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Abelian dominance and quark confinement in Yang-Mills theories.
II. Oblique confinement and rl' mass
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Making a working hypothesis of Abelian dominance at a long-distance scale, we

analyze the U(1) problem as well as the confinement problem in the SU(Ã) Yang-Mills
theory with the vacuum angle 8. We show that quarks are confined only when 8/2m is a
rational number such that 0/2tr@(1+nN}/mN, n and m being integers. We also calcu-
late a correlation function of the topological charge density Q(x) =(16tr ) 'TrF„„F„„(x)
at 8=0 We. derive that I d~x(T{Q(x}Q(0}j)=N /128tt (N 1)(a'—), where a'
denotes the Regge slope of mesons. This formula yields -{150MeV)4 in case of SU{3),
which gives rise to a mass -550 MeV to the s)' meson through a chiral anomaly in QCD
with massless quarks. This numerical result would explain the g' mass reasonably well in
the approximation where pions are massless Goldstone bosons.

I. INTRODUCTION

In order to analyze the problem of quark con-
finement in the Yang-Mills theory, we have recent-

ly proposed the hypothesis of Abelian dominance. '

The hypothesis states that the Abelian components
of the gauge field dominate in the Yang-Mills
theory at a long-distance scale. We emphasize that
the Abelian components are defined as gauge-
invariant objects. The crucial result of our analysis
is that the vacuum structure is dependent on reso-
lution R, where R is a typical scale length in the
system to be considered. We have shown that the
vacuum has two phases in R, and that monopole
condensation occurs for R &R,. Namely, though
quarks are essentially free particles at a short-
distance scale as asymptotic freedom dictates, they
are confined by electric vortices at a long distance
scale (R & R, ). We have estimated that R, =06.
GeV ' in the SU(3) Yang-Mills theory.

The aim of the present paper is to generalize our
analysis to the SU(N) Yang-Mills theory with the
vacuum angle 0. We shall show that oblique con-
finement modes predicted by 't Hooft appear
when 8/2sr is an irrational number or when
8/2sr=(1+nN}/mN, n and m being integers We.
shall also estimate the mass of the g' meson based
on the formula due to Witten.

Let us briefly review our program according to
which we analyze the Yang-Mills theory. We have
proposed' to consider the effective Lagrangian
L (R}at resolution R, which is defined by integrat-
ing out the momentum components of all the field

variables larger than R '. The Lagrangian L(R)
is adequate to describe the structure of the system
whose typical scale length is R: In fact, semiclassi-

cal arguments based on it would be enough to give
quite accurate results for the system, since the La-
grangian already contains quantum effects with

wavelength A, (R. Such an effective Lagrangian is
particularly important when the system has a
phase transition in scale length R. This is so be-

cause, if the critical point is R„ this phase transi-
tion should occur only by quantum effects with

wavelength up to R, . Namely, for the realization
of this phase, it is not necessary to take into ac-
count the quantum effects with wavelength longer
than R, . The physics in the new phase would be
most conveniently described by the effective La-
grangian L (R) with R & R, .

In our previous paper,
' we have applied this gen-

eral idea together with the hypothesis of Abelian
dominance to the SU(N) Yang-Mills theory with
the vacuum angle 0=0. We have first shown that
the monopole condensation occurs at R =R, be-
cause the entropy effects become dominant over
the self-energies of monopoles. Here, the resolu-
tion scale R acts as the lattice spacing which deter-
mines the integration measure of monopole excita-
tions since monopoles have no intrinsic scales in
the Yang-Mills theory; they are Wu-Yang mono-
poles in SU(2). Then, based on the effective La-
grangian L (R), R &R„we have demonstrated
semiclassically that electric flux is squeezed into
vortices. We have related the string tension o. and
the vortex width m ' to resolution R:
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(N —1)g (AR)
2m'

8
m =-

g (AR)/4m= . crR (1.2)

in terms of resolution 8, because the string tension

is independent of the distance between two quarks.
The generalization of our formalism to include

the vacuum angle 0 is straightforward, as we shall

describe in this paper. Our analysis turns out to
confirm and amplify the analysis of 't Hooft with

respect to quark confinement in the 8 vacuum.
(We note that a similar analysis has been carried
out by Cardy and Rabinovici in an instance of Z~
models. ) Let us briefly summarize the results. In
our formalism, where the Abelian dominance is

postulated, the sole effect of the vacuum angle 8 is

to provide magnetic monopoles with electric
charges. More precisely, a monopole which
possesses the magnetic charge g~ acquires the
electric charge ( 82/~)f~ with 7)~ being a vector
on the root lattice of SU(X). Recall that mono-

poles are labeled by the root lattice of SU(X). It is
interesting to remark that the periodicity of the
system in the vacuum angle 0 follows in our effec-
tive Abelian theory, though topological excitations
have apparently no electric charges at 0=0 but
have electric charges g~ at 0=2+. As suggested

by 't Hooft, the periodicity is realized by consider-
ing dyon-gluon pairs which become pure mono-
poles at 8=2~. Consequently, it is necessary to
consider not only the condensation of dyons but
also the condensation of dyon-gluon pairs in the 0
vacuum. We call the resulting phases EM conden-
sation phases since the condensate consists of elec-

where g (AR) is the effective coupling constant at
resolution R. It is not surprising that the vortex
width m ' depends on R, since the effective La-
grangian I. (R) does not provide any information
on the structure of the system whose scale length is
smaller than R. In our scheme we may increase
the resolution R up to the critical point R, without
affecting the vortex picture. We thus conclude
that the vortex width m ' should be evaluated at
the critical point R =R, . Qn the other hand, the
potential energy between two quarks should be cal-
culated on the basis of the effective Lagrangian
I.(R) by choosing R to be the distance between

two quarks. Now, in the confinement phase the
effective coupling constant g (AR) is determined by
(1.1), or

tric charges as well as magnetic charges in general.
The phase structure is relatively simple in the
weak-coupling regime; the system is always in the
Coulomb phase for g &gi or R &R i. In case of
SU(3), we estimate R i -0.6 GeV ' which depends
on 0 only weakly. Then, at this point, the conden-
sation of pure dyons occurs. With respect to the
strong-coupling phase, it is necessary to consider
two cases separately: (i) 8/2~ is a rational num-

ber, and (ii) it is an irrational number. In case (i),
there is a phase-transition point beyond which the
condensate is pure magnetic monopoles; these
monopoles are dyon-gluon pairs with no electric
charges. In case (ii), there arises an infinite se-

quence of EM condensation phases through which
the system passes as the effective coupling constant

g (AR) increases. In any case, the vacuum is a
magnetic superconductor in the strong-coupling re-

gime and electric flux is squeezed into vortices.
However, the confinement of quarks does not
necessarily follow, because quark charges may be
screened by dyon charges or gluon charges. We
obtain the following conclusion: Quarks are not
confined when 8/2m is an irrational number or
when 8/2m. =(1+nN)/mE, n and m being in-

tegers.
In the previous paper, ' as phenomenological ap-

plications of our formalism, we have derived the
relation between the Regge slopes of mesons and
gluonia and we have also estimated the bag con-
stant. In this paper, we wish to estimate the mass
of the rI' meson. We make use of the observation
that the g' meson is a would-be Goldstone boson
associated with the chiral U(1) symmetry. Then it
has been argued that the g' mass is calculable in
the leading order of 1/N by examining the 0
dependence of the vacuum energy of the pure
Yang-Mills theory In cas.e of SU(3) we derive the
q' mass in the chiral limit as

