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Quantum-chromodynamic predictions for direct photons in e+e collisions.
II. Analysis of the third and fourth structure functions WY3 and IVY
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%'e analyze in quantum chromodynamics the timelike photon structure functions 8'3
and 8'4 which appear in the direct photon production in e e collisions, using the cut-
vertex formalism and the renormalization-group method. It is found that 8'3 in leading

order is not renormalized by the strong interactions and agrees with the result calculated
in the simple parton model. The moments of 8'4 are calculated in the leading order.
Then, the structure function is obtained by inverting the moments. The corrections to
8"q by strong interactions are found to be large at small and large z.

I. INTRODUCTION

At very high energies in e+e colliding experi-
ments the direct photon production in such pro-
cesses as shown in Fig. 1,

e+e ~ y (q}~yd;„„(p}+hadrons(C=+ },

becomes measurable. Here the virtual photon with
momentum q is far off shell (large q & Q) and the
observed photon having momentum p is "direct, "
which means that it is not a decay product of radi-
atively decaying hadrons. The unobserved hadrons
have charge conjugation C=+.

From the above experiments of Eq. (1.1), we can
measure the timelike photon structure functions,
which are defined as'
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where T represents anti-time-ordered products.
In a previous paper, we have analyzed the

structure functions WTr (= Wri) and WLr

(=Wri+[(p. q) /q2]W2") in quantum chromo-
dynamics (@CD). Using the cut-vertex formalism
and renormalization-group method we have calcu-
lated the moments of Wr up to the next-to-leading

order, and the moments of Wz~ in the leading or-
der.

In this paper we shall analyze the structure
functions Wr3 and W4r in @CD with f flavors.

The information on 8'~3 can be extracted from
experiments with unpolarized e+e beams, where
the linear polarization of the final photon is mea-
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hadron' (C= ' )

(a ) (b)

FIG. 2. Box diagrams for direct photon production.

FIG. 1 . Direct production of photons in e +e col-
lisions. The observed photons are assumed not to be ra-
diative decay products of hadrons.

W~3 ——a 5
4

PM & Z2
(1.3)

and

2

8'4 ——a 5&4 ln
2 —z q (1—z)

PM ~ Z ~2
q

(1.4)

where a=e /4n. , z=2p q/q, mz is the quark
mass, and

5r=3f (e~) =3g e;~, (1.5)

the sum i runs over quarks off flavors. Because
of the pointlike coupling of photon to quarks
W4

~ pM does not scale, but grows logarithmically

sured with respect to the plane spanned by the
electron (or positron) and photon momentum. '

The structure function W4r can be obtained by ob-
serving circularly polarized final photons from an-
nihilations of polarized electrons (positrons) and
unpolarized positrons (electrons) ~ In the Appendix,
we express differential cross sections of

e+e ~ y ~ yd;, ,+ hadrons(C=+)

in terms of photon structure functions for the
cases of unpolarized- and polarized-beam experi-
ments.

In the free-quark model, i.e., the parton model
(PM), the structure functions W3r and W4" can be
calculated by evaluating the s-channel discontinuity
of the box diagrams of Fig. 2. We obtain

with q . On the other hand, Wr3
~ pM displays

Bjorken scaling.
We now study the behaviors of the structure

functions W3r and W4 in QCD using Mueller's
cut-vertex formalism ' and the renormalization-

group techniques. The cut-vertex method is
powerful when it is applied to such processes as
single-particle production in e +e collisions where
the operator-product expansion is not applicable.
By this method the moments of the structure func-
tions in single-particle inclusive e +e annihilation
can be written in a factorized form for large q; a
coefficient function depending on the q of the vir-
tual photon, but completely independent of the
particle produced, times a cut vertex which de-

pends on the particle observed. The q dependence
of the coefficient functions is governed by the
renormalization-group equation (RGE) ~ Then,
solving the RGE, we can evaluate in QCD the mo-
ments of the structure functions systematically or-
der by order in perturbation.

We analyze the photon structure functions Wir

and W4r, in the leading order. We find that Wf
maintains the nonscaling lnq behavior, but its
shape changes substantially from the simple
parton-model prediction. However, 8'3 in the
leading order is found not to be renormalized by
the strong interactions and to have the same ex-
pression as obtained in the parton model. The re-
sults are very similar to the case of deep-inelastic
scattering off a photon target (q & 0 in this case)
where the spacelike photon structure function 8'4~

shows a different nonscaling ln( —q ) behavior
from the PM prediction, but W( in the leading or-
der is not affected by strong-interaction effects and
agrees with the result calculated in the parton
model.

