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General effects of coupling a system to higher-mass channels are reviewed. The dom-
inant effect is the addition of an attraction which increases with energy up to and, when

the coupled channel is not in an S state, beyond inelastic threshold. This can produce
resonances whose widths and inelasticities are largely determined by the resonance posi-
tion. A model is presented for nucleon-nucleon channels coupled to Eh, XN*, or A5
channels. It uses the Feshbach-Lornon nucleon-nucleon interaction and one-pion-

exchange potentials plus phenomenological cores for the transition interactions. The
width of the isobars is included. Good fits are obtained to XX channels for El. & 1 GeV,
including the "resonant" 'D2 and I'3 partia1 waves. A structure may be present in the

Po partial wave. In those partial waves where one-pion exchange predicts the largest
transition potentials, the fit is improved by the long-range potential tails.

I. INTRODUCTION

Theory has been successful in predicting me-
dium- and long-range nucleon-nucleon interactions
for laboratory energy Ez & 300 MeV. This has
been accomplished by field-theoretical and
dispersion-theoretical derivations of effective po-
tentials for the Schrodinger equation. In the range
of accurate theoretical prediction, r g —,IM ', these

potentials turn out to be only mildly energy-depen-
dent and nonlocal (p is the pion mass and we use
A'=c =1). The most complete of these theoretical
interactions, known as the Paris potential, has re-

cently been shown to provide a very good fit to
the data with a phenomenological core that is very
small for r ) 1 fm. The core only becomes dom-
inant for r & —,p

1

For EI &400 MeV the XX data contains struc-
tures ' which cannot be caused by energy-inde-
pendent potentials lacking barriers. Short-range
energy dependence due to quark structure effects
has been suggested. ' In fact quark "bag-state"
energies are only indirectly related to the experi-
mental structures and bag-model predictions of
widths and inelasticities are at present only qualita-
tive. '

Another mechanism for the production of strong
energy dependence is the effect of the coupling
to the isobar channels. The 6 threshold is at EI
=632 MeV, so that such effects must be present in

the intermediate-energy region. This coupled-
channel mechanism is the subject of the present
paper and will be shown to explain the experimen-
tal features in a natural way.

The effect of the inelastic threshold is spread by
the width of the isobar. This is of critical impor-
tance in fitting the data, especially that of the 'D2
channel which would otherwise be elastic at the
resonance.

In Sec. II we review the essential features of
coupled-channel scattering and demonstrate that it
provides an attraction in the lower-mass channel
which increases with energy. The increase contin-
ues up to the inelastic threshold in each partial
wave. When the orbital angular momentum in the
higher-mass coupled channel, I.', does not vanish,
the effective inelastic threshold is raised. In these
cases the attraction continues to increase beyond
the true inelastic threshold. It is shown that the
increasing attraction can cause resonances whose
width and inelasticity are largely determined once
the position of the resonance is fixed by the overall
coupling strength. Thus the mechanism does not
produce arbitrary widths and inelasticities, a cer-
tain range of these parameters being natural to the
model. The qualitative effect of the isobar decay
width is also discussed in Sec. II.

In order to compare meaningfully with the data
a model is required which is sufficiently realistic
theoretically and phenomenologically. It should
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correctly describe the direct nucleon-nucleon chan-
nel and quantitatively predict the data for El & 300
MeV when the coupling is ignored. For this pur-
pose the Feshbach-Lomon interaction (which is
derived from one-boson and two-pion exchange
with a boundary-condition core) is used in the
nucleon-nucleon channel. It is extended, in Sec.
III, to include transition potentials and isobar-
channel potentials beyond the core and to provide
boundary-condition coupling at the core. The
one-pion-exchange transition potentials are de-
scribed. The Feshbach-Lomon interaction has the
advantage for this application that the theoretical
potential does not include intermediate-isobar-state
contributions. This avoids double counting when
the intermediate isobar states are brought in
through the coupled-channel mechanism. The
coupled-channel Schrodinger equations are
described in Sec. III, and the extension to
nonzero-width isobars is given for those cases,
most explicitly for cases in which the long-range
transition potential can be ignored.

