing singularity
guarantees that a complete future null infinity
(W+) exists on which we can Fourier analyze the
quantum field. If the singularity were globally
naked, the existence of a complete W+ could not
be assumed. If the singularity were only locally
naked (Cauchy horizon inside the event horizon),
then Hawking's original calculation' is sufficient
and there is no new physics. Second, the existence
of a homothetic Killing vector in the null fluid re-

gion (0& v & vo) makes it possible to separate the
massless scalar wave equation,

=0 (20)

into ordinary differential equations in this region.
The scalar wave equation of course also separates

with r to be considered an implicit function of u

and u.

It is also possible to create shell-focusing singu-
larities in the collapse of inhomogeneous spherical-
ly symmetric dust clouds (the Tolman-Bondi solu-
tions). ' ' We have chosen to work with the
Vaidya metric models in this paper for reasons of
calculational simplicity. We do not believe our
principal conclusion (divergence of the created
flux) would be changed by using some other type
of matter to form the shell-focusing singularity.
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in the Schwarzschild (U )vo) and Minkowski
(v (0) regions. It is then possible to match solu-
tions of Eq. (20) across the boundaries at u =0 and
u =uo, allowing one to calculate the spectrum of
created particles at W+ by Hawking's method util-
izing Bogoliubov transformations.

The decomposition of the scalar field near W+
and W is standard and follows the usual treat-
ments. ' ' ' Outgoing modes in continuum nor-
malization near W+ have the form

q i ——exp(og/2)Q i(z)Yi (8,$) (22)

with the functions Q~i(z) satisfying

zh(z)Q ~~(2pz yo)Q, y[l(l ~ 1)—(o/z)]Q =0

(23)

p„i~=N~ ' r 'P„&(r*)e ' "Y& (6,$), (21)

where X is a normalization constant. As is well

known, the radial functions P„i(r*) approach con-
stant values as r*~+ oo (near infinity and the
event horizon).

In the null fluid region the scalar wave equation
separates in the (g,z) coordinate system defined by
Eqs. (6)—(8). The solutions have the form

Finally, near W (for all U) incoming modes
have the form

f~i~=N(~') ' 'r 'I'~i(r)e '""Yi~(~

(31)

(32)

(33)

where, as before, the functions F i(r) tend to a
constant value as r —+ ap and X is a normalization
constant.

The final outgoing wave can be expressed as an
integral over the incoming modes (l, m indices are
hereafter suppressed for notational simplicity)

p =f (a.f +0 f )d~'.

Following the usual procedure, ' ' ' one can set

up annihilation and creation operators for ingoing
particles at past null infinity and for outgoing par-
ticles at future null infinity, and find that the ex-

pectation value of the number operator for the out-

going mode of frequency co is

(0 fN i0 )=I iP /'dao',

where the initial state (
~

0 )) is the usual vacuum

state on W . Thus, to obtain the created particle
spectrum we must calculate the values of o. ~ and

with

Q(z) =(z —z)' (25)

with

h (z) = (2pz —z +2)

=2p(z —z+ )(z —z ) .

Fortunately we shall only need to find solutions of

Eq. (23} near the horizon (z =z ) and near z =0
(Minkowski space boundary and W ). Near

z =z, the two independent solutions of Eq. (23)

are approximately given by

There are two sorts of scattering contributions to
a . First, there will be some scattering in the
static Schwarzschild region (just as in Hawking's

calculation). Second, the waves will be scattered
within the null fluid, especially near the curvature
singularity. This scattering by the singularity is a

new effect computable within our model space-

times.
Let us now find the form of a„„and P „by

tracing a unit probability wave packet back from

near W+ at late times and large values of r*. Near
W+ at late times the scalar field will have the ap-

proximate form

s=0
or

s =(2yo)/(4 —z ) .