In Sec. II we analyze the structure function 8'4.
We introduce new bare cut vertices for fermions,
gluons, and photons which contribute to 8'4~.

(These fermion and gluon cut vertices are also ap-
plicable to the study of polarized nucleon produc-
tion in collisions of polarized e+e beams. ) Then,
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FIG. 3. The cut vertices for two fermions contribut-

ing to W&. (a) R~„(p). (b) Rg'„(p, k}. (c) R~„~(p,k}.
Solid lines and curly lines represent quarks and gluons,

respectively.

we calculate the one-loop anomalous dimensions of
the relevant cut vertices. Using these anomalous
dimensions we obtain the @CD prediction for the
leading term of 8'4r moments. The structure func-
tion W4~ itself is obtained by inverting the mo-
ments numerically. In Sec. III we analyze 8'3.
We discuss in some detail why bare cut vertices for
fermions do not contribute to W&~ in the leading
order. Section IV is devoted to a brief summary.

II. STRUCTURE FUNCTION W4

FIG. 4. The cut vertices for gluons contributing to
~4 (a) Rap, n(k). (b) Rap, urn(pigs)'). (c}Ra4, pa;n(pigs~).

Fig. 3(b): R j'„(p,k)=ig

XT, (p+k) "
1

(22)

Fig. 3(c): R~'„(pJ,k) = ig — T~~bp

The indices a, b refer to a representation R of the
color group SU(3) for fermions, g is the strong
coupling constant of the theory, and 1 is the fXf
unit matrix. These vertices obey the following
Ward- Takahashi (WT) identities:

First we must find the projection operator which
picks up the structure function W4r from W&„~ in

Eq. (1.2). The appropriate operator is

+&~ +~, and we obtain

k Rp'„(p, k)=gT,', R~ „(p+k},

k R p „'(p,k) = gR ~ „(p)Tb b
—.

(2.3)

1 —p~ —
y4e +p~ +~8' ~=%4, (2.1)

where q and pz are finite with large q and q+.
Using Mueller's cut-vertex formalism, we now

show the moments of Wq can be written in a fac-
torized form, i.e., the sum of terms each of which

is a product of a cut vertex and a timelike coeffi-
cient function.

A. Cut vertices for 8'4

Fig. 3(a): R & „(p)=i y ysp
" 5,b 1,

We need to introduce new cut vertices for the
analysis of 8'4". We list, in the following, neces-
sary (timelike) cut vertices. Those vertices for fer-
mions and gluons will also be applicable to the
analysis of the polarized nucleon production in po-
larized e+e collisions.

The flavor-singlet cut vertices for two fermions
without and with one gluon are

We must add the cut vertices for two fermions
with more gluons. Vertices with extra gluons be-

come rather complicated, but their form is essen-

tially fixed by the WT identities and the bare fer-

mion cut vertices without gluons. Therefore we

have not listed higher-order vertices.
The formula for the flavor-nonsinglet cut ver-

tices for two fermions without and with gluons are
the same as the singlet ones with the replacement
of 1 by (Q,h

—(e )1), where Q,h is the square of
the fXf quark charge matrix, and (e ) is the

average quark charge squared.
The cut vertex for two gluons shown in Fig. 4(a)

1s

Rygp, g(k) 2f]jj [(g]ggg2pk — g —~g2pk]k—

g] g pk2k —(a~—p)]k

(2.4)

We need cut vertices for more gluons. The three-
gluon vertices are shown in Figs. 4(b) and 4(c).
They are given by
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I [(gl.g2aP — g g—2 Pl gl g aP—2) (a~s')]r—

[(rlg2 gl r2 )P — (r —g2 g —r2 )P 1 (r lg — gl r )P2 lg .I

+Cijl [ [g lng2ag p+—g2ng ag 1 p— g ng2a—gl plr

[ lg2ag P+ 2—g aglP— g2ag—lPlg K I—

+ terms where (i,a,p )~(j,p, q ) r (2.5)

where Cijt are the structure constants of the color
grouP. R'j'p„.„(P,q, r) is obtained from
R jp„„(P,q, r.) as follows. (i) Change r " to
—( —p ) ";(ii) interchange (i,a,p)~(l, s,r) in
all terms in large curly brackets of Eq. (2.5).