27

128ir f (a')
(1.3)

where f and a' denote the pion decay constant
and the Regge slope of mesons, respectively. This
formula amounts to m„-0.55 GeV, where we
have used f =0.095 GeV and a'=0. 9 GeV
The agreement with the experimental data (-0.96
GeV) would be reasonable; note that pions are
massless in the chiral-limit approximation. This
fact together with similar results derived previously
suggests that (i) the U(1) problem as well as the
confinement problem is solvable by considering the
condensation of dyons, and (ii) the hypothesis of
Abelian dominance is basically correct.
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In this paper, we shall make an extensive use of
weight vectors e and root vectors ri of SU(N).
For readers' convenience, we list the minimum for-
mulas with respect to these vectors. Let
[A,H', H = 1, . . . , N —1 J be a set of diagonal Gell-
Mann matrices of SU(N) normalized such that
Tr(AHAB) =25Hz. Then, we define the elementary

weight vectors ei=(e,', . . . , e; ) by setting
e; =(AH/2);;. There are N such vectors, among
which N —1 vectors are independent. They
characterize a quantity which transforms according
to the fundamental representation of SU(N). On
the other hand, we define the elementary root vec-
tors ri J by riij

——e; —e&. There are N(N —1) non-

trivial vectors, among which X —1 vectors are in-

dependent. They characterize a quantity which
transforms according to the adjoint representation
of SU(N). These vectors satisfy

II. ABELIAN DOMINANCE
IN 8 VACUUMS

Through the study of instantons, it has been
recognized that QCD possess' a previously un-

known parameter, the vacuum angle 8. The pure
Yang-Mills theory reads effectively as

L(f))= TrF~„F „i'
T—rF~„F

1 8
2go

" " 16
(2.1)

Sec. IV, we derive effective Lagrangians describing
these EM phases. We also discuss the screening of
quark charges by gluon charges or dyon charges
which leads to oblique confinement modes. In Sec.
V, we estimate the mass of the i)' meson. Sec. VI
is devoted to our conclusions.

1 5„,

iv rlqN —,+ —,5—,—q (i+N, j+N) .

(1.4)

in the Euclidean metric. I.et us consider the
Wilson-loop amplitude

( W(C) ) =Z(8) ' I[de„]5(DqFq„)W(C, Fq„)

In general, weight vectors and root vectors are con-
structed by Xexp — L, 0 (2.2)

N —1

nI eS,

N —1

9 gmi9iN

with n; and m; being integers. These vectors con-
stitute the weight lattice and the root lattice of
SU(N), respectively. Now, generalized Poisson
resummation formulas are obtained

+exp[ —4iri ri B]=( 2
)+ +5(B—e),

+exp[ 4ni e 8]=—( —, ) '+5(B—g ),
(1 6)

where g-„and g-, indicate the summations over

all points on the root lattice and the weight lattice
of SU(N), respectively. These relations are used

when we discuss dual transformations which relate
magnetic excitations labeled by the root (weight)
lattice of SU(N) to electric excitations labeled by
the weight (root) lattice of SU(N).

This paper is composed as follows. In Sec. II,
we analyze the compatibility of the hypothesis of
Abelian dominance and the periodicity of the sys-
tem in 0. In Sec. III, we discuss the condensation
of dyon-gluon pairs which produces various EM
phases. We also argue that the system is in the
Coulomb phase in the weak coupling regime. In

where the field-strength formulation has been
adopted. ' In our previous paper, ' we have
analyzed the Wilson-loop amplitude for 8=0,
where we have proposed to decompose the field
strength E& into the Abelian component E„„and
the non-Abelian component Tz„by diagonalizing

E~v as

(2.3)
—1

EI,v = TpvEpv Tpv

We have called E& the Abelian component since it
takes values in the Cartan subalgebra of SU(N),
which is the maximal Abelian subalgebra of
SU(N). We emphasize that F&„ is a diagonal ma-
trix field whose elements, being the eigenvalues of
E&, are gauge invariant. We do this diagonaliza-
tion because classical configurations of magnetic
monopoles are constructed within the Cartan
subalgebra of SU(N) and because these monopoles
are believed to be the essential agent which leads to
the confinement of quarks.

According to the program described in the In-
troduction, we wish to derive the effective La-
grangian of the Yang-Mills theory at resolution R.
In principle, we are able to do this by integrating
out the momentum components of all field vari-
ables with p &R . Actually, it is almost impossi-
ble to carry out such integrations explicitly by the
techniques currently available. As in the previous
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paper, ' to simplify the problem without losing the
essential topological structure of the Yang-Mills
theory, we make a working hypothesis of Abelian
dominance. Namely, at a resolution beyond a cer-
tain mass scale, we assume that the non-Abelian
component does not contribute to the effective La-
grangian. Thus, the effective Lagrangian must
involve solely the Abelian component Fz,, the only
effects of the non-Abelian component is to smear
out the short-distance behaviors of the theory in-
clusive of monopole singularities. Recall that clas-
sical monopole solutions have pointlike singulari-
ties in the Yang-Mills theory; they are Wu-Yang
monopoles in SU(2). In this way it would be possi-
ble to construct an effective Abelian gauge theory
of the SU(N) Yang-Mills theory at a long-distance
scale R. The symmetry group of the effective
Abelian theory is given by W(SU(N)) X T(SU(N) ),
where 8'(SU(N)) and T(SU(N)) stand for the
Weyl group and the maximal torus of SU(N),
respectively. The Weyl group corresponds to the
freedom permutating the diagonal elements of Fz, .

