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Linearized quadrupole waves in general relativity
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We write out the explicit form of the metric for a linearized quadrupole gravitational
wave in the transverse-traceless gauge. We give a collection of formulas which are useful
for testing numerical codes to integrate the full nonlinear Einstein equations. We also
show that a test particle initially at rest acquires no energy from a linearized gravitational
wave.

I. INTRODUCTION

Progress in general relativity is hampered by the
great difficulty in solving the field equations for
realistic situations of interest. Insight has often
been gained by solving model problems and infer-
ring general results from these idealized cases. Re-
cently, large-scale computer calculations have been
used to attack problems not amenable to analytic
treatment. ' Even in such cases, however, one is
handicapped by the lack of analytic results to test
the computer codes.

In this paper we give the details of a simple ana-

lytic solution which has been used to explore
several questions in numerical relativity. The
solution is simply the well-known quadrupole wave
of linearized theory in spherical coordinates. As
far as I can determine, no one has ever bothered to
write out the metric as an explicit function of the
coordinates t, r, 6, and P in the transverse-traceless
(TT) gauge.

Besides testing numerical relativity, the metric
can also be used in a model calculation of an un-

settled question in general relativity theory: the in-

teraction of a strong gravitational wave with
matter. It has sometimes been speculated that a
strong outgoing burst of gravitational waves, for
example produced by gravitational collapse, might
interact with surrounding matter and accelerate it.
To answer this question properly requires a reliable
calculation in full nonlinear general relativity
theory. We show in this paper that a free particle
initially at rest remains at rest when interacting
with a linearized wave (whether quadrupole or
not). We discuss why previous results using plane
waves are ambiguous. This result means that a
particle can absorb energy from the wave only if (i)
it is interacting with other particles, or (ii) it has

nonzero energy initially, or (iii) the wave is strong
so that nonlinear effects are important. Whether
any of these three possibilities could be important
remains an open question.

V h=0, i.e. , h'J j——0,
Trh =0, i.e. , h'; =0 .

(2)

Here the vertical bar denotes a covariant derivative
in ordinary Euclidean space, where we will be us-

ing spherical coordinates. The TT gauge is analo-
gous to the Lorentz gauge condition of electro-
magnetism with the scalar potential set to zero in

empty space.
The linearized Einstein equations in vacuum be-

come in the TT gauge

Oh=0, i.e. , h;j~k:0.
The symmetric tensor h would in general have six
independent components. However, the four con-
ditions (2) and (3) reduce this number to two. We
can identify these as two independent polarization
states, or equivalently as even- and odd-parity
waves.

II. THE QUADRUPOLE WAVE

In linearized theory, one writes the metric g p as

gaP QaP+ ~aP ~

where q~p is the Minkowski metric and h~p is a
small perturbation. To linear order, indices on h p
can be raised and lowered with g p.

A very convenient gauge for studying linearized
gravitational waves is the TT (transverse-traceless)

gauge. In this gauge, the perturbation is a purely
spatial symmetric tensor h, with components h,&,
satisfying
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General solutions of Eqs. (2) —(4) are easy to
write down, e.g., as a superposition of plane waves
in Cartesian coordinates. In spherical coordinates
solutions can be written down as multipole expan-
sions using tensor spherical harmonics. The solu-
tion of most interest is the quadrupole wave, since
quadrupole radiation is likely to be the strongest
mode from realistic sources.

Since we want to present the metric as an expli-
cit function of time, we cannot Fourier transform
with respect to t. Accordingly, the methods in the

Appendix of Ref. 6 are the most useful for us.
Quadrupole solutions of Eqs. (3) and (4) have total
angular momentum J=2 and "orbital" angular
momentum L =0, 1,2, 3, and 4. Following
Mathews, one can construct a linear combination
of i.=0,2, and 4 ("even parity") to also satisfy Eq.
(2). Similarly, there is an odd-parity solution made

up of L =1 and 3. For each parity, there are five
independent modes corresponding to azimuthal
quantum number M=+2, +1,0. The explicit form
of the even-parity metric is

ds = dt +(—1+Af„„)dr +(2Bf„tl)r dr dO+(2Bf„~)r sinOdr dp+(1+Cft)'t)'+Aft)s')r dO

+ [2(A 2C )ft)&
—]r sin Od 0 dP+ (1+Cf~&'+Af&& )r sin 0 d P2 .