These vertices satisfy the WT identities

p ij I ml
Rap, n;n(p»q& ) gCijmR an, n(

q Ra,pn. n(p»q&r) tgCtjm—Ran;n( p) &

and the current-conservation law

(2.6)

(2.7)

Rap, n(P) =2[(glag2pP — g ag2pP1P ——
gl.g ppzp ) —(a P)lp—

(2.8)

The expression of Eq. (2.8) is exactly the same
form as the two-gluon cut vertex of Eq. (2.4) apart
from the factor 5,J.

It wi11 be apparent in the following why these
cut vertices have been introduced.

~j, Ir"Rap „.„(p,q, r) =0,
l,jlp Ra pn;n(p&q, r) =0 .

Also note that R'jp „„(P,q, r) and Ra.jp„n(P, q, r) are.
symmetric under the interchange of indices

(i,a,p)~(j,P,q) and (j,P,q)~(l, a, r), respectively
Cut vertices with more gluons are straightforward
to construct with resort to the WT identities and
the current conservation law.

Finally we introduce the bare cut vertex for two
photons illustrated in Fig. 5:

I

as shown in Fig. 6 (a), where large momenta of or-
der q flow through the right-hand part r, but not
through the left-hand part A,. The two parts are
connected by two quark propagators which are in-
cluded in A,. For a while we neglect the color and
flavor degrees of freedom of quarks. Call
M&„(k,q) the renormalized right-hand part, and we
may write

Mq„(k,q)= g tq„(k,q)M (k,k.q, q ), (2.9)

where the t&„are matrices in the Dirac indices and
the M are dimensionless. The rules to find the
contributing t„'„when q ~ 00 are as follows. (i)
The tensors should be antisymmetric in p and v.
Hence they have e&~p and y5. (ii) They are linear
in y aside from y5. (iii) Only conserved tensors
need be considered, since slightly off-shell fermions
will not inhibit current conservation when the
momentum q flows through r. (iv) Drop all terms
with explicit factors of m (quark mass squared) or
k . (v) Drop all terms with k compared to q. The
allowed tensors are

B. Factorization

We consider a particular graph 6 contributing to
8'4~. Suppose 6 can be decomposed topologically

FIG. 5. The cut vertex for two photons contributing
to W4.
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tI v=&&pmP 2 X5 ~

q
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tI „——ie&vap 2 2 Ys ~

Writing

—,e ~&"Mp, (k, q) =M' + (k,q),

(2.10)

(2.11)

(2.12)

where

M'(k, k.q, q )=Mi(k, k.q, q )

k
+ M2(k, k.q, q ) .

2q
'' '

(2.14)

Now we define the additional subtraction dictated
t' for M'+ as follows:

M' + (k, q ) =iq+ y y, 2
M'(k, k q, q ),

q
(2.13}

we obtain for large q+ with finite q and k„,
t'M'+(k, q)=iq+y y5 2M'(O, k q, q

. ), (2.15)
q

where k+ ——kj ——0 and k =k
For the contribution of Fig. 6(a) to W4~, we can

write

dk
4e —+ e —+ ~@vs= f q [ , e +~T—~(p,k)] [t'M'+(k, q)]

(2 )g 2 + P1» Ps

where

(2.16)

[Tt»».(p, k)] = f f f d xd yd ze' e' '~ ' (0~ T(Jp(x)f„(z))T(J (y)17» (0)) ~0} (2.17)

and r,s are the Dirac indices. We neglect the re-
normalization of T~(p, k) for the moment. From

Eqs. (2.1) and (2.15), Eq. (2.16) is rewritten as

dk~4=, f, [T'-+(pk}l (iy ys)
q (2m. )

where

d4k
U. =-,p

"+'f, [T'+(p, k}l
(2n.}

X(iy y5) k (2.21)

XM'(O, k'q, q ) (2.18)
and

with

T +(p, k)= —,e +t T~(p, k) . (2.19)

(2.20)

k

~tI»»»»» ~[~(
~», l»»»»»»IUl

~c

We note the coupling of T + to M' is only
through k . Then, taking the moments of both
sides of Eq. (2.18), we find

dzz"W4 U„E4„(q }, ——

(2.22)
1

E4„(q )= f dzz +'M(l, z, q )

with z =2k.q/q . Equation (2.20) shows that the
moments of 8'4r can be written in a factorized
form. A bare cut vertex for two fermions [see Eq.
(2.2}] is involved in U„of Eq. (2.21). At this point
u„ is the unrenormalized cut vertex. After renor-
malizing the cut vertex, we obtain an equation just
like Eq. (2.20), except that v„ is now renormalized.
The renormalization prescription for cut vertices is
described in detail in Ref. 3.