More precisely, we assume that the Yang-Mills
Lagrangian (2.1) would be approximated in terms
of Abelian fields as

L (8)= F„„Fq„— Fq„Pq„(2.4)
4g (AR) " " 32m.

at a long-distance scale R, where g (AR) is the ef-
fective coupling constant at R with A being a re-
normalization mass parameter. Here, F&„denotes
an (N —1)-dimensional vector
F„„=(Fz„,. . . ,F„„)which corresponds to the
diagonal matrix F„,=g~, FP

& i/2. We also
assume that the Bianchi identity

(2.5)

is an integer for arbitrary field configurations with
appropriate boundary conditions.

We have studied the Z~ topology in detail in
previous papers. ' As we have shown therein, the
monopole current k& in (2.6) must be parametrized
by

(2.8a)

where g~ assumes arbitrary root vectors of
SU(N). For later convenience, we introduce mag-
netic Dirac strings attached to the magnetic mono-
poles by solving

—Afar
~pppv =km. (2.9)

We may write down p&
*

explicitly as

p„„'=4rrgrj fd r5' '(x —z )[z„,z„],

(2.8b)

where

F„„=B„A,—8+„+p„„ (2.10)

with (2.8) and (2.9). Then, the Pontryagin index
(2.7) reads

Q
— fF .F

F —4fe

16m

We now analyze the 0 periodicity. The neces-
sary and sufficient condition is that the Pontryagin
index (2.7) is an integer for arbitrary field configu-
ration. Let us solve the Bianchi identity (2.6):

would read

B„Fq„——k„ (2.6)
8m' fA„kq. (2.11)

at a long-distance scale, where k& represents the
configuration of magnetic-monopole excitations.

We go on to review the topological structure of
the SU(N) Yang-Mills theory.

(i) The Z~ topology; topological excitations are
magnetic vortices labeled by the weight lattice of
SU(N) and magnetic monopoles labeled by the root
lattice of SU(N).

(ii) The 8 periodicity; the generating functional
is periodic in the vacuum angle 0 because the Pon-
tryagin index,

It follows that the magnetic flux passing through
arbitrary monopole loops must be quantized. This
is possible only if the magnetic flux is composed of
an ensemble of quantized vortex loops. Indeed, by
making use of relations (1.4), it is easy to prove
that the Pontryagin index (2.11) is an integer if the
magnetic flux is described by quantized vortices:

p„"„*=4m.ge„fd r5' '(x —z )[z„,z ]
V

(2.12a)

Q = .fTrFq„F~„,
16m

(2.7)
with E~ being weight vectors of SU(N). Moreover,
since
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+

5pAv —i)+p =p„
the quantized vortices satisfy

~Ve
BpP@ ——0 .

(2.13)

(2.12b)

~V
Fp,v= pp, v+ ppv . (2.14)

I

Namely, quantized vortices may exist only as
closed loops. Note that they are precisely those
magnetic vortices implied by the Zz topology of
SU(N) gauge theories. Combining (2.10) and
(2.13), we obtain

Hence, the electromagnetic fields are composed of
quantized vortex loops and monopoles; both of
them are magnetic excitations. This is the condi-
tion that should assure the 0 periodicity of the sys-
tem.

We have briefly stated the hypothesis of Abelian
dominance in the presence of the vacuum angle 0.
According to the hypothesis, after integrating out
all field variables with the momentum range

p &R ', we assume that the Wilson-loop ampli-
tude (2.2) leads to

(&&'(C» Z&&&&
'

g f [dF„„]&&'(CF„„&6&&'„„—p„"„—p„„&6(B„&„„—k„&5(B„k„&
P

1 - - i0
Xexp —

2 Fp Fp„— 2' .
I,„

4g (AR) 32m.
(2.15)

where it is understood that the integrations are to be made only for the momentum components with

p &R, which implies that the effective Lagrangian derived from (2.15) has resolution R. Here, the sym-

bols (J, ) and (~ ) indicate the integrations over all configurations of magnetic-monopole excitations k& and

ail inagnetic vortex-loop excitations p», respectively. Note that the resolution scale R acts as the lattice
spacing which determines the integration measure of these excitations.

In our previous paper, ' where we have analyzed the Wilson-loop amplitude in the 0=0 vacuum, we have
neglected the vortex-loop excitations. We shall later argue that these vortex loops always condense. Then, it
is possible to investigate the effects of the vortex condensation by integrating over all possible configurations
of vortex loops described by p„„:

],5(F&„—p„„—p&„)=Jjf [dC„„]exp[i (F„„—p&„) C„„ip„;C„—„] .

To evaluate (2.16), we make use of the Poisson resummation formula (1.6), which reads

(2.16)

JL'exp( ip„, C—„,) =Jf 5(C„„——, j„,)
P J

in the present context. We then obtain

(2.17)

~V M qE
l M

gf 5(Fijv Ppv Ppv)=y—~ "P— ( i&v Ppv) 3i&v
P J 2

(2.18)

where

j„,(x)=gri fd r5' '(x —z )[z„,z„],
E

with

j,(x)—:5 j „(x)=pi) f de' '(x —z )z, .
E

(2.19a)

(2.19b)

Here, j & represents electric charges as is obvious from the coupling of j„,with the gauge field F&„ in
(2.18). We have shown that, as a result of the condensation of magnetic vortex loops labeled by weight vec-
tors of SU(N), there appears an incoherent plasma of electric charges labeled by root vectors of SU(N). We
call them gluon charges, though they also include the charges of bound states composed of gluons. We em-
phasize that gluon charges have been introduced naturally into our effective Abelian theory for the realiza-
tion of the 8 periodicity.

We substitute (2.18) into (2.15) to obtain
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( w(c) }=z (8) ')I' Jj I[dF»][de][dx]w(c, F»)
k j

1 - - i- -g 8
yexp — - - F~ .Fp +—Fp Gp — 2r q

—jp,
4g 2 16~

+i(B„+B„X).k„ (2.20)

with G»=B&B„—BQ&, where use was made of the identities

5(de, k„)=—I[dB„]exp i IB„(de„k„)— (2.21)

5(B„k„)=J[dX]exp i JX B„k„ (2.22)

The saddle-point equations read

B„F*„,=k, ,

0
~p pv —8 jv+ 2 v

Sm.