+ 4 + sr r r

F' ' 3F' ' 6F"' 6F2+ 3+ 4+r r r r

1 F'4' 2F' ' 9F' ' 21F'" 21F+ q + 3 + 4 +
r r r r r

d "F(x)

dx x=t —r

The angular functions f&
are listed below i. n the order M=+2, +1,0:

cos2$ cosg
f„„=sin 0 . 2, , 2sinOcosO, , 2 —3sin 0,sln2p sing

cos2$ cosg
f„()=sinO cosO 2, , (cos 0—sin 0) . , —3sinO cosO,sln2p slntp

—sin2$ —sing
f„~=sinO 2, , cosO, , 0,cos2p costp

cos2$
fei)' =(1+cos 0); 2~, 2sinOcosO

—cosg~, 3sin 0,—slntp

(2)
—cos2$
—sin2$

sin2$ —sing
ft)y=cosO 2~, sinO ~, 0,

f(1) f(1)

cos2()() —cosg
fyy =cos 0 2~, 2sinOcosO . ~, 3sin 0—1 .

One can also const~et an ingoing solution by replacing F(t —r) with some function of t+r, changing the
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sign in front of the odd derivatives in Eqs. (6). Of course, the superposition of ingoing and outgoing solu-

tions is also a solution.
The odd-parity metric is

ds = dt —+dr +(2Kd„t!)rdr d0+(2Kd„&)r sin0dr diti+(I +L d-lit!)r d0

+ (2L da&)r sin0d0dg+(1+Ld~~)r sin 0dg

where

g(2) 3G(~) 36
2 + 3 + 4r r r

r r2 r3 r4

G =G(t r), —

and where

cos2$ cosP
d« ——4sin8 . 2, , —2cos0, , 0,sln2p sing

sin2$ sing
d,~

———4sin0 cos0 , 2(cos 0—sin 0),—4cos0sin0,—cos2 —cos
r

cos2$ cosP
d~~ ———2cos8 2, , —sin0, , 0,sin2j ' sing

(10)

sin2$ sing
da~ ——(2—sin 0) , cos0sin0, , —sin 0,—cos2 —costp

r

cos2$ cosiI)
d~~=2cos0;„2~, sin0,. ~, 0.

The components of the Riemann tensor for a
linearized wave in the TT gauge can be computed
from the expressions

1

~0ioj 2 hij, oo )

1

Roijk , (hij ~——k hik —~ j)&—o

I

given by the following expressions in the TT
gauge:

(QW) 1 jkTo; —— hjkoh ~; )
327r

jki~'=&ojko~o' ' . (12)

1

Rijkl p (hil ~jk hjl ~ik hik ~jl+ jk ~i! ) '

There are algebraic relations between the com-
ponents because of the vanishing of the Ricci ten-
sor. The components for the even-parity M =0
wave are listed in the Appendix in a convenient
form.

In computer solutions of Einstein's equations,
one often wishes to calculate the amount of energy
radiated in the form of gravitational waves. One
gains much insight into such calculations by com-
parison with analytic wave solutions. According-
ly, we also list in the Appendix expressions for the
Isaacson energy flux vector, To;, and the Bel-(GW)

Robinson flux vector, I". These quantities are

(Strictly speaking, To;
' should be averaged over

several wavelengths. )

III. MOTION OF A TEST PARTICLE
IN A LINEARIZED %AVE

The equation of motion of a test particle in a
linearized wave is simply the geodesic equation

d'x dx~ dx&
(13)

where ~ is the proper time of the particle. By the
chain rule for partial derivatives,
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d X d7
dt2

'2

d7 d7
(14)

where u'= d—x'/dt S.ubstituting from Eq. (13) on
the right-hand side of Eq. (14), we obtain

2
= —I'oo+&'(I" oo+21 o Ut+I t, uJU")

—2I"'p.u J—I'.
k u JuJ J (15)

Thus a test particle initially at rest (U'=0) remains
at rest and absorbs no energy from the wave.

The reader may object that this result is coordi-
nate dependent, since we used the TT gauge. We
now show that this is not the case.