Next we consider a decomposition of the form
shown in Fig. 6(b), where two fermions and an ar-
bitrary number of gluons connect the two parts of
the graph. Suppose

(a) (b) (c)

Ma, aj,pv(kl» ' »kj»k»q)
FIG. 6. Examples of decompositon of the amplitude

for direct photon production in e+e annihilation: (a)

involving two fermions; (b) involving two fermions and

many gluons; (c) involving two gluons. Wavy lines

represent photons.

is the renormalized amplitude for the right-hand
part r. ai, ,aj are the I.orentz indices of
gluons and the divergent part, for large q, has all

+ indices. Owing to the WT identity,
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J
M+. . . + „,(ki, ,kj, k, q)

i=1
(2.23) 2

dZ Zn8'4 ——
Un E4„,g,an y f f q 2

p ~ p2

is expressed in terms of the amplitudes M+. . . + &„
with two fermions, but fewer gluons. Thus by re-

peated use of the WT identities, M+. . . + z can be
related to M„„in Eq. (2.9). Therefore, the addi-
tional subtraction dictated by t' for M+. . . + &

is
determined by that for M„',. The further discus-
sion on the factorization for the decomposition
shown in Fig. 6(b) follows parallel to the case for
the decomposition shown in Fig. 6(a). We arrive at
a formula identical to Eq. (2.20), where the v„
stands for the contributions from the bare cut ver-

tices of two fermions and many gluons.
So far we have neglected both color and flavor

degrees of freedom of quarks. Including these de-

grees of freedom, we find that the contributions to
the moments of 8'4~ from the bare two-fermion cut
vertices and the bare cut vertices for two fermions

and many gluons altogether can be written in a
factorized form as

2
NsENs

+Un 4n
p

(2.24)

M~gq (k,q)=tgpq„(k, q)M'(k, k q, q ),
where t~p& is a possible tensor structure and M'
is dimensionless. The appropriate tensor which
contributes to 8'4~ for large q and q+ is

(2.25)

where g and NS stand for flavor-singlet and -non-

singlet contributions, respectively, and p is the
subtraction scale at which the theory is renormal-
rzed.

Consider now the decomposition shown in Fig.
6(c). The left-hand and right-hand parts of the
graph are connected by two gluons. Let
M' J~&„(k,q) be the renormalized two-gluon and
two-photon amplitude. Again we write

&"p,„«q)=&J.(g„i.g . g.i.g„—)

x[g ~"pk(k.q) q~g"pk —(k q) g~qpk"—(k q)+q~qpk k"] 1

q

Multiplying t' p„by —,e +",we obtain for large q' and q+,

t'~p +(k,q)= , e +I"t'Jp„,—(k,q)

2

, , [(gi.g2pk — g g2pklk —— gl g pk2k —) —(& P)]
( 2)2

We define the additional subtraction t' for M p'&„as

'[ , E +&"M~II„,—(k,q)] =t~~p + (k,q)M'(O, k.q, q2) .

Then the contribution of Fig. 6(c) to 8'4r is

4
W4r ——f [ , e +i"T~~~p—(p,k)][t' , e +&'M p„—,(k,q)],

(2m )

where

(2.26)

(2.27)

(2.28)

(2.29)

T~~~p(p, k)= f f f d xd yd ze' e'~'~ "'(0~ T(J&(x)A~(z))T(J,(y)A~(0)) ~0), (2.30)

and A ~ is a gluon field. Using Eqs. (2.27) and (2.28), we may rewrite Eq. (2.29) as

d4k
W4 ——

z 2 f 4
T' + p(p, k)5~[(gi~g2pk g~gzpkik ——ging pk2k ) (a~P)]M (O,—k q, q ), .

(q ) (2~)

where
(2.31)

T' + ~p(p, k)=
2 e + 'T'p, ~p(p, k) . (2.32)
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Taking the moments of both sides of Eq. (2.31), we find

I
n
~

y ~~ ~
~

Gt n

I

q
t

2
t

~

t

2

dZ Zn~y —g GE~ ~ g2 (2.33)

where

46 l n+1Un=sp-
(2n. )

T + p(pk)

&(25Jf(gi g2pk
2 gg—2pkik —gi g pk2k )—(a~p)]k (2.34)

r

2 1E4„,g, a = dzz + M'(O, z,q ) . (2.35)

(2.36)

We only consider the tensor which contributes to
8'4y for large q . Then t& ~ is antisymmetric in
interchange of indices p and v or p and r (we omit
the superscript i of t„',~). The appropriate one is