(2.23a)

(2.23b)

where we have neglected the contribution from the Wilson loop $V(C,F»). These saddle-point equations

imply that a monopole with the magnetic charge riM carries the electric charge (8/2n)ri~ as .well. There-

fore, topological excitations are actually dyons in the 0 vacuum.
It is also useful to rewrite (2.20) as

( W(C) & =Z(8)-')f 'f f [dF„,][dB„][dX]$'(C,F„„)
k j

T

1 ~ ~ l g —

Afar

Xexp ' I 2 Fpv Fpv+ F»' G» 2 Ppv 3»
4g2 2 8m

+i (8„+d„X).k„ (2.24)

~Me
3I v~ 3 pe+ Ppv

4m
(2.25)

Such a change of variable is allowed because the
charge current j &„and the monopole current
( I /4n )p„, have formally the same representations;
see (2.8) and (2.19). We emphasize that the period-
icity is recovered because of the cancellation be-
tween the electric charge of dyons and gluons.
This suggests that we should consider dyon-gluon
pairs as basic topological excitations. We shall

where use was made of (2.11). In this formula, the
periodicity of the system is clear. Indeed, a shift
in 8 by 2nproduces .the factor (1/8m)F» p„, in
the action, but this effect. may be compensated by
a change of integration variable j» as

come back to this point in Sec. III when we dis-
cuss the self-energies of topological excitations.

III. EM CONDENSATION MODES

In the previous section, we derived the formula
(2.20) for the Wilson-loop amplitude, where the
condensation of magnetic vortex loops have been
taken into account. We proceed to analyze the
condensation of dyons in this formula. We also
consider the condensation of dyon-gluon pairs. We
call them EM condensation modes since the con-
densate consists of electric charges in addition to
magnetic charges in general. In order to analyze
these modes, it is necessary to evaluate the self-
energies of each topological excitation. This is so
because the condensation takes place as a result of
the balance between the entropy effects and the
self-energies. Because the Wilson loop W(C,F»)
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does not play any roles, we neglect the contribution
from it in this section.

The self-energy of a topological excitation may
be calculated on the basis of formula (2.20) as fol-
lows. First, making a change of variables

~
i (G„'„j—„'„) (—8g'/86)(G„„—j„„)F F 2 Pv Pv

1+8 g /64m.
(3.1)

we integrate out F„„.We thus obtain

Z(8)=J ),f [dB„][dX]exp — f 6„„i— 6„„.j„„+j„„ i —f (B~+Bqg) kq. (3.2)

where

g2(8) g2
82g 4

1+
64 4 (3.3)

We now integrate over B& and P. The result is given by

z(e) ='f g ga„r„)a(a„&„~
k j

&(exp — f k„(x)h„„(x—y) k„(y)
2g

2
—g f j„(x)+,k„(x) 6„.(x —y) j,(y)+, k,(y) (3.4)

where b,„„stands for the massless propagator with
the momentum cutoff R '. This represents a sys-
tem of plasmas composed of dyons and gluons:
dyons are specified by magnetic current kz and
electric current (8/SH)k& . A gluon charge
current j & has appeared as a result of the conden-
sation of magnetic vortex loops, as we have argued
in Sec. II.

First, let us consider a single dyon sitting at the
origin:

k„(x)=4nrj~5"'(x)5. „p . (3.5)

Then, the self-energy may be calculated' from (3.4)
as

4m g 8
d 4R 2+4 2 9M (3.6}

4r 2 g 82

~b
4 2 9M + 9E+ 9M4R g2 4m 2m

'2

(3.7)

which is composed of two terms: the term m /g R
due to the magnetic charge and the term

g 8 /64m R due to the electric charge. We next
consider a pair of a dyon labeled by gM and a
gluon labeled by qE, placing both of them at the
origin. Then, the self-energy is given by

RMb (ln(2d}, (3.8)

where d is the space-time dimension: here, d =4.

I

Note that (3.7) is periodic in 8 when we choose rid
appropriately in each period of 8; that is, (3.7) is
invariant under the simultaneous transformations
8~8+2m. and gE~ gz —gM. Comments on this
mass formula will be given at the end of this sec-
tion.

In the 8=0 vacuum, since it follows that
Mq (Mq, the condensation of dyons ( which are
actually monopoles) occurs regardless of the ex-

istence of gluon charges. Thus, the analysis we

have made in the previous paper' needs no modifi-
cations, though we have neglected gluon charges
entirely. The sole role that gluon charges play is
to make it possible that a vortex with the flux la-

beled by root vectors may split into shorter vor-
tices.

However, in the 8 vacuum, the self-energy of a
dyon may become smaller (Md &Mb) when it com-
poses a bound state with a gluon. Then, it is
preferable for dyons to compose bound states with
gluons and then to condense. The condensation of
dyon-gluon pairs may occur when their entropy ef-
fects become dominant over the self-energies, that
1s 10
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Substituting (3.7) into (3.8), we obtain the condi-
tion

2

lM 9E)= P gM +4 QE+
2 gM

g 4~ 2m

41n 8
(3.9)

0 21n8
9M QE+ QM2' (3.10)

This inequality gives rise to two critical coupling
constants g and g, provided that

assume 8 to lie in the interval [—m, m.]. Then, for
fixed values of x and 8, we search for the sets of
nonzero integers tm;J and )n; ) which minimize
(3.13). The corresponding root vectors (3.12) turn
out to determine the phase at the effective coupling
constant g(AR } for a fixed value of 8: the system
is in the EM condensation phase if

F(gM, fE)(4lng/m-, (r)M, its)+0;
otherwise the system is in the Coulomb phase.

For the sake of definiteness, let us solve the
above problem when 8/2' = 1/p, p being an in-

teger. In this case, (3.13) reads

Then, the condensation may occur for g~ &g &g, .
Approximate solutions are given by

F(r)~, r)E)= gm; +pm;
2x

g~ /4rr=0. 38$ M

g, /4~=2 69E.+ rlM2~

—2 (3.11) gm;+pgn; '

X—1

rlE g iiif;iv

(3.12}

we obtain

In general, corresponding to the sets of charge vec-
tors (fiii, rlz) satisfying (3.10), a variety of EM
condensation modes follow. However, not all of
them realize physically. It must be those dyon-
gluon pairs which have the minimum self-energy
that give rise to an actual phase. Hence, in order
to determine the phase at resolution 8, it is neces-
sary to search for the set of charge vectors

(r1~, rl~) which minimizes F(rl~,fF) at the ef
fective coupling constant g =g (AR).

In order to analyze F(r)i', fz) explicitly, we

substitute (1.5) into (3.9). Namely, by setting

X—1

gM g irii liN,

+g(m;+pn; ) . (3.14)

2

F(fM fE)=
X

(ii) Otherwise we obtain

1 x
F(AM rjE)) —+

X p

(3.15a)

(3.15b)

The equality in (3.15b) holds if r)z ——0 and f~ is
an elementary root vector. Therefore, when
8/2m. = 1/p, there are only two EM condensation
phases. The critical coupling constants are given

by

By assuming r)iir+0, we deduce the following re-

sults.