The computer program used is described in Sec.
IV. Section V presents the results for all partial
waves L (3. Using coupling to the Nh channel
the experimental properties of the 'D2 and I'3 res-
onances are reproduced. The possibly strong ex-
perimental inelasticity in the Po state requires
both Nb, and NN" (1440) or hb, coupling. This
coupling predicts a shoulder in the Po phase shift
for Er =550 MeV. For the 'So NN state the alter-
natives of Nh coupling in a D wave, or b,h and
1'*coupling in an S wave, are distinguished by
the currently uncertain degree of inelasticity of this
state. The SI- DI and 'P&, I=0 states are shown
to be well reproduced only when long-range transi-
tion interactions are employed, consistent with
their large predicted one-pion-exchange transition
potentials to the E1V* and hA channels. Only the
5( F2) is not well represented at medium energies

by this coupled-channel extension of the Fesh-
bach-Lomon interaction.

In the conclusion, Sec. VI, some remarks are
made about the possible relation of quark bag
states to these results.

II. GENERAL EFFECT
OF CHANNEL COUPLING

Elastic NX scattering proceeding through an

NIL& intermediate state, as in Fig. 1, is described
by a term in the partial-wave dispersion relations

N(

N

FIG. 1. Nucleon-nucleon scattering proceeding
through a one- or two-isobar state N~ N2 (one of which
may be the nucleon). The figure represents a single pas-
sage through the isobar state but with the full diagonal
NN interaction V~, the full diagonal NI N2 interaction
V ~, and the full transition interaction VT.

where a represents all quantum numbers other
than the orbital angular momentum L, the inelastic
threshold is s; =(M~, +M, ) and, by unitarity,

(s —si )
'i

& (2L '+ 1)M,„, (3)

where M,
„

is the effective exchanged mass in the
transition interaction. This extends the increasing
interaction beyond s; and may produce partially in-
elastic resonances above s;, except for L'=0.
When L'=0 the numerator varies more slowly
than the denominator for s =s;, and the attractive
contribution decreases for s & s; (see Appendix A).

As noted in Ref. 8 the change M~I (s") on the
elastic and unphysical cuts induced by the discon-
tinuity of the inelastic cut, as given in Eq. (1), will
in turn induce a change in the amplitude at s.
This second-order effect may cancel some of the
attraction, but cannot reverse it.

In the approximation that the integral in Eq. (1)
is dominated by the first peak in the integrand as

p~l. ~l (s')=
~

(a'L', s'
~

a,L,s')
~

X (phase space)

which is positive definite. For s &s; the denomina-
tor of the integrand is also positive definite, and
the integrand is an increasing function of s for all
s'. Hence the effect of coupling, as given by the
discontinuity on the inelastic cut, is to add attrac-
tion to the NN channel, the amount of attraction
increasing with energy up to the inelastic thresh-
old. For normally strong interactions the numera-
tor is sufficiently large so that resonances may
often result. When s &s; the denominator has con-
tributions of both signs and the attractive effect
weakens. However near inelastic threshold the an-

gular momentum barrier keeps p small when
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given in Eq. (3), then

M r(s) —[s;+(2L'+1) (M,„)—s] 'p,
„

(4)

so that the larger the range of Vr (i.e., the smaller

M,„)the stronger the energy dependence. It fol-
lows that the width of a produced resonance de-

pends on the range and strength of the transition
interaction and on the orbital angular momentum
in the inelastic channel. The effects of the diago-
nal interactions in each channel on the energy
dependence are only indirect, hence the resonance
width is insensitive to the parameters of the diago-
nal interaction. In fact the strength of the diago-
nal interaction in each channel most affects the en-

ergy dependence near its threshold. Hence reso-
nance widths and inelasticities can only be affected
moderately unless the resonance overlaps with the
relevant threshold. The threshold energy depen-
dences are usually independent information. But
when a resonance overlaps inelastic threshold the
asymmetry as well as the width of the resonance
will be affected. Therefore, once the constraints of
threshold behavior and resonance position are tak-
en into account, the resonance width and inelastici-

ty are predictions of the qualitative nature of the
model and of physically bounded parameters such
as the force range and the coupled orbital angular
momentum.