As in our previous discussion, we now renormalize
u„. The moments of Wf are still written in the
same form as Eq. (2.33). We find from Eq. (2.34)
that Un is the contribution from the two-gluon bare
cut vertices. The form of Eq. (2.33) remains the
same after we include the contributions of cut ver-

tices with more gluons.
Finally, we examine the case where large mo-

menta of order q flow all the way down to the
real-photon vertices, and the decompositions of the
types shown in Fig. 6 are not adequate. Then we
should consider the four-photon vertex of Fig. 7 as
a whole. Call Mz, ~(p, q) the renormalized ampli-
tude for the four-photon vertex, and we decompose

M&„~(p,q) into the different tensor structures

M&„~(p,q) = g t&„~(p,q)Mf(p 'p.q, q ) .

Comparing Eq. (2.39) with Eq. (2.1), we find for
the contribution of graphs with the large-
momentum-flow configurations shown in Fig. 7 to
the photon structure function 8'4y,

W4r(z, q ) = —,z Mr(O, z, q ) .

The moments are then given as
1f dzz"W'4r(z, q )=—,f dzz" + Mr(O, z,q )0 4 u 4

r

2
x;y 0 2=E4 n 2,g, o'

p

(2.40)

(2.41)

The above equation can be rewritten in another
orm,

When we multiply Mz ~(p, q) by 4e +"'e +p',

-we find

2 2

+ + PP~ '
( 2)2

(2.39)

tp;p (p q)

1
, , ((p.qg» p,q, )(p.qg p—.q.)—

q )

2

f dzz"W (z,q )=u„E"„q,g,a
p

(2.42)

(p qg„, p,q, )(—p qg., p—.qp)l—
(2.37)

operating —,e +"' on tz z„and for large q and

q+ we obtain

pv
2 6 + tpviPT(Ptq)

q,

2

2 2 L gipg2rp — g —pg2&pip
(q

—gi,g,P2P ) —(P ~)]. (2.38)

q,

FIG. 7. The amplitude occurring in direct photon
production, where large momenta of order q flow
through the blob.
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where

vr= 1 = , e —+~,P"—+'Rer,„(P)p7, n (2.43)

and Rer, „(p) is the two-photon bare cut vertex
whose expression is shown in Eq. (2.8).

Collecting all these contributions from cut ver-

tices, i.e., Eqs. (2.24), (2.33), and (2.42), we find
that the moments of W4r are given in the following
factorized form for large q:

(a)

( b

2
dzz" W4r(z, q ) =gv„'E'4„,g,a (2.44)

where the sum i runs over g, 6, NS, and y. The

q dependence of the structure function Wq~ enters
into the timelike coefficient function E& „. On the
other hand, vn' does not depend on q, but is depen-
dent on the particle observed. Especially we have
v~r= 1 from Eq. (2.43). The hadronic feature of the
observed photon is taken into account within u„",

U„, and Un

C. Anomalous dimensions of cut vertices

O, n O, n
FIG. 8. Diagrams for computing (a) y4'~ and y4'~q,

p, n 0,3j p, n
(b) y4~G', (c) y4oy,

' (d) y4G

2
n 2 O, n g

3 4,NS(g ) Y4,NS 2 +
16m

2

E4;(g,a)= —&4',"
2 +

16m

(2.45)

i =Q, G,NS .

The q dependence of E4 „ is governed by the
renormalization-group equation (RGE}, which has
exactly the same form as those for the case of the
structure functions 8'z~ and WL~ in Ref. 2. The
anomalous dimensions which enter into the ROE
are now those of cut vertices contributing to 8'4~,

that is, y4,1(g ) with i,j =$,6, y4 Ns(g ), and

Eq;(g, a) with i =Q, G,NS. They are expanded in

powers of g as follows:
2

n 2 O, n g
yc, J(g )=y4'q2 +,

' ' ' ' 1 =0 6
16m

on 16 n —1

3 n(n+1} ' (2.48)

(2.49)

The anomalous dimensions E4'~ and E4'Ns are ob-
tained from Eq. (2.47) by replacing the group-
theory factor f/2[= T(R)] by the relevant charge
factors, with the result

K '"=8 3f(e )n(n+1) (2.50)

Kg'Ns=8 3f((e ) —(e ) ) .n(n+1) (2.51)

o, n 1 8 n 1
'

4
4 GG=6

3 n(n+1) . zj
+42 —. + f. —

The one-loop anomalous dimensions for the ha-
dronic sector are calculated evaluating diagrams in
Fig. 8. The results are