(i) When gsi —— pr)F. with —r)F being an elemen-

tary root vector, we obtain

F(r1~, gE) = gm; +pm;
2x

g) /4m =0.38

gz /4m=p(p —1)'i
(3.16)

x 0
gn, +g.m;

2 i,. 2m

2

+g n+ m;
0

2m

2

(3.13)

where x =g~/4nWithout los.s. of generality we

We note that the condensate consists of pure dyons
for g & &g &gq and that it consists of pure mono-
poles for gz &g; here, monopoles are dyon-gluon
pairs with no electric charges. As we shall argue
later, the system is in the Coulomb phase .for
g &g &

. We have depicted the phase structure as
well as the functions F(gM,fE) for 8/2m. = —, in

the case of SU(2) in Fig. 1(a). We have also indi-
cated the condensates on the electric-magnetic
charge lattice of SU(2) in Fig. 2(a).
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FIG. 1. Phase diagrams in SU(2); Fig. 1(a) for g=w
and Fig. 1(b) for 0=4m/5. Curves represent the "self-
energy" F of topological excitations {dyon, dyon-gluon
pair and monopole) as a function of effective coupling
constant x =g (AR)/4m. These topological excitations
condense when F & 4 Ins/n [see (3.9)]. Initials C, D,
EM, and M on the x axis stand for the Coulomb, dyon,
EM, and monopole condensation phases, respectively.

(b)

We are able to derive the phase structure,
though the derivation is somewhat tedious, for oth-
er values of 8. Here, we only give general features
of the phase structure. Let us start with the
weak-coupling regime. As is obvious from (3.11),
the first critical point is given when gM is an ele-

mentary root vector (rlsr 1). In this cas——e, the
formula (3.13) may be minimized by choosing

rIE 0. Namely, th—e—first EM condensation phase
is always given by the condensation of pure dyons.
We call this the dyon condensation phase. It is
also possible to show that the next critical point
exists atgz /4m=0(8 ) when

~

8/2n
~

&&I.
Thus, g2~0o as 0—+0. This implies that other
EM phases disappear in the limit 0~0. With
respect to the strong-coupling regime, we need to
study two cases separately.

(i) 8/2n. is a rational number, i.e., 8/2m =q/p
with q and p being integers. It is possible to find a
set of vectors such that rl@+(8/2')rjsr ——0. The
corresponding EM phase covers all the strong-
coupling regime beyond a certain critical coupling
constant. We call this the monopole condensation

FIG. 2. Electric-magnetic charge lattice in SU(2);
Fig. 2(a) for 0=m and Fig. 2(b) for 0=4m/5. Lattice
sites represent dyon-gluon pairs in general. Points on
the heavy lines marked D, EM, and M stand for the
dyons, dyon-gluon pairs and monopoles which are due
to condense and compose the dyon, EM, and monopole
condensation phases, respectively. The symbol (3
denotes dyon-quark pairs.
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phase since the condensate is pure monopoles. It is
obvious that there are only a finite number of EM
condensation phases when 8/2~ is a rational num-
ber. We have depicted the phase structure for
8/2m = —, in case of SU(2) in Fig. 1(b). See also

Fig. 2(b).
(ii) 8/2m is an irrational number. It is impossi-

ble to find a set of vectors such that
rlE+(8/2m )AM 0, bu——t it is possible to choose a
set of vectors that makes [rlz+(8/2m ) rIM] arbi-
trarily small. For definiteness, let us choose

q~ ——pg and gE ——qg with q being an elementary
root vector. Now, a theorem in the theory of num-
bers states that there is an integer q for a suffi-
ciently large p such that

q+ p
0 1

(3.17)
27T 2p

From this theorem it follows that the condition
(3.10) is satisfied for the set of vectors (p r), q rl ).
Furthermore, it is easy to prove that for a suffi-
ciently large g there is always a set of vectors

(farl,

qual) that satisfy the inequality (3.9). There-
fore, the Coulomb phase never realizes in the
strong-coupling regime. %e conclude that the sys-
tem passes through an infinite number of EM con-
densation phases as the coupling constant in-
creases.

In this section, based on the mass formula (3.7),
we have analyzed the condensation of dyons as
well as dyon-gluon pairs. %e have tacitly assumed
that charged gluons never condense only by them-
selves, which would otherwise lead to the Higgs
phase in the weak-coupling regime of the Yang-
Mills theory. %e wish to argue why this is possi-
ble within our formalism. For this purpose, let us
first make comments on the mass formula (3.7).
In deriving this we have not considered dynamical
mechanisms which bind dyons and gluons. Rath-
er, we have simply placed both of them at the
same point and evaluated the self-energy due to the
electromagnetic fields. The essential point is that,
contrary to (3.6), (3.7) is periodic in 8 when we
choose gE appropriately in each periods of I9.

Therefore, under the hypothesis of Abelian domi-
nance, we should regard (3.7) as the correct mass
formula of topological excitations in the 0 vacuum.
We may interpret this fact by saying that the
periodicity is realized by considering dyon-gluon
pairs in the effective Abelian theory. This inter-
pretation is consistent with the proof of the 0
periodicity we have made in Sec. II.

On the contrary, we should not evaluate the

masses of gluons by setting g~ ——0 in the formula
(3.7). First of all, there are no reasons to do so.
Note that charged gluons belong to the non-
Abelian component T„„in our scheme since they
are not invariant under the Abelian gauge transfor-
mations, but that dyons are topological excitations
in the Abelian component I'„, [see (2.3)]. Further-
more, the hypothesis of Abelian dominance implies
that the non-Abelian component T&„ is quite
"heavy" and hence so must be charged gluons.
Therefore, the mass of gluons would be given by

2 f,'+m(f, ,Z), (3.18)

IV. OBLIQUE CONFINEMENT
AND EFFECTIVE LAGRANGIANS

In the previous section, we have analyzed the
condition for topological excitations to condense
and compose EM phases. The aim of this section
is to evaluate the Wilson-loop amplitude, explicitly
in each of these phases. We do this by performing
a dual transformation in the formula (2.20) or
(2.24). Equivalently, we integrate over all possible
configurations of topological excitations which are
due to condense.

When the gauge field is restricted in the Cartan
subalgebra, the fundamental-representation
%ilson-loop operator reads'

W(C, F„„)=g exp —f e; F&J„
i=1

(4.1)

where e; are the elementary weight vectors of
SU(N Here.