The estimate of the integral given by Eq. (4) also
indicates that the inelastic physical cut contribu-
tion is likely to be more important to the energy
dependence than the unphysical (exchange) cut
contribution well down into the region between
elastic and inelastic thresholds.

In the next section the effect of the width of
the isobars will be taken into account by coupling
to a continuum of channels with different isobar
masses, weighting the coupling according to their
Breit-Wigner distribution. This will affect the pre-
dictions in two obvious ways: (i) The position of
an induced resonance mill be a convolution of the
width due to a "point" isobar and the width of the
isobar. (ii) The inelasticity will extend below the
threshold for production of the "point" isobar
down to the threshold for pion production. The
modifications are most important when a reso-
nance is predicted near the "point" isobar produc-
tion threshold, or. when the resonance would be
very narrow if the isobar width was neglected.

Green et al. ' take the width into account by
using a complex isobar mass in the coupled
Schrodinger equations. In the present method the
equations remain real, and the ambiguities in the
choice of I'(E) which appear in Ref. 10 do not oc-

cur here.
Equation (1) describes two other mechanisms,

besides the general coupled-channel effect discussed
above, for introducing structure into the NN am-
plitude. The nature of the branch point at s; is
determined by p-(s' —s;), giving rise to a cusp
in the cross section which has a discontinuous
(L +1)-order derivative. The cusp is difficult to
observe for L' & 0, but may be substantial for
L'=0 when I is small. The remaining mechanism
comes into play only if the diagonal coupling in
the higher-mass channel is strongly enough attrac-
tive to bind the N &N2 system. In the presence of
coupling the bound state leaks into the NN channel
causing it to resonate. This gives rise to large ef-
fects but may be expected to be rare as particle
bound states are rare. It was invoked as the cause
of the Yo resonance by Dalitz and Tuan, "but is
not necessary to the explanation. ' These special
coupled-channel resonances have very different
characteristics from the general type described
above in that their resonance position is fixed by
the strength of the diagonal N ~N2 interaction,
while the width is independently determined by the
transition interaction. '

The predictions of similar channel-coupling
models have been compared with several resonance
effects in the pion-pion, ' pion-nucleon, ' ' kaon-
nucleon, ' and antikaon-nucleon' reactions with
some success. Although alternative mechanisms
exist to explain many of these resonances, the
channel coupling results seem particularly ap-
propriate for the "exotic" resonances. Non-
resonant NN effects have also been examined. '

Recently other channel-coupling models have been
used to examine the nucleon-nucleon struc-
tures 20' 2 1

III. A COUPLED-CHANNEL MODEL
FOR THE NUCLEON-NUCLEON REACTION

A. Description of model

The effect on the NN channel of the coupling to
isobars depends mainly, as discussed above, on the
strength and range of the transition potential and
on the threshold energy and orbital angular
momentum of the inelastic channel. A model in-
corporating the nearby thresholds and the dominat-
ing (i.e., the smallest) L' with a reasonable interac-
tion range will, when the transition interaction
strength is adjusted to a resonance position or oth-
er relevant feature, give semi-quantitatively correct
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results for the structure. However the NN diago-
nal interaction must be realistic (both theoretically
and phenomenologically) as a baseline against
which to see the effect of turning on the interchan-
nel coupling and to obtain the correct detailed
behavior for the first few hundred MeV above elas-
tic threshold. For this purpose we choose the
Feshbach-Lomon interaction for which the
medium- and long-range potential is constructed
from one-boson and two-pion exchanges and which
fits the nucleon-nucleon data well up to El -300
Mev.

The potential includes the single exchange of
pions, g, p, and m mesons with coupling constants
determined by independent meson-nucleon experi-
ments and/or by particle theory. The two-pion-
exchange contribution was obtained by the semi-
relativistic method of Breuckner and Watson and
of Taketani, Machida, and Ohnuma. It includes
only nucleons, antinucleons, and pions in inter-
mediate states. The semirelativistic approximation
for the intermediate states is a deficiency; however,
the resulting potential is similar to those derived in
a completely relativistic manner, such as the Paris'
and Partovi-Lomon potentials. The absence of
contributions from intermediate isobar states is an
important advantage when isobar channels are ex-
plicitly coupled because it avoids double counting.
In the Paris potential the contributions of nucleon
and isobar intermediate states are inextricably
mixed in the pion-nucleon amplitudes. The
Partovi-Lomon potential is theoretically suitable
but is complicated in form and has not been fitted
with a phenomenological core to the low-energy
data.