Also we have, in the one-loop approximations,

o, n
K4'G ——0 . (2.52)

o, n o,n
n

f4~ $4NS 3 n(n+1) . z j+4g —.

on r ~+2
y4, tPG i

( + 1)

(2.46)

(2.47)

It is interesting to compare y4' J with the
anomalous dimensions y4'JJ which are relevant for
the structure function W4" in the photon-photon
scatterings [see Eqs. (4.2)—(4.5) in Ref. 6]. Those
y4',

&
also appear in the analysis of polarized elec-

troproductions. ' The diagonal elements are the
same, i.e.,
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O, n p, g
~4K ~4K ~

—O, n O, n
74,6 74 6

(2.53)

p, n —
p, n

sions except E4'~ and E4'Ns equal to zero, we re-
trieve the parton-model prediction,

(2.54)

For the off-diagonal elements we find

O, n O, n
V4, $6 V4, 6$
4f 16/3
O, n O, n

V4, Gf 74,$6
16/3 4f

where 4f [=ST(R)] and —, [=4C2(R)] are the

group-theory factors.

where

2
dzz" P'4 ——a P4 „ln

p pM " p 2
PM

(2.59)

P4 „——45y
n+2

r n(n+1) (2.60)

The structure function W4r itself can be obtained
from the moments by taking an inverse Mellin
transform. The PM formula (2.60) can be inverted

analytically, and we obtain

D. Behavior of IVY
2

W4
~ pM aP——4(z) ln

~PM
(2.61)

The procedures to solve the RGE now follow ex-

actly parallel to the procedures in the case of the
structure functions WT and Wl. or the case of the
deep-inelastic scattering off the photon target. "

We expand the coefficient functions
E'4 „(l,g,a) in powers of the effective coupling
constant g . To the lowest order, we obtain

r

e5p, i=/,
E4„(l,g,a)= 0, i =G,

e 5Ns, i =NS,

with 5~——(e ) =g, e; If and 5Ns ——1.
Using this information on the lowest-order coef-

ficient functions and one-loop anomalous dimen-
sions, we arrive at the following formula for the
moments of W4r.

where

P4(z) =45r
z

(2.62)

30

4 Flavors

which coincides with the expression in Eq. (1.4).
The QCD formula (2.57), on the other hand, has a
complicated n dependence and has been inverted
numerically.

In Fig. 9 we present both the QCD and PM pre-
dictions for zW4r in units of a lnq /A . We find
that the QCD effects are large both at small and

large z values. Especially, QCD predicts that zW4~

2I dzz"W4r(z, q )=a a4„1n z,
where

(2.56)
20

—
O, n

' —O, n
1 +4 f~f 74 GG

CV

}a ~
N

O, n
+4,NS ~NS+

O, n1+Y4, Ns~213o
(2.57)

10

with

—O, n —p, n
Yn = 1+ (Y4,~+Y4,GG)

2 p

0
0 0 ' 2 0.4 0, 6 0, 8

O, n —p, n O, n O, n+ 2 ( Y4 ~Y4,GG Y4GQY4$G ), ,(2.58)

2
and Po=11—,f. If we set all anom—alous dimen-

FIG. 9. The structure function z&4 in units of
a Inq /A as predicted by (a) QCD in the leading order
and (b) the parton model. We have chosen four flavors
for both cases and have assumed that A =ApM .
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vanishes as —1/ln(1 —z) for z~ 1 since a4 „van-
ishes as 1/(n inn) for large n.

III. STRUCTURE FUNCTION 8'g

The moments of the structure function 8'r& can
also be written in a factorized form, i.e., the cut
vertices times the coefficient functions. We can
follow the same procedures as we did in Sec. II.
Here we only show the results.

The remarkable feature of W& is that we cannot
find the fermion cut vertices which contribute to
$V3 in the leading order. Consequently, 8'3 in the
leading order is not renormalized by the strong in-

teractions and agrees with the result calculated in
the parton model. ' This fact is exactly analogous
to deep-inelastic scatterings off the photon target,

1

2 g 1pg2v(g 1pg2r+g irg2p ) ~

and we find for large q and q+ with finite q
and p~,

p,vpr y'

2 g 1pg2v(g 1pg2r+g 1rg2p )~ ~3 (3.1)

The bare cut vertex for two photons contributing
to W3 has the following expression:

in which there is no twist-2 quark operators contri-
buting to the structure function Wi, and Wi in the
leading order is not affected by the strong-inter-
action effects and has the same expression as ob-
tained in the parton model.