J„,(x)=f d r5' '(x —z)[z„,z„] (4.2a)

where m »8 '. Then, the condition (3.8) is al-

ways violated and charged gluons never condense

by themselves. %e have shown in Sec. II that
charged gluons appear if magnetic vortex loops
condense. Because of duality, the above fact is
equivalent to saying that the condensation of mag-
netic vortex loops indeed occurs. %e conclude that
the hypothesis of Abelian dominance also implies
the absence of the Higgs phase in the Yang-Mills
theory. We wish to discuss this problem in detail
in a future publication.
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parametrizes a surface whose boundary is given by
the loop C. The loop C itself is parametrized by

Jv=~pJpv (4.2b)

In what follows, we analyze (2.20) or (2.24) togeth-
er with (4.1). We study the dyon condensation
phase and the monopole condensation phase in de-

tail. Then, we briefly describe EM condensation
phases in general.

A. The dyon condensation phase

We evaluate the Wilson loop in the dyon con-
densation phase, where the condensate consists of
pure dyons. This is the first EM phase that ap-
pears as scale length R increases. See Figs. 1 and 2
for illustration; dyons are indicated by points on
the heavy line B in Fig. 2. To describe this phase,
it is more convenient to use formula (2.20) than
(2.24). We start with

(fV(C})=Z(8) 'g 'L' JL' f [dF„,][dB„][dX]
i=1 k j

Xexp —
2 F„v' Fpv

4g2

i ~ g+ Fpv
' Gpv 2 Fpv j pv ~i Jp,v

16m

+ i(B„+B„X) k„ (4.3)

Hereafter we set j„=0since we consider the condensation of pure dyons and since gluon charges do not
play any essential roles. For instance, gluon charges never screen the quark charge as we can see easily.

By making a change of variables

2

Sn.
(4.4)

it is possible to decouple the integration over F&„ from the rest of the system. Thus, we obtain

N

(8'(C)) =Z(8) 'g f [dB„][dX]
i=1

Xexp
g'(8)

4

2l8 g
Gpv — . ei Jpv —ei Jpv

2%

'2
2

e, Jp„

X exp i f k& (—B&+B&X)—M(x)
k

(4.5)

where g (8) has been defined by (3.3), and we have separated the self-energy density of dyons,

(4.6}

This formula is easily derived from (3 4); see also
(3.6}.

The physical meanings of the effective coupling

I

constant g(8) and the field tensor G„„are made
clear as follows. The dyons have electric charges
( / 8~2)rIM and magnetic charges AM. We rotate
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(4.7)

Here the rotation angle ])I] is defined by

the (E,H) space so that dyons become pure mono-

poles. The electromagg. etic field tensor in the
new frame is denoted by G&, with Bz being the
magnetic potential. Hence,

g (8)6&„i——cos]I] F„'„/g sin—P F„„/g .

which states that the self-energy of a dyon is in-

variant by the rotation. We remark that the
transformation (4.7) is equivalent to the saddle-

point equation of (4.3) apart from j &, and J&„,or

1- i -g 0

2g 2 8~2'
cosg=g(8)/g, (4.8) (4.10)

~(riM~o)=, riM +
4

4~ 2 g' 0
4m 2~

'2

4m'

g'(8)
(4.9)

where g and g(8) are the coupling constants in the

old frame and in the new frame, respectively.
These coup1ing constants are related one to another

by the equation

and that the formula (4.9) is reduced to the defini-

tion (3.3) of g (8) (see Fig. 2 for illustration).
Now we are able to perform a dual transforma-

tion in formula (4.5), or equivalently to change the

integration over magnetic monopoles (&f ) labeled

by the root lattice of SU(1V) into the integration

over electric vortices (/) ) labeled by the weight

lattice of SU(N). ' Here, "electric" and "magnet-
ic" refer to the rotated frame. The result is

N

[~(c]] z(e) ='g g f [dB„][dX]
i=1

g'(8)g exp
4

2
l Og

GP 2 6'JP 6'JP ~P
8m.

02 4

+ 2m'(B„+B„X)'+,e J„„'
64m.

(4.11)

where I =8/R and

crq,(x)=g eEJ d r5[ '(x —z )[zq,z, ]

2

g (8) - , i8gI-,g = G„„—eJ„„— eJ„
8m

(4.12) + 2m'(B„+a„i)' (4.14)

with B&o.z ——0. Here, o.
& stands for electric

strings which are closed upon themselves. The
minimum flux is given by eE ——e, e being an ele-

mentary weight vector, in (4.12). These strings
describe topological excitations of electric vortex
loops labeled by the weight lattice of SU(N) in the
dyon condensation phase. We may interpret that,
as a result of the dyon condensation, the magnetic
gauge symmetry

B~~Bp+B~f (4.13)

is spontaneously broken and the mass of B& is gen-
erated. Consequently, stable electric vortices have
appeared as topological excitations in the dyon
condensed phase.

We may extract the effective Lagrangian from
(4.11),

in the presence of external quarks, where e denotes
generically the elementary weight vector of SU(Ã.
From this effective Lagrangian it is possible to
derive the string tension

~2
[7(8,R)= g (8)m (R)

8m
—1

4~2

(4.15)

where use was made of (1.1), (3.3), and (4.11); here,
o. is the string tension in the 0=0 vacuum. It is
remarkable that the string tension is a monotoni-
cally decreasing function of R, R being the dis-
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B. The monopole condensation phase

We next consider the monopole condensation

phase, where the condensate consists of pure
monopoles that are dyon-gluon pairs with no elec-

tric charges, i.e.,

0
gE+ 28

(4.16)

tance between two quarks. We emphasize that this
formula is only valid in the dyon condensation
phase.

(See Figs. 1 and 2 for illustration, where pure
monopoles are indicated by points on the heavy
line M.) This phase is realized in the strong-
coupling regime when 8/2m is a rational number,
8/2m =q/p with p and q being integers. When
0/2m is an irrational number, as the effective cou-
pling constant g (AR) increases, the system passes
through an infinite sequence of EM:phases and ap-
proaches to the monopole condensation phase.

To discuss this phase, it is convenient to use for-
mula (2.24), or

(8'(C))=Z(8) ')f Jf f [dF„„][dB„][dX]
k j

1 - - i- -g 8
Xe"p —f,F],F]„+—F„' Gv, —,p„„—]„„E;~—

4g 2 8m

+ i (Bq+ BqX ) kq (4.17)

Here, the condition (4.16) or, equivalently,

(4.18)

is satisfied by the dyon-gluon pairs which are due to condense. However, before setting (4.18) in (4.17), it is

necessary to analyze whether topological excitations may screen the quark charge e;.
We make a change of variables

~ f
J pv~ 3 pv+ t E~pv ~

kp —+ kp+4m'gM Jp,
which also implies

(4.19a)

(4.19b)

PIJi,v ~Ppv +4~'gMJpv .