In Ref. 24 it is demonstrated that there is a sys-
tematic expansion of the potential, arising from the
Blankenbecler-Sugar reduction, in which the non-
iterative corrections to the coupled-channel interac-
tion are put into the diagonal potentials. This is in
contrast to other prescriptions' ' in which the

transition potential is modified from its simple
relativistic form. In this paper corrections to the
simple forms will also be omitted from the diago-
nal potentials, as important contributions (from
two-pion exchange, etc.) are in any case not avail-
able now for any but the NN diagonal component.
We hope to consider the effects of fully theoretical
transition and isobar potentials in a later article.
The object of the present paper is the exploration
of the importance of channel coupling in the
nucleon-nucleon interaction, and the formulation
of a physically plausible but partly phenomenologi-
cal interaction which will fit the data in the inter-
mediate- and low-energy regions simultaneously.
For this purpose we have kept the XX diagonal in-
teraction realistic and have treated transition and
isobar channel interactions more phenomenologi-
cally, but of physical range. Where the one-pion
long-range tail of the transition potential is includ-
ed we have used the theoretical form and strength,
parametrizing only the shorter-range interaction.

8. Model formalism

The explicit form of the Feshbach-Lomon poten-
tial is in Ref. 9, pp. 107—108. The Feshbach-
Lomon core is in the form of an energy-indepen-
dent boundary condition, rather than a potential.
For the uncoupled partial waves with L =J one
has the Schrodinger equation and boundary condi-
tion

d UJ J(J+1)+ UJ+MVJ g(r) Ug kUg, ——
dr r

dUJ
ro =f~ UJ(ro»

@fr ro

while for the tensor coupled channels with
L =J+1

d Uz & J(J 1} i i+MVJ iz i(r)U~ i+MVz -i,~+i(r)UJ+i=k'Ui i,
cfr r

d Us+i (J+1}(J+2)
dr z + 2 UJ+&+MVJ, J+i(r)UJ i+MVJ+i J+I(r)Us+i kUJ+i, ——

de
"o

d
=fr i,s i Ux i(ro)+fz i,J+iUJ+i(ro}

dro

de+)
o =fi i,~+i J I( o)+f~+i,J+i &+i( o}-.

dro

(7a)

(7b)

(8a)

(8b)
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The UI (r) behave asymptotically as linear com-
binations of the rhi"(kr ), i =1,2 or of the
Coulomb functions Fi.(K,r)+iGI (K, r) .k is the
relativistic momentum of each nucleon in the
center of mass. M is twice the reduced mass of
the nucleons. The VL L are determined by the
central, spin-spin, spin-orbit, and tensor potentials
in the usual way, including Coulomb forces in the
diagonal terms.

The extension to include isobar channels is a
straightforward generalization of the tensor cou-
pled case, allowing for the dependence of the
momentum on the masses in the channels:

d U; l.;(L;+1)—U;+ gM;VJ(r)UJ =k; U;,
I' I'

constant:

pE ( )
fNft p

NN, NN*

X [oN o.,Vp(x)+S)2.Vp(x)],

(13)

where fN =gNN (pl2M) is the pseudovector ~NN
coupling constant [we use (gNN ) l4~=14.94],f,
is the pseudovector EX*a coupling constant,
X =Pf~

S',2=3(o, r)(oN. r) o, o—N,

V,(x)=x-'e-*,
and

dU;
rp ——gfj U~(rp)

d p'p

with

v s —= lV=(M,.'+ k,-')'"+(M,, '+k, ')'",

(10)
Vz(x) =(x '+3x +3x )e

The OPE transition potentials for NN~Xh and
for NN+ hh are as given by Sugawara and von
Hippel, ignoring energy-dependent factors which
approach unity as M~~M.