The appropriate projection operator which picks
up Wri from Wp„~ in Eq. (1.2) is

pr n(P) [[glpg2rP — (g —p$2rP1+glpg rP2)P ——+g pg rP1P21—+[P— rl]P— (3.2)

The above form is inferred from the fact that when we multiply the specific tensor in Eq. (1.2), which pro-
jects out 8'3 by g&'g, we obtain for large q+,

ppqp
g 1"g2 gpp—

pvqz pI q~+ gp~—

=1 2—, I[glpg2, P (g pg2,P1+—gipg .P2)P +g pg .PlP2]+[P r]j
p—

(3.3)

The bare two-gluon cut vertices have the same form as the two-photon cut vertices except for the factor
5,J-..

Upr, n(P) fij I[gipg2rP — (g pg2rP1+g—lpg rP2)P —+g —pg rP1P21—+[P—~~]]P (3.4)

M„'„(k,q) = g tp, (k,q)M (k2, k q, q2), (3.5)

where the t„' are symmetric in indices p and v,
this time.

The candidates for contributing t„'„when

The reason why there are no fermion cut vertices
contributing to $V3 in the leading order is the fol-
lowing. Consider again a particular decomposition
of a contributing graph as shown in Fig. 6(a),
where two parts are connected by two fermion pro-
pagators. Call M&„(k,q) the renormalized right-
hand part, and we want t'M&„(k,q) (t' denoting
the additional subtraction operator) to be equal to
the additional divergences, which arise when

q ~ ao for fixed k and fixed k q/q . Again we
decompose M„'„(k,q) into the different tensor
structures as follows:

qpqv
pv gp, v

t„„=—,[ 2g„„qq.k+ (y„k„+y„kp )q

—(y„q„+y„q„)k q

1—(kpq, +k,qp)q]P v v P
( 2)2

Multiplying t&, and t& by g~&g~, we obtain for
large q2 and q+,

(3.6)

q 2q
(3.7)

l

q ~ ao should be conserved tensors with no expli-
cit factors of m and k, and with factor Iit

dropped compared to q. The allowed tensors are
of the same form as those which have appeared in
the Mueller's paper of Ref. 3:
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1 2

dzz"W3(z, q )= gu3 „E3„,g,a, (3.8)

where the sum i runs over 6 and y only, and
u(„=1. The q dependence of E3 „ is governed by
the ROE. Since there exist no fermion cut vertices
and hence no mixing anomalous dimensions of or-
der e, the leading term in the moments of 8'~3

does not grow as ln(q /A ), but is constant. Solv-

ing the ROE, we obtain the QCD prediction for
the moments of 8'3,

1

dz z"Wr3(z, q ) =a 5+3 r+ 0
lnq /A

(3.9)

where 83 &
is the leading term which appears in

the expansion of E(„(l,g, a), i.e.,

e4
E(„(l,g,a)= 5+3 &+0(g ) .

16m
(3.10)

1 k
gl"g2 rP =

2 ('Ylq2+qlr2)
22q q

Therefore, when we attach the left-hand part A,

to g&"g2"[t'M&„(k,q)], and perform the k integra-
tion and renormalization of the A, part, the result-

ing terms are proportional to q&/q and/or q2/q .
Thus the contributions from decompositions of the

type shown in Fig. 6(a) to the structure function
Wr3 are of the order 1/q at most. In other words,
there exist no fermion cut vertices which contri-
bute to JY3.

Another support for this conclusion comes from
the direct calculation of a diagram as shown in

Fig. 8(c), where the bare gluon vertex R~~p „(k}of
Eq. (2.4) is replaced by U~~ „(k) of Eq. (34). If
there exist fermion cut vertices contributing to W3,
then ultraviolet divergences would appear in the
calculation of such diagrams. But the actual cal-
culation gives no ultraviolet divergence.

Following the same procedures as we did in Sec.
II, the moments of W3 can be written in a factor-
ized form

teresting result can be traced back to the fact that
we could not construct the fermion cut vertices
which give leading contributions to 8'3.