Then (4.17) yields

(4.19c)

())'()-)) z())) 'g )] J[dp„„][dB„][dX]
k j

1 ~ ~ l 8
Xexp — 2F~ F~ +—

p Gp ——,p&
—J& —p'J&

4g 2 8m.

+ i(B„+BOX) kp 2miri~ G„—g„„ (4.20)

where

~l ~ ~ I 0i+ g E+ 7/M2' (4.21)

Provided that e,' & e;, the quark charge is screened. We come back to this problem after the effective La-
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grangian is derived.
We now substitute (4.18) into (4.20), and then we integrate over F&„. We obtain

N

( W(C) }=Z(8)=' g J [dB„][dX]

Xexp

2 24' 16m.
Gpv ~ i ~pv+ 2 IMJpv + 4 ~M ~pv

exp —I k~ ap+B~g —M x
k (4.22)

where we have separated explicitly the self-energy density of monopoles,

2

~y(x) ~ g ~ 2 d g(4)( ~)( ~ M ~ M
)M ~Zp

g M
(4.23)

This term is easily extracted from (3.4).
The dual transformation may be performed ex-

actly as before in formula (4.22). Here, there is an
important remark. As we have described in Sec.
III, the minimum vector gM that satisfies
rIF+(q/p)rIM 0 is given ——by rlsr pal, rl b——eing
an elementary root vector. Accordingly, the dual
transformation yields a similar formula to (4.11)
with (4.12), but the minimum electric flux therein
is given by eE ——(1/p) e, e being an elementary
weight vector. We derive the effective Lagrangian

fore, when 8 satisfies (4.26), no vortices are gen-
erated: the Wilson-loop amplitude yields the peri-
pheral law, or quarks are liberated. We have illus-
trated an example of such screening of quark
charges in Fig. 2(b). This mode has been named as
oblique confinement by 't Hooft, though quarks
are not actually confined in this phase. On the
other hand, when 8 does not satisfy (4.26), the
string tension is nonvanishing; oM ——(s /p )o. The
Wilson-loop amplitude yields the area law and
quarks are confined.

4n.i
Gpv 6 Jpv 2 IM Jpv

+2m (Bq+B„X) (4.24)

which leads to the string tension

(e')' 2 2 (~')'
o.~(8)= g m = o,

8m
(4.25)

8/2ir=(1+nN)/mN, n, m integers (4.26)

and otherwise given by F'=(s/p) e, s being a cer-
tain integer dependent of p and q, p )s & 1. There-

where o. is the string tension in the 0=0 vacuum.
As is expected, the screened charge e ' has ap-

peared in the string tension. We now determine
the minimum value of (e ') . By substituting (3.12)
into (4.21), it is straightforward to prove that the
minimum value is given by e'=0 if

C. IBM condensation phases in general

In the previous subsections we have derived ef-
fective Lagrangians in two specific choices of EM
phases, that is, in the dyon condensation phase and
in the monopole condensation phase. We now
wish to analyze EM phases in general. Since we
may derive effective Lagrangians by applying ex-
actly the same method we have developed, we keep
our description as concise as possible.

We have shown in Sec. III that each EM phase
is characterized by a set of root vectors (rIM, rlE);
the dyon-gluon pairs due to condense carry the
electric charge [rIF+(8/2n)rlM] and the magnetic
charge rl~ In order to de.rive an effective La-
grangian, it is convenient to rotate the (E,H) space
so that these dyon-gluon pairs possess only mag-
netic charges in the rotated frame. The rotation
angle PH is defined by cosPH ——g&(8)/g,
8=1, . . . , X—1, where
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4m.
( ~)g 4m

( ~)g
P(8) 9M P 9M

2
'2

H 0 H+4 PE+2 gM (4.27)

01

with

2

ga'(8) =
1+(( H)2g4/16 2 (4.28)

H HC= mE+
2m

H
9M (4.29)

Here, the rotation angle P~ depends on the com-
ponent H in general. In the rotated frame a dual
transformation is trivially performed as before. As
a result we are able to derive an effective Lagrang-
ian Leff

V. THE q' MASS

with

de
f 2 d82

(5.1)

As a phenomenological application of our
analysis of the confinement problem in the 8 vacu-
um, we wish to estimate the mass of the g' meson.
It has been recognized that the q' meson is a Gold-
stone boson associated with the spontaneous break-
down of the chiral U(1} symmetry. This Gold-
stone boson has actually received a mass as a result
of the chiral anomaly. In fact, in the limit X= 00

the anomaly is switched off and the g' mass is ar-
gued to vanish. Witten has observed that the q'
mass may be obtained in the leading order of 1/N
by requiring that the 0 dependence of the Yang-
Mills vacuum should be removed by the introduc-
tion of massless quarks into the system. He has
derived a formula

jeff g Gpv & ~@~+ + g E Jp~
aza

H 4~

4l 7TQ~ J
+

ga (8)

d E
d0

'2
1

16m

X d x T TrF „x ,Trg P' O

+ 2m'(8~+ B„y~P (4.30) (5.2)

where e' is the screened quark charge;

iH ++ ~H+ g~H+ iH
277

(4.31)

The string tension may be obtained as

0(8,R)= g(e' ) g& (8)m (R),
8m

(4.32)

which is dependent of resolution R as in the dyon
condensation phase.

Finally, we analyze the problem of quark can-
finement when 0/2m. is an irratianal number. In
this case, it is impossible to screen the quark
charge completely. However, it is possible to make
the screened charge e,' arbitrarily small. For in-
stance, we may choose g~ and gE so that
(e;) =1/R. Then, although (fM) =R in this
case, it is easy to prove by making use af the effec-
tive Lagrangian (4.30) that the Wilson-loop ampli-
tude yields the peripheral law. Namely, quarks are
not confined.

in the Yang-Mills theory with massless quarks,
where N~ is the number of light (massless) quarks
(N/ ——3) and f is the pion decay constant
(f =0.095 GeV}. We may identify E(8) as the
vacuum energy of the pure Yang-Mills theory with
the vacuum angle 0.

As we have demonstrated in the previous sec-
tions, the phase structure in resolution R is depen-
dent of 0. Namely, the system is in the Coulomb
phase for R &R &. Then, at R =R &, the dyon con-
densation occurs and this phase continues up to the
second critical point R2. However, we have shown
in Sec. III that R2 —+ Qo as 0—+O. Therefore, in
evaluating the correlation function (5.2) at 8=0, it
is just enough to analyze the vacuum energy E(8)
of the dyon condensation phase.