~NN, Na 4 3
&N T[oN'SVp(x)+S)pV2(x)],~pE fNfh p II

4m

where the real quantities Vi = V~;, fJ =f; , M;, .
and M;~ are the masses of the two particles in
channel i and M; is twice their reduced mass, and
8' is the barycentric energy. As it is usual to
quote experimental XX results in laboratory energy
we note that relativistically,

(
EL M El

' —1

k =EIM (2M') ' 1+ 1+
2M~ 2M~M~

(12)

where Mz is the beam-nucleon mass and Mz- is the
target-nucleon mass. For Ms =Mr, Eq. (12) be-
comes k =(M/2)EI, exactly as in the nonrela-
tivistic case.

As the N*(1440) has nucleonic properties
1

(s = , , T= —, ) the one-—pion-exchange (OPE) transi-

tion potential for NN~NN*(1440) is like the OPE
nucleon-nucleon potential except for the coupling

(14)
2

opE (f&) p- - -- m
VNN, SS=

4m 3
T) Tp[S) S2Vp(x)+S)2 V2(x)],

where T and S are the transition isotopic spin and
spin operators defined in Ref. 26, fa is the Nb, rr
coupling constant, and

Ski=3(oN &)(S'&)—oN S

Si'2' ——3(Si r)(S2 r) —Si Sp .

Explicit expressions for the operators appearing in
Eqs. (14) and (15) are given in Ref. 26 in terms of
3-J, 6-J, and 9-J symbols.

We use f, and fa as given by the elastic ~N
scattering widths

2 2fa . . .) M-=48~ M, —r,
4m Mg

'2 —1
' 2 —3/2

M+@
M,

2 —3/2

1— M —p
Mg

(16)

2J 4' 16—-=—,p M~ I ~
4m

'2

+
2) —1

M~

' 2 —3/2 2 —3/2

(17)
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With M~ ——1232 MeV, I ~ ——I ~
——115 MeV, one

obtains fa /4n. =0.35 and fNfa/4n. =0.165. Us-

ing the most recent values for the P~~~2~[~~2] reso-
nance, M, =1440 MeV, I",' =0.68I ~ =0.68&340
MeV, one obtains f, /4fr=0 015. and tvf, /4n.
=0.034.

Because of its theoretical origin the Feshbach-
I.omon potential is not altered in this application.
However, the constant elements of the f matrix are
phenomenological and the old values of Ref. 9 are
changed to compensate for the residual effect at
elastic threshold of coupling to isobar channels.

where

dJL+, , (k2, r)
g+

JL+, (k2, ro) «o
(21)

The general properties of JL+ functions are such
that 82 is real when k2 is imaginary, i.e., below in-

elastic threshold. This guarantees one-channel un-

itarity in the elastic region. If the fit at kp near
elastic threshold with fi2 ——0 required fi i fo, w——e
can restore that fit with fi2@0, by adjusting f» so
that

C. Special case:
Vanishing transition-potential tail

fi2'
fz2+()z [kz«o)]

(22)

To obtain a simple realization of the f-matrix-
renormalization effect, as well as the important
energy-dependent properties of coupled channels
inherent in Eq. (1), we temporarily ignore the
long-range, transition-potential interaction. This
has no qualitative effect on the results and, as we

will see, is often unimportant quantitatively.
If the incoming channel is i =1, then, for i & 1,

It can also be shown" that above inelastic threshold
Im f' &0 satisfying multichannel unitarity and

ensuring that only bound state S-matrix poles are
on the physical sheet. When V22 ——0 then the JL+,

functions reduce to Hankel functions and it can be
shown that

82 (0)=L2 and [82 (iX)]y0 for gy0.
dX

ArhL" (Er ) or

A [Fg (k, r)+iGL (k, r)] '
lim U;(r)=,
f~oo

Because of the absence of transition potentials one
may obtain U; (ro) =A; JL+, , (ro), the outgoing Jf+. .

function satisfying the above limit with 3 =1 and
the equation

d Jf., L;(L;+1) +J~ + I;; ( r )JL+ k; Jf+-—
dr r2 i

(18)