Near z =0 the two independent solutions of Eq.
(23) are approximately given by

(26)

(27)

(34}

where we have chosen N and P„(r*) such that as

& ~+ ~, P„(r*)~1. Tracing this wave back

along the event horizon to retarded time u =uo, we

find that the scalar field on v =uo near the horizon

1s

Q(z) =z', (28) ~—1f 2 2lcop
p = ohio e (35)

with

or

s=1

s =—0-/2.

(29)

(30}

where Eo is the product of the normalization con-

stant, a scattering amplitude for the static
Schwarzschild geometry and the asymptotic limit

of the factor r 'P„(r~) as r~~ —~ (r~2M).
This segregation of factors is justified by the fact



7S6 HISCOCK, WILLIAMS, AND EARDLEY 26

This must now be matched onto the solutions of
the scalar wave equation in the null fluid region
near the horizon, Eqs. (22) and (25)—(27).
Transforming Eq. (36) into the (g,z) coordinate
system, we obtain

—1/2( z)4iroM (37)

that r 'P„(r*) varies much more slowly near the
horizon than does the exponential factor. Utilizing
the definition of r* [Eq. (16)j and again separating
out those factors which vary slowly near the hor-
izon (into a new constant, K~ ), the scalar field at
u =u0 takes the form

4i coM
I'

p~ Lid —1
2M

A' =A 2 '"«( —1)'+' (46)

(44)

The scattering amplitude 8 decreases exponential-

ly as a function of co for sufficiently large co.

Tracing the transmitted wave through u =0,
then through r =0 and hence back to W, the
scalar field at W is found to be (for small positive
and negative values of v)

A~2io '~ r 'exp(icvXln~v
~

), v(0
pN—

B„F2' '~ r 'exp(icoX lnv), v )0

(45)

at u =u0 near the horizon, and additional constant
factors have been included in K2. Comparing Eq.
(37) with Eqs. (22) and (25)—(27), it is clear that
the match at u =v0 is onto a nearly pure solution
of Eq. (23), with o given by

(2+rr)/(4 z) =—4irvM (38)

o = 2+4ic—oM(4 z), —

and with boundary conditions fixed by Eq. (26).
Near v =0, the initial boundary of the null fluid,

a general solution of the scalar wave equation is
given by Eqs. (22) and (28)—(30):

The expression for p for u g0 is very similar to
Hawking s original result, especially if P is rewrit-
ten as

2(1—16i4)'~2

1+(1—16' )'i

The wave on W for u &0, which was scattered by
the singularity, is a mirror image of the u &0 wave,
except for a rescaling factor of B~/A ~.

The values of a „and P„can now be found
by Fourier transforming Eq. (32) with respect to v

and evaluating the resulting integrals using Eq.
(45) for p„. The Fourier transform yields the
equations

og/2Z —a/2+ ge ag/2

or in (v, r) coordinates,

(40) (48)

p =dr +Bu'+ r

Tracing the wave described by Eq. (37) back to the
neighborhood of u =0, and putting it in the form
of Eq. (41), we find (50)

Replacing p„with the expressions of Eq. (45) and
performing the integrations, we find

' 1/2

a„„=K2 (A„'I)+B„I2),

where

-3 K ' r 'r'~+8 /co ' r 'u™
co — co 2

(42)

1/2

p„=%2 (A„' I3+B„I4),
CO

(51)

The first term in Eq. (42) represents an incoming
wave at v =0 (the transmitted wave), while the
second term is the portion of the wave scattered to

from near the singularity. A and 8 are
transmission and scattering coefficients for the
homothetic Vaidya metric, related by the conserva-
tion of probability,

0
e' 'exp icugln u du,

Iz Je'" 'exp(irvX l—n—v)dv,
0

I3=I e ' 'exp(irvXln
~

v
~

)dv,

e '""exp(icoX lnv)dv .
0

(52)

(53)

(55)

Since, by Eq. (45), p„(v) =p„(—v), it follows that
[as a simple change of variable to w =—v in Eqs.
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(53) and (55) will show]

I2 ——I3 (56)

and (64) we can compute the spectrum of created
particles:

and
I„X„= /1 —C e (65)

I4 ——I) .

