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Backward-scattering sum rules and hadronic production of charmed particles
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Backward-scattering superconvergence sum rules are written for the elastic meson-baryon process D + N~D + N
by considering the intercept of the charmed-baryon Regge trajectory to be smaller than —1. Hadronic couplings of
charmed particles are then determined by evaluating the sum rules with the known charmed-baryon states and are
compared with the previous values. In a toy calculation, we use these couplings to explore the order of suppression
for the exclusive charm production cross section in comparison to strange-particle production in pp and mp

interactions.

I. INTRODUCTION

One of the most important discoveries" of the
last decade has been the experimental detection of
charmed particles. I ike strangeness, charm is
now regarded as a property of matter. So far only
a few calculations' ' have been done for the deter-
mination of the hadronic coupling constants of
charmed particles. However, the values of the
couplings differ by considerable amounts in all
these calculations. In the past, we" "have also used
the complementary tools of PCAC (partial conser-
vation of axial-vector current) and superconver-
gence sum rules for obtaining the hadronic param-
eters of charmed particles. In this paper, we de-
duce the superconvergence sum rules for the pro-
cess

D+N D+N

in the backward direction. Saturating them with
the known charmed states we can determine the
values of the coupling constants of charmed par-
ticles.

Similarly, many theoretical calculations have
recently been reported on the hadroproduction of
charmed particles. Mostly the theoretical ideas
are based either on perturbative quantum chromo-
dynamics (QCD) or on purely phenomenological
reaction mechanisms. Barger and Phillips have
exploited" the similarity of associated production
of charmed particles with that of strange particles
and predicted the cross section -1 nb for two-body
exclusive charm production processes such as
v p-D C;. They have used SU(4) symmetry for
the determination of residue values and they have
further taken the universal slope 0.9 GeV for the
Regge trajectories and the intercept &~~(0) = -3.3
for the D* trajectory. They find that the cross
section for charm production should be suppressed
by a factor -10 ' in comparison to the cross sec-
tion for strange-particle production at CERN ISR

energies. In this paper, we present a calculation
for the suppression factor by taking the modified
values of the coupling constants as determined
from the backward-scattering superconvergence
sum rules.

II. SUM RULES

If an amplitude f(v), which is crossing odd and
satisfies the unsubtracted dispersion relation, has
the asymptotic behavior v ' ', with z & 0 as v —~,
it must satisfy the superconvergence relation"

where v =s -u/4m and s, u are the Mandelstam
variables. The asymptotic behavior of the ampli-
tudes A and B for the process (4) in the backward
direction is given" as follows:

AC1 'C (0)-1/2

(0) 1/2

(~)

(3)

If we consider the linear combinations like & 1

—m„B 1, the combination" will have the following
hi gh- energy behavior'.

gC1 pg ~C1 ~ SeC1(0)-3/2
N (4)

for the Regge trajectory , in the u channel. %e
take the slope of the trajectory C, as 0.33 as ob-
tained" from the nonparallel nature of the trajec-
tories. The trajectory function can be written as

u, ,(u) =-,'+0.33(u -I, ') . (5)

We, therefore, get &c,(0) =-1.44. Now from Eqs.
(3), (3), and (4) we find that A ' B ' and A '
—m„B ' satisfy the requirement of superconver-
gence, and the corresponding sum rules are

26 709



710 BRIEF REPORTS 26

Im(A ~ —mNB ')ds= 0. (8)

For numerical evaluation of the sum rules (6)—(8),
we take the pole-term contributions from C„C„

and C,* in the s channel and from the p state in the
t channel. Using the Lagrangians" for the interac-
tion vertices and the isospin projection operators"
as well as isospin crossing matrices, "we get the
following relations between the masses and the
coupling constants after evaluating these sum
rules:

(
2m+ + 2PlD ~ s2P

2 2 2

g pNNg DD (~C ™N)gDC N (IC ™N)gDC N

PB g c*
(mC +mN) mD' — ' + " +—E' +3(mC«3 —mN3 m—D3)(E+mN) ', =0, (8)

Pl' D

PBC1 Pjg~ 2 2 ~DC1N2gDD(gNN g NN~+gDC N +gDC N +
2

+
8

™D3E +3mN@1 2 3 mD
(10)

2 2 22M' +2' D ™ V Tg pNN 2 N (goNN g pNN) g DD ~C gDC N mC gDC N

(m +m„) m * — ' + " +-3 )+-, (m (' —m„' —m ')(E+m„)

mc+ 2C1 PB~ 2 2 2 DC1++m~ — + —rnD ——,E +3 m~E ——
2 =O.2 3 SlD

We use g NN /4=2 &, gpNN/gpNN=6 6) gppp/gpNN

and g /g NN- 1.21 (lief. 8) and, from the
above relations we get the following values of the
coupling constants:

2

= 88 ' —=62 "'" =62 (12)
4m

'
4m

' ' 4@m

III, SUPPRESSION OF CHARM PRODUCTION
IN HADRONIC INTERACTIONS

Let us consider the following processes:

pp DD, pp KK,

pp- C C, pp- &A,

mp- D*C„mp- K*A.