Inserting these results into Eq. (10), i =2,3, . . .N,
one can solve for the N —1 unknown A;,i =2, . N. .
and obtain

dU)
ro =f' Ui(ro»

drp
(19)

f"(ki)=fii —Q (fi;)'[fjj+gj+. [kJ«)]] '
~

2where f' is explicitly given by the Jz+ and the

dJL+ /dr for i =2, . . .N and all the fJ. Equation

(19) together with Eq. (9) for i =1 determines Ui
and the S matrix in the same way as for a single-
channel problem, except that f' is energy depen-
dent and complex. When TV=2 it is easily seen
that

(24)

IffJ
——0 unless j =i + 1 or i, then

f"(ki)=f11 (f12) [f22+~2 [k2(kl)]]

with

Q3)
The properties of Eqs. (20) and (23) require' that
df' /dki &0, and if f22) L2, f' (ki) &f—il
when ki is in the elastic region. As a smaller f'
implies more attraction we here see the attractive
effect of coupled channels, becoming more attrac-
tive with increasing energy, in an explicit way. If
f22 & L2 that res—ult is not changed, but a pole is
introuced into f' in the elastic region, which in-

duces a Dalitz- Tuan-type" quasi-bound-state reso-
nance. ' If Vpz+0 the critical value of f22 will
shift from L2 according —to the strength and sign
of the potential. Also the range dependence of the
potential will modify the rate of increase of attrac-
tion with energy.

For N y 2, f' has simple forms for several in-
teresting cases. Iff1 =0 unless i =j or i =1, then

2

eff(k )
f22+i)f [kz«i)]

(20)

2
jeff ~ fl, l + i
lit Jii c fff;+i,;+i+~;pi[k;+i«i)]

(26)
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leading to a continued-fraction form, breaking off
effat fx~ =f~~

D. Inclusion of isobar widths

The width of the isobar implies that the incom-
ing NN channel is coupled to a continuum of iso-
bar channels, each of different isobar mass. In a

representation in which the isobar channels are not
coupled to each other the production distribution
of isobars will be proportional to the square of the
strength of the NE-EN* coupling. Therefore the
square of the coupling must be proportional to the
Breit-Wigner distributions of the isobar resonance,
as a function of the isobar mass. Equation (9) then
becomes

d U] L;(L;+1) 00+, U]+ V]](r)U]+ V]p(r) f [Mp(M, )]]~'U,(M„r)dM,=k]'U,dr' M, r' M+p

and, for M+@&M~ & ~,
d U2(M, &r) L2(L2+1)

+.
2 U2(M„r)+Vpp(r)Uz(M~, r)+ Vu(r)P p(Me)1 U](r)

dr' M, r

(27a)

= [k2(M, )] 2Uq(M„r), (27b)

where M, is the isobar mass, K2(M, ) is obtained from Eq. (11) by replacing Mq, with M, and M2b with
M~:

—]
4L~ +2

p(M~)=q ' M, * (M —M ) +1)fc (28)

'= J p(M„)dM, .

Here I, is the isobar width, I., is the orbital an-
gular momentum of the pion-nucleon decay pro-
duct of the isobar and q is the momentum of either
decay particle in the isobar rest system. The cen-
tral value of the isobar mass is M, and q is the de-
cay particle momentum corresponding to that
mass.

Equations (27) can be solved numerically by giv-

ing M~ discrete values and treating the system as
an ¹hannel system, with X sufficiently large.

I

The computer program described in the next sec-
tion is limited to X =6 and furthermore does not
take advantage in integrating the coupled equations
of the simplification inherent in Eqs. (27) that
VJ. ——0 unless i =j or i =1. To simplify the calcu-
lation and reduce the computing time we now treat
coupling to the isobar channel continuum only
through the boundary conditions, neglecting transi-
tion potential tails when the isobar width is includ-
ed. ' ' Then the same considerations that lead to
Eq. (27) lead to Eq. (19) but with Eq. (20) extended
to

pJ (M.,)dM.,
~ & fjj+8~+[k~(M,„k])] (29)

with the index j=2,3,. . . allowing for more than one isobar channel. The computation of 02 is required
for every value of M, used in computing the integral, which requires an order of magnitude more comput-
ing time than the zero-width case, even in this simplified version. When 8'~ 2M+p, k2 is real for the
lower part of the range of integration of M, and f' becomes complex.