The multipole expansion is made with respect to
some spherical coordinate system in flat spacetime.
Take the global inertial frame of an observer at
rest with respect to the center of symmetry to be
the TT coordinate system in the absence of the
wave. Consider the case where a test particle is at
rest in this inertial frame before the wave arrives.
During the dynamical phase of the passage of the

Now the key point is that the first three terms on
the right-hand side of Eq. (15) are identically zero
in the TT gauge:

M2 l
p i

'
k= r -,u'uju —2I'p uj

dt'
—I' kuju" (TT gauge) .

3 =B=C=O, (17)

where a dot denotes a time derivative. From Eq.
(6), this is equivalent to

F' '=0, i e , F=a. (.t r)+b, —

where a and b are constants. The metric (5) for
this choice of F is (we take the M =0 even-parity
solution, for example)

wave, the concepts "at rest" and "absorbs no ener-
gy" are not physically meaningful (coordinate in-
dependent). After the wave has passed by, the
particle is again in Oat spacetime and since the TT
coordinate system matches smoothly to the inertial
frame of our central observer, it is meaningful to
say that the particle is at rest and has absorbed no
enef gy.

One further point must be clarified. After the
wave has passed by, the particle finds itself in flat
spacetime again. How do we know that this is the
"same" flat spacetime as before the wave arrived?
Is it possible that the two flat spacetimes are relat-
ed by a boost, and so the particle has a velocity
with respect to the original Lorentz frame? Intui-
tively, it seems impossible to sandwich a region of
arbitrary multipole wave between two regions of
flat spacetime related by a boost. We show that
this is indeed so.

A region of spacetime is flat if the Riemann ten-
sor is zero. From Eq. (Al), we see that this holds
for our wave solution if

ds = —dt+ 1+ 9(at+b) . 2 2 36(at+b)
(2—3sin 0) dr + sin0 cos9r dr d8

5 r'

+ I+ 9(at+t) 7 . , » 9(«+b) 5 . ,
( —,sin 0—1) r d0 + 1+ ( —,sin 0—1) r sin 0dgS 4 5

(19)

We can verify that this is indeed flat spacetime
by finding the coordinate transformation which
transforms the metric to the usual Minkowski
form. An infinitesimal coordinate transformation
x"—+x~+P preserves the TT gauge condition pro-
vided

ko, o=0 ~'to=0
(20)

4;o= —
ko,

(These conditions follow from the transformation
law

hI, hv +41 +g II )

I

Gne can easily verify that the M =0 even-parity
solution of these equations is equivalent to

t'=t —a(2 —3sin 0)/r

r'=r+3(at+P)(2 —3sin 0)/r

0'= 0+6(at +p)sin0 cos0/r

(21)

ds = dt' +dr +r—' d0' +r' sin 0dg

(22)

where a and p are constants. If we choose
a= ——,a and p= —, b, then Eq. (19—)becomes the
Minkowski metric
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The question is now whether the metric "left
over" after the passage of the wave can be of the
form (19), when before the wave arrived it was of
the form (22) in unprimed coordinates. One way
of seeing that this is impossible is to consider the
solution of the linearized Einstein equations in-
cluding the source term:

Qh~p ———16m.T~p .
Here

1

h~p
——h~p ——,g~ph y

and the Lorentz gauge condition

(23)

has been imposed. Infinitesimal coordinate
transformations of the form x"~x"+P' preserve
the gauge condition (25) provided

gP —0 (26)

r"'(r —r) I"'(t—r) . (27)

Eq. (27) is simply the proportionality between the
1/r piece of the radiation field and the second time
derivative of the quadrupole moment of the source
evaluated at retarded time. From Eq. (27) we see
that the source I does not determine the part of F
which is of the form a(t r)+b. —

IV. DISCUSSION

We have shown that in linearized theory, a test
particle initially at rest remains at rest after the
passage of a gravitational wave. This still leaves
open the possiblity that a particle with initial velo-
city might absorb energy. This question could be
explored by integrating Eq. (16) for various choices
of U'(initial).