IV. SUMMARY

In this paper we have analyzed in.QCD the
timelike photon structure functions 8'3 and
which can be observed in the direct-photon produc-
tion in e+e collisions. We have used Mueller's
cut-vertex formalism and have introduced new fer-

mion, gluon, and photon cut vertices.
The results we have obtained are very similar to

the case of the spacelike photon structure functions

W( and W4r in the photon-photon scattering. The
structure function 8'4~ shows the same nonscaling
lnq behavior as predicted by the parton model,
but its shape changes substantially from the PM
prediction. The QCD effects are large both at
small and large values of z. On the other hand,

W3 in the leading order is found not to be affected
by strong interactions and to have the same expres-
sion as obtained in the parton model.
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APPENDIX

We present the expressions of differential cross
sections for the direct-photon production

Evaluating the box diagrams in Fig. 2, we obtain e+e ~y*(q)~yd;„„(p)+hadrons(C =+ ) (Al)
—n 4
83

7l —1
(3.1 1)

We can easily invert the leading term of the mo-
ments of Eq. (3.9) analytically. We find that the
leading term of W3r coincides with the result (1.3)
of the parton-model calculation. This fact means
that 8'3 in the leading order is not renormalized
by the strong interactions. The origin of this in-

in terms of (timelike) photon structure functions
for the cases of unpolarized- and polarized-beam
experiments. '

As shown in Fig. 1, the momenta of two in-

cident beams are labeled by k& and k2. The
virtual-photon momentum is q =k&+k2. Then,
the general expression of the differential cross sec-
tion for the process (Al} can be written as
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z oozez(a)e', (a)l&„W""~,
dz dQ 4aq2

(A2)

where eq(a) is the polarization vector for the final
photon with momentum p and polarization a,
z =2v/q =2p.q/q, and

4~aoo=
3q

(A3)

U & 2
lqv , (qq——q„—EqKv—qg~„—), (A4)

where E =k, —kz. Since the tensor l„„is sym-

metric in indices p and v, we can obtain the infor-

mation on Wri, Wri, and Wr3 among four indepen-

dent photon structure functions.
Let the z axis be along the incoming beam

momentum ki, and the x-z plane be defined by ki
and the outgoing photon momentum p. Then, two

independent linear polarization vectors of the final

photon are given by'

0 0

is the total cross section for e+e ~p+p . W""~
is composed of photon structure functions as de-

fined in Eq. (1.2).
In the case of the unpolarized-beam experiments,

the leptonic tensor is expressed as

'
(ll ~

do'

dzdQ oisin 8$'3 .3 2
—y.

(A8)

In order to obtain information on W4", we must
use polarized incident beams, and observe the cir-
cular polarization of the final photon. Consider
the case where only the incident beam 1 is polar-
ized with the covariant spin s~. Then, the leptonic
tensor in Eq. (A2) is written as

a Plpv= i lEpvapf Si

The tensor I&„is antisymmetric in indices p and v.
Neglecting electron (or positron) mass m, at high
energies, we can write

(A9)

s i
——2o.ik i

P (A 10)

with o.
~

——+1, expressing the helicity state of the
beam.

Then right- and left-handed circular polarization
vectors are given, respectively, by

Therefore, the structure function W3r is obtained by
taking the difference

'(I)
doU

dzdQ

0
e (1)= 1, E (~~)=

cos8

—sin8

(A5) ep(R) = cosH

—sin8

'(&)
dC7

dzdQ
3 —r 1 v

opz 8'~)+ — sin 8 8'g~
4a 2 q2

+ —,sin 8 8'3 (A6)

and the cross section for the linear polarization in

the plane is given by

(ll~
do

dzdQ
=3 — l~o.oz 8'~+ — sin 88'~

4a 2 q2

where e (j.) stands for the polarization transverse

to the x-z plane, and e&(
~ ~

) for polarization in the
x-z plane. 0 is the angle two vectors bi and p.
Using Eqs. (A2) —(A5), and (1.2), we find that the

cross section for the linear polarization of the final

photon transverse to the plane spanned by the in-

cident beam and the photon momentum can be
written as

(Al 1)

&~(L ) = 1

2

cos8
—l

—sin8

do'
dz dQ

da~
dzdQ

O)

Inserting Eqs. (A9) —(All) into (A2) and using Eq.
(1.2), we obtain the following two expressions
which extract the structure function W&. (j) The
difference between the cross sections for observing
the final photons with the right- and left-handed
circular polarizations from annihilations of polar-
ized electrons (positrons) with helicity state o i and
unpolarized positrons (electrons),

——,sin OWE . (A7) 3
ooz2o icos8 Wr . (A12)

4a 4 ~
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(ii) The difference between the cross sections for
observing the right-handed circularly polarized
photon from annihilations of the unpolarized beam
and the polarized beam with helicity states
0&=+ 1 and 0~= —1,

, =+~
do-P

dzdQ ck JQ

cruz2cos8$'~r . (A 13)4a
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