(18)

(14)

(»)
To calculate the suppression, we consider the s
and t dependence of a typical dual amplitude

r(1 —n'(t))r(1 —n (s))
r(1 (t) — ( ))

(16)

The above values can be compared with those ob-
tained" from forward-scattering superconvergence
sum rules. We find that the changes in the values
of these couplings are not very significant. How-

ever, these changes can very well be overlooked
in view of the large uncertainties present in the
input couplings. Also the value of gDc N/~4&
(-4.89) is in agreement with the value (-4.0) ob-
tained"" from the SU(4)-invariant interaction and
also with the value ( 4.02) determined~' from SU(4)
breaking.

dc/dt(pp —C()C()) gDc~ r(1 uD(t))
dc/dt (pp —AZ) gN 3N' (r(1 —c(N ( t) )

~ (c() )3LnD(P)-uN(P))
S (18)

where o'z is the slope of the s-channel Regge tra-
jectory. For comparison of the cross sections,
the 1" functions in Eq. (18) can be omitted because

where S is a constant and &(s), o.'(t) are the Regge
trajectories. The above amplitude contains an in-
finite series of poles in both s and t arising due to
the poles of the I" functions whenever the argument
passes through a positive integer. The asymptotic
behavior of the amplitude is given as

T(s, t) — Sr(1 ——o'(t))(-&'s) "'.
Barger and Phillips have taken" exact SU(4) co

efficients P which are the same for strange and
charmed particles. Since the SU(4) symmetry is
badly broken, we assume that the ratio of the resi-
due functions is proportional to the ratio of the
coupling constants involved in the charmed- and
strange-particle productions. The extrapolation
of a Begge residue function directly to the pole
may give errors of factors of 2 or 3 for the cou-
pling. However, these errors can be minimized
by taking the ratios of the coupling constants of
different reactions with similar Begge trajectories.f
For the process (14) we find that the leading Begge
trajectories can be taken as D and E, respective-
ly. We thus find the ratio
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FIG. 1. Variation of suppression with energy for
charm production relative to strange-particle production

( ) Oj. (pp —C()C)/0)(pp —AA), ( ) a.j.(7Ip-D*CD)/o.
(@-Z*A).

they make little difference. Thus our calculation
cannot be regarded as very rigorous and unambig-
uous at this stage. However, since we are inter-
ested in the order of magnitude, the above omis-
sions would not affect our results seriously. For
obtaining the ratio of total cross sections we inte-
grate Eq. (18) and find the ratio as follows:

Q 2 2
+(PP 0 0) I( ~Dco+ (~ s) 2ilaD (( ( ) uz(t ( -)1

c(PP —~~) ~D Eras
(»)

The terms involving t ~ have been dropped since
they are negligible except right at threshold. Sim-
ilarly, the ratio of cross sections for the process-
es (13) and (15) can be written as

2 2

~

(~ ).(,, (( „) ,(( „))-
v(Pp -KK) ~co gx)(N j

(20)

( P 0& E grDD ZDcoN ~p )2[nD(g~(~)-ax((
2

c(7(P -K A) ()'.
D g,«*gx~

where &0 and & have been taken as the leading
Regge trajectories for the processes PP-&& and

rp -D C„respectively.

IV. RESULTS AND DISCUSSION

We can use our values of the couplings obtained
above to predict the order of suppression of charm
production relative to strange-particles production
for the processes (13)-(15). The Regge trajecto-
ries can be given by the general relation

10
10

II
100

+ (GeV )
2

I I I

1000

o. (f) =J + o'(f -m'), (22)

where m is the mass and 4 is the spin of the ex-
changed pole. We have used ' =0.90 for strange-
particles trajectories and &' =0.33 for charmed-
particles trajectories. Using the value of the cou-
pling gnc „as given in Eq. (12) and gx~ /4=10,
g,«*'/4=0. 84 (Ref. 25), g,DD+'/4= 0.4 (Ref. 17)
the suppression of charm production relative to
strange-particles production can be calculated
from Eqs. (19)-(21). The results have been shown
in Figs. 1 and 2. For comparison, we have also
plotted the data of Barger and Phillips in Fig. 2.

We find that the suppression factor for charm-
production processes is -10 ' in comparison to
strange-particles production. This factor is quite
reasonable as we notice that the experimental data
for the inclusive charm production represent the
cross section in the microbarn range.

In conclusion, we have presented a phenomeno-
logical numerical estimate for the cross sections
regarding charm production in hadronic interac-
tions. However, a phenomenological S matrix ap-
proach is no substitute for a formal dynamical
theory like QCD. Therefore, in the absence of an
adequate formal theory for such an exclusive pro-
cess, we can hope that the study presented here
will provide a qualitative as well as a semiquanti-
tative understanding of the hadronic productions of
all the charmed particles.

FIG. 2. Variation of suppression with energy for charm
production relative to strange-particle production, for
example, ot (Pp-DD)/oq (pp-KE). Our calculation is
represented by the curve A, and the curve B represents
the calculation of Barger and Phillips.
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