The two integrals we are left to evaluate, I~ and

I3, are precisely the Fourier transforms evaluated

by Hawking originally. ' We thus find that u „
and P„„are given by

where C =B„/A „', with
~

C
~

& 1 by Eq. (44).
We can further define a frequency-dependent effec-
tive temperature T(co) which gives rise to the same

spectrum,

T(co) =co/in[1+(e " —1)
~

1 —C„e
~

],
g '

earwax/2+B mrox—/2)

P f(g & e
—wa&x/2 B eecux/2)

where

(59) so that

N —=I„/(e ' ' —1).

(66)

(67)
1/2

f=i EqI (1+iroX)

&& exp[( —1 —icoX) in(co')] . (60)

It is now possible to obtain the number spectrum
of created particles by relating a„„to p„„. Note
that in the limit of no scattering by the singularity
(B„—+0),

Equations (65)—(67) are the main results of this
section. In the semiclassical approximation, the
emission of particles from the black hole at late
times is substantially altered by the marginally
naked singularity that is present at the formation
of the event horizon. Even when scattering near
the singularity is neglected (C =0), the tempera-
ture involved in our calculated spectrum is shifted
from the Hawking temperature by a constant fac-
tor:

/

2 e21Tcox
/
p

/

2 (61)

which is characteristic of a thermal spectrum with
positive temperature kT=(2mX) '. In the oppo-
site limit of zero transmittance (2 „'~0), where the
wave is perfectly reflected by the singularity, we
have

kT =(2vrX)

1+(1—16@)'/

2(1—16p)'
(68)

(62)

which is characteristic of a thermal spectrum with

negative temperature kT = —(2') '. However
this limit is never approached, due to Eq. (44), and
the positive temperature always dominates.

In the general case, Eqs. (58) and (59) imply that

gNX/2 B —1Ta)X/2 [ 2
N CO

~4A ~8 —B~8

Conservation of probability may be expressed as

f ( [a„„/'—[P „f')dec'=I „, (64)

where I „is the transmission coefficient for a wave
of frequency co propagating backward from W+
through the static Schwarschild geometry and the
low-curvature portion of the Vaidya null fluid re-

gion. If we now combine Eqs. (33), (44), (46), (63),

There are several interesting features in this con-
stant factor. Note that T diverges in the limit

p ~
&6

This limit corresponds to the two

homothesy horizons coalescing (see Sec. II). The
temperature of our model spacetime is always
greater than the Hawking temperature for all ac-
ceptable values of p, if scattering is neglected
(C„=O). However, when scattering is included,
T(to) may be either greater or less than TH. This
preservation of the thermal character of the spec-
trum (up to scaling the temperature) is connected
with the homothesy of our model. A similar scal-
ing, and the lack of a thermal spectrum for nonho-
mothetic Vaidya metrics, was found in construct-
ing models of evaporating black holes.

It seems quite likely that the shift in tempera-
ture is associated with a divergent flux of created
particles along the horizon. In two dimensions, it
is known that only the Hawking temperature gives
a finite stress-energy tensor on the event horizon.
In four dimensions the situation is complicated by
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scattering, but it seems reasonable to expect a
divergent flux on the horizon as seen by an ob-
server freely falling into the black hole. As we
shall see, this view is supported by the two-
dimensional stress-energy tensor calculations
presented in the next section.

%e also remark that X cuts off exponentially
at large co, so that the total, frequency-integrated
emission per unit time from the black hole is fin-
ite. The scattering amplitude 8„can be estimated
in the limit co~ ~ in the well-known Born approx-
imation as

(69)

up to possible power-law corrections. Since
0&X&4M [cf. Eq. (47)] for —„&p&0,Eq. (66) be-
comes

T(co)—= (2vrX)

as co~ oo. In this limit, scattering near the singu-
larity becomes negligible and the spectrum becomes
thermal. However the temperature still differs
from the Hawking temperature Tz [cf. Eq. (68)].