In order to determine the vacuum energy E(8)
of the dyon condensation phase, we write down an
effective Landau-Ginzburg Lagrangian,

X—1

—,(G„'„)'+ a„+i a„'

(5.3)
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where P =(P', . . . , P ') stands for the dyon
field operator. Here, we have taken the potential
term so that the effective Lagrangian is symmetric
under the symmetry group S~, which is isomor-
phic to the Weyl group W(SU(N)) of SU(N, as is
expected from the arguments of Sec. 1. We are
able to derive an explicit form of the potential
term as follows. For this purpose, we examine
some properties of the effective potential.

First, when we expand it in powers of ~P

g'(8)
4m ln8

(5.11)

or

g (8) 1ng —RM(8)
v 8 =

4~21n g
(5.12)

Hence, the vacuum expectation value (5.8) should
approach to (5.10) for R »R ~, from which it fol-
lows that

V( fPH/2. 8) g +g fPH/
2

+&
~

yB
~

4+. . .

it must be that'

RM (8)—1nga2=
R

where

M(8) =
Rg (8}

(5.4)

(5.5)

(5.6)

with (3.3).
Thirdly, we assume that the t9 dependence of the

effective potential V(
~ P ~;8) appears only in the

coefficient a2 in the expansion (5.4). This assump-
tion is quite plausible because the effect of the 0
vacuum would be only to transform monopoles
into dyons with an increase of the self-energy, as
we have discussed in Secs. II and III. We may
then write

V(I4" I'8)=V(IA" I'}+ ™(8}IPI'
is the mass of a dyon. Then, in the condensed
phase of dyons, the dyon field P must develop a
vacuum expectation value such that

(5.7)

with

5M(8) =-
R g~(8) g2

(5.13)

(5.14)

with

V (8)=4l2,
where A, is a certain function to be determined
later. Hence, it is required that

Vi([yH~28} 0 t [yH~2 2(8)

(5.8)

(5.9)

'V" +R-~t M =0,
dX

where x =U (8) and

(5.15)

where use was made of (5.5) and (5.6).
Now, the condition (5.9) leads to a differential

equation

~ 'g'(8) g'(8)
32m 4nR. (5.10)

In fact, it is based on this potential that the con-
densation of dyons has been argued to occur for
a2 &0; this condition is nothing but the condition
(3.8) which we have extensively used in Sec. III.

Secondly, we require that the Landau-Ginzburg
Lagrangian (5.3) should be reduced to the effective
Lagrangian (4.14) at the minimum point of
V(

~ P ~;8). Here, a comment is in order. The
effective Lagrangian (4.14) has been derived from
the Wilson-loop amplitude (4.11) by neglecting the
electric vortex excitations described by o.

& . This
implies that the effective Lagrangian becomes ac-
curate only for the case R &&R &

in which vortices
are quite heavy. Now, it is trivial to see that (5.3)
is equivalent to (4.14), except for the potential
term, if we set 8„' =g(8)8& and

=v(8)exp( ig ), whe—re

1 1n8 n

R 1+4R xln8 g

Integrating (5.15) from xo to x, we obtain

(5.16)

V(x) = V(x, )+ (x —x, )
R g

ln
1 1+4R2x ln8

4R 1 +4R xpln8
(5.17)

In this way, making reasonable assumptions, we
have determined explicitly the potential term
V(

~ P ~;8) in the effective Landau-Ginzburg La-
grangian (5.3}. It is quite easy to check that this
potential indeed satisfies all the properties we have
required. We remark that, if we normalize the po-
tential such that V=O at P =0, we may choose

V(xo) =0 at xo ——0 in (5.17).
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2
g(0) mi 1 g

R2 4~

2

+O(8'),
2m

2 0m(0) = g +O(0'),
4~ 4a 2m

L

for 8 gg1 and R ppR ~, we obtain

(5.19)

8 E(0) N
88 128ir (N —1)(a')

(5.20)

where use was made of (1.2); a'=1/2u. cr is the

Regge slope of mesons. Substituting (5.20) into
(5.1), we derive

64m(N —1)f. (a')
(5.21)

We notice that mv is O(1/N) since f is O(N)
and a' is O(N) in this formula. This serves as a
consistency check of our formalism. Finally, we
estimate (5.20) and (5.21) numerically in case of
SU(3). We obtain that

BE =(0.15 GeV)
B8 6) 0 (5.22)

mz -0 55 GeV,

where f~=0.095 GeV and a'=0.9 GeV 2 have
been used.

In this section, we have estimated the mass of
the i)' meson by making use of Witten's formula
(5.1). Our numerical result (5.22) explains the ex-
perimental data (mass=0. 96 GeV) well for our
crude approximation. We believe that the hy-
pothesis of Abelian dominance is basically correct

By making use of a semiclassical approximation,
we evaluate the vacuum energy as

E(0)=(N —1)V(u (0);0)

= (N —1)[V(u (8))

+R 'u (8)5M(8)] . (5.18)

Since we have

and is very useful.

VI. CONCLUSIONS

In this paper, we have analyzed the confinement
problem and the U(1) problem in the SU(N)
Yang-Mills theory with the vacuum angle 8. For
this purpose we have made the hypothesis of
Abelian dominance. ' Then, the sole effect of
the vacuum angle is to provide magnetic mono-
poles with electric charges. We have shown that in
order to recover the 8 periodicity of the system, it
is necessary to consider dyon-gluon pairs as funda-
mental topological excitations. When these pairs
condense, the vacuum becomes a magnetic super-
conductor and electric flux is squeezed into vor-
tices. However, we have shown that this does not
necessarily lead to the confinement of quarks in

the 0 vacuum. This is so because quark charges

may be screened by those of dyons and gluons.
We have obtained the following conclusion: The
Wilson-loop amplitude yields the area law if and

only if 8/2ir is a rational number and 8/2ir
Q(l+mN)/nN, with n and m being integers.
Hence, quarks are not confined if 0/2n.
=(I+mN)/nN or if it is an irrational number.
Such a possibility was first noticed by 't Hooft in
the case of 8/2u. = , for the SU—(2)model, and the
corresponding phase has been named as the oblique
confinement mode.

We have also estimated the mass of the g'
meson. We have used the Witten formula which
relates the i)' mass to the 8 dependence of the vac-
uum energy of the pure Yang-Mills theory. We
have obtained that m„-0.55 GeV, which explains
the experimental data well for our crude approxi-
mation. This numerical agreement together with

similar results derived in the previous paper, sug-

gests that the U(1) problem as well as the confine-
ment problem is solvable by considering the con-
densation of dyons, and that the hypothesis of
Abelian dominance is basically correct.
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