Interactions between particles will allow wave
energy to be absorbed. In the local inertial frame
of some particle, a neighboring particle oscillates

Suppose one carries out such a coordinate transfor-
mation to put the solution h p into the TT gauge
outside the source. One will then be left with the
freedom (20). Clearly, making use of this freedom
to introduce or remove terms of the form (21) has

nothing to do with the source terms, which were
already fully accounted for in the solution h &.
Without loss of generality, one can choose
a =b =0 globally.

Another way of seeing this result is to recall that
the gravitational field outside a source is given
uniquely by the multipole moments of the source. '

For example, for a "slow motion" source,

as the wave passes by. If there are no interac-
tions, a neighbor initially at rest returns to rest
after the passage of the wave. Suppose, however,
there is a collision with a third particle while the
wave is acting. This transfers energy to the third
particle which is not recovered during subsequent
oscillations.

Finally, there is the possibility that for a very
strong wave, a particle initially at rest might ac-
quire energy through nonlinear effects. Lacking a
realistic analytic solution for a nonlinear gravita-
tional wave from a bounded source, one is unable
to investigate this question fully.

There have been discussions in the literature on
the motion of test particles under the influence of
strong p/ane gravitational waves. " However, any
prescription for connecting the two flat spacetimes
on either side of the wave is ad hoc in the case of
perfect plane symmetry.

The quadrupole wave solution written down here
has been used to check numerical codes developed
to solve the full nonlinear Einstein equations. It
has also been used to investigate various prescrip-
tions for reading off the energy radiated by gravi-
tational waves in computer calculations. This
work is described in Ref. 8.
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APPENDIX

The 12 nonzero components of the Riemann tensor
for the M =0 even-parity wave are

1 2R
&&&&

—— R egg = ( 2
sin 8—1 )&

r"sin'0
1 3 ~ ~

R&yey
=' r sln0 cos08

r sinO
2 2 2"

R„&„& —, r sin HC+ —,r—3, —
sin 0

R,g,g= —sin OR„g„g———,r sin 8(C—A)+ , r sin &&, —

Rt e=
2 2 Rty, e~=-2r sinOCOSOA

r sinO

R,g„g
——,r sin 0(38 +3——) .

sin 0
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The Isaacson energy flux is

32trTo„' ——9sin 0(2C'C —C'A —A'C+2A'A —28'8)+18sin 0(B'8—A'A )+6A'A,
(A2)

32rrT&z
' —18sin 0cos0[C(2C —A 8)—+A(2A 8 —C)—+B(A +C 28—)]+18sin0cos0(B —A )(8+A ) .

Here a prime denotes a derivative with respect to r.
The Bel-Robinson flux is

P"=—„rsin 0[(A —2C(38 +A )sin 0—4A Bcos 0],

P =—„sin0cos0[(8AA —AB —4A C 388—)sin 0—4A A] .
(A3)

'Permanent address.
~See, for example, Sources of Gravitational Radiation,

edited by L. Smarr (Cambridge University, Cam-
bridge, 1979) for a review.

Some of these results were reported in a preliminary
fashion in Ref. 1 and wi11 be discussed more fully in
Ref. 8.

The case treated by W. E. Couch, R. J. Torrence, A. I.
Janis, and E. T. Newman, J. Math. Phys. 9, 484
(1968) is not in the TT gauge and so the results are
not as convenient for the problems addressed here.

"See, for example, C. W. Misner, K. S. Thorne, and J.
A. Wheeler, Gravitation (Freeman, San Francisco,
1973). We adopt their conventions for tensors and we
also set c =G =1.

5See, for example, F. J. Zerilli, J. Math. Phys. 11, 2203
(1970) or Ref. 10.

W. L. Burke, J. Math. Phys. 12, 401 (1971).
7J. Mathews, J. Soc. Indust. Appl. Math. 10, 768

(1962).
K. Eppley, L. Smarr, and S. A. Teukolsky (unpublish-

ed).
We mean here in the sense of some global coordinate

system. Of course, a particle oscillates in the local
inertial frame of a neighboring particle when the wave
passes by, even though both are at rest in the TT
coordinates.

' See, for example, K. S. Thorne, Rev. Mod. Phys. 52,
299 (1980).

~~See, for example, J. Ehlers and W. Kundt in Gravita-
tion: An Introduction to Current Research, edited by
L. Witten (Wiley, New York, 1962) for a discussion
and references.