The particle emission at late times can further be
described in terms of correlations or lack of corre-
lations among emission of various numbers of par-
ticles in various different modes. For black holes,
%aid, ' Parker, ' and Hawking' showed that such
correlations were completely absent, just as for
blackbody radiation. In our model spacetime with

marginally naked singularity, correlations can be
determined using the methods of Refs. 17 and 19.
%e shall not give the argument, because the result
is exactly the same: There is no correlation of any
sort. Therefore, for measurements restricted to a
single frequency m, the late-time emission has all
the statistical properties of thermal radiation at
temperature T (co ) For measur. ements involving
different frequencies, the emission can in general
be distinguished from thermal radiation by the
form of N, but there are still no correlations
present; the density matrix is diagonal in Fock
space.

IV. THE GENERAL CASE IN
T%0 DIMENSIONS

In the more general case where the Cauchy hor-
izon and event horizon do not coincide, the shell-
focusing singularity is either globally naked or lo-
cally naked. In both these cases, it would still be
desirable to obtain information concerning created

particle fluxes along the Cauchy horizon. This can
be achieved if we study the two-dimensional model
spacetimes obtained by setting dQ =0 in Eq. (1).
%e can then compute the expectation value of the
stress-energy tensor of a massless scalar field in the
two-dimensional spacetime by standard tech-
niques. '

Since all two-dimensional spacetimes are confor-
mally flat, any two-dimensional spacetime metric
can be put into the double-null form

ds =C (u, u)du du . (70)

The null coordinates u, u are chosen so that the
inital quantum state of the scalar field (which we
choose to be the usual vacuum state near W ) is in
fact the vacuum state of the normal modes in u, u

coordinates. The in-vacuum state is then the state
annhilated by the field operators with co &0. The
expectation value of the stress-energy tensor of the
quantized scalar field is then

T„„=(12~—) 'C(C ') „—„, (71)

T„„=(12m.) 'C(C '),—„,
T =A~C /96n-, (73)

where A is the two-dimensional scalar curvature.
Since our model spacetimes are past asymptoti-

cally flat, scalar field modes will have the form
exp( icou) n—ear past null infinity. This gives the
relation

for all u &0. Equations (74) and (75) immediately
tell us that

(T~ ) =0 (u &0), (76)

i.e., that the initial vacuum state remains the vacu-
um state so long as spacetime remains Minkowski-
an.

%e must now relate the null coordinate u to the
null coordinate g in the null Quid region 0 & u & uo.
At v=0,

u=U —2r . (77)

From Eqs. (9) and (10), we find

valid everywhere in the spacetime. The usual re-
flection boundary condition at r=O with v &0,
combined with Eq. (74) yields

(75)
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g=g —z*=lnr+
2 ln(2p)

2pz+
,~2

ln(z —z+ )
(1—16p)'i

2pz
ln(z —z },

(1—16p) ~
(78)

which, evaluated at v=z=0, becomes

(79)g =lnr+n,

where a is a function only of p. Equations (77)
and (79) then imply that

Q= —2e e" . (80)

We can now calculate ( T&„) for the null fluid re-

gion 0& v & Uo by combining Eqs. (7), (11), and (80)
to obtain the metric form

far in our analysis of ( Tz„) we have not specified
the value of M/Uo [see Eq. (15)];we have thus far
only computed the stress-energy tensor in the null
fluid region and shown that it diverges on the Cau-

chy horizon. This much of the analysis is indepen-
dent of whether the singularity is locally, marginal-

ly, or globally naked.
To find the stress-energy tensor in the final

Schwarzschild region u) vp, we must relate Q to
the Schwarzschild null coordinate Q defined in

Fqs. (15) and (16}. In order to encompass the gen-
eral case (not force the singularity to be marginally
naked), we do not require M to have the value

given by Eq. (15); any value of M greater than or
equal to pvp is acceptable.

At the boundary v =up we have

2 U
1 ———2pz dQ dv

z
(81) =up —2r —4M ln —1

2M

where z =U/r and r =r(u, u). Computing (T&„)
by the prescription of Eqs. (71)—(73) and
transforming back to g, r) coordinates we find

and

g = —,ln(2puo —Uor+2r )

2

Tzz
—— (3—z+ —,pz ),

24m'
(82) + —,(1 —16p) '~ ln

vp —z r

Up —Z+ r
(89)

T~(
— (1—z+ —,pz ),pZ 3 2

24m
(83) Combining these equations with Eq. (65) we find

Tg„= P (2 —z+.2pz ) .
24m

(84)
dQ = —Q
dQ

R —2M

2PUp —Rvp +2R
(90)

g=e~, g=e-'&,

where

(85)

Since the ri, g coordinate system is singular on
the Cauchy horizon at z =z, we must construct a
new coordinate system which is regular there to
determine whether the created stress-energy flux
diverges or not. This is accomplished by creating
new coordinates

where R = r(u= Uo, u)
It is now possible, using Eqs. (90) and (74), to

write the Schwarzschild metric [Eq. (17)] in the
canonical Q, u coordinate system, and hence to cal-
culate ( T„„)for the region U y Uo. Two of the
three components are simple and unchanged from
the ordinary black-hole case:

&=1—z /z+ . (86) T„„=(24m. )
M 3 M

3 2 4 (91)

The metric is regular at z =z in the rj,g coordi-
nate system. Equations (82), (85), and (86) may
now be combined to find that

T„„=D(z—z ) '+E(z —z ) '+ . . (87)

for (z —z ) small and positive. D is a positive
1

function of p, nonzero for all —„)p) 0. Thus the
stress energy of the outgoing created particles
diverges (in a positive fashion) on the Cauchy hor-
izon for all acceptable values of p. Note that thus

(92)

The third component T„„ is a very large and messy
expression containing 18 terms. It simplifies con-
siderably if M is chosen to satisfy Eq. (15) (i.e., the
marginally naked singularity case); then terms
which die off for large values of Q may be ignored,
and one finds that
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T„„=(24sr)
M 3M 1

r 3 Pr4 32M2

2
1+(1—16@)'

2(1 —16@)'
(93)

This confirms and reproduces our result from Sec. III. The constant term in Eq. (93) appears at large r as
an outward-going flux of radiation. The magnitude of the constant term is precisely (m./12)(kT), where T
is the altered Hawking temperature of the shell-focusing singularity derived in Sec. III [Eq. (68)]. The ef-
fects of the frequency-dependent temperature in Eq. (66) are not evident here, as there is no scattering in

two dimensions (B„=O).
In the general case [M not given by Eq. (15)], T„„assumes a fairly simple from only as one approaches

the Cauchy horizon; it diverges there, with leading terms of the form

M z (z —up/2M) zT„„=(48ir) '
~ [4—(4—z ) ] .(z —z ) (9

4pp'p'(1 —16@)

2UO UO—4M ln
2Mz

uc =UO
z

(9&)

where, within this equation, the variable z is re-
stricted to U =Uo and treated as an implicit func-
tion of u, i.e., z =up/R, R =r(up u). Tllus as
z —+z, u approaches its value on the Cauchy hor-
izon,

l

quantized massless scalar field always diverges
along the Cauchy horizon of the shell-focusing
singularity in two dimensions. This strongly sug-
gests that the back-reaction of the metric to this
stress energy would prevent the formation of the
shell-focusing singularity in the real world of four
dimensions.

and T„„diverges along the Cauchy horizon for all
values of M, Uo, and p. The sign of the divergence
in T„„,Eq. (94), is determined by the sign of the
factor [4—(4—z ) ]. Sincez ranges from 2 to 4
as JM ranges from zero to —„,T„„ is always positive
for all u (u, .

%e thus see that the stress-energy tensor of a
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