When an isobar channel is coupled to a pair of tensor coupled X1V channels it is important to include the
NX tensor potential. A straightforward generalization of the above procedure in which the transition poten-
tial tails to the isobar channels are ignored, leads to the two-channel problem with V~J+0, i,j =1,2 and

p„(M,)dM
„

I+] f„„8+[k„(M„k,)] (30)
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and to obtain f' from the i =1 equation and Eq.
(19). The channel j= 1 is then integrated outwards
to ry. There it is matched as before to the asymp-
totic form and the S matrix is extracted.

The nucleon-nucleon potential is the Feshbach-
Lomon potential of Ref. 9, pp. 107—108. The
transition potentials and diagonal-isobar-channel
potentials are coded as Yukawa forms of variable
strength and range (the Ref. 28 version has been
extended to include sums of Yukawa potentials of
different range and Yukawa potentials times in-
verse powers of r in tensor forms).

To include the effect of width of the isobar the
published version has been extended to calculate
f' by Eqs. (29) or (30). The remaining channels
(with no isobar width) are then integrated outwards
using the special case, or the general case if non-
vanishing transition potentials exist among them.
The time for the calculation is greatly increased
over the no-width case because the OL must be

l
found for each value of M, in the integrands of
Eqs. (29) and (30), necessitating the integration of
the Jz+ functions each time. The expanded pro-
gram is called cowP and has five options: (i) no
potential coupling, nonvanishing isobar width, (ii)
potential coupling between some channels and non-
vanishing isobar width in others, (iii) one channel,
(iv) no potential coupling, vanishing isobar widths
(special case of COCHASE), and (v) potential cou-
pling, vanishing isobar widths (general case of
COCHASE).

The program is run in double precision on the
IBM version of the code, and in single precision on
the CDC version because of the longer word
length. The phase shifts obtained are accurate to
10 degrees or better. Three-channel cases using
options (i), (ii), (iv), and (v) typically take 10, 103,
1, and 10 sec, respectively, to find the S matrix on
a CDC 6600 and are 5 —10 times faster on a CDC
7600.

i,j=1,2 and n =3,4, . . . .
The inclusion of the long-range transition poten-

tial tail is important when that potential is strong
and we are examining the inelasticity near thresh-
old. Fortunately the strongest long-range transi-
tion potentials are for the I =0 states for which
the lowest isobar-channel thresholds are centered at
MN +M~, -2400 MeV, producing little inelasticity

in the energy range we consider here. Where
relevant, fits are made of both types: transition
tails, no width, and no transition tails, width.

IV. NUMERICAL METHODS

The basic computer program COCHASE which in-

tegrates the coupled Schrodinger equations and
computes the S-matrix coefficients has been
described in detail. There are two main options
in the published program, the general case and the
special case. The general case must be used when
there are off-diagonal potentials, either the NN ten-
sor potential or transition potentials to isobar
states. Equations (9) are integrated outward from
rp, finding N solution sets i of the N wave func-
tions, corresponding to starting conditions

UJ(rp) =5J for the jth channel, i,j= 1,2, . . . , N.
The f matrix supplies the values of

(d /dr p )UJ =rpf & UJ (rp )

V. RESULTS FOR NN
AT INTERMEDIATE ENERGY

The problem of "fitting" is complicated by the
instability of the phase-shift solutions, especially
for energies & 515 MeV (i.e., above TRIUMF ener-
gies) where the data sets are less complete. Com-
parisons were made with the phase shifts obtained
by Bugg et al. , Hoshizaki, Amdt, ' and Bys-
tricky et al. These authors have produced several
revised sets of phase shifts during the period of the
present analysis. At the higher energies, in partic-

needed to integrate the second-order equation. A
Runge-Kutta integration routine then integrates
the U~J. (r) out to r =rf where rf is chosen to be
several times the interaction range (usually rf & 10
fm). At this radius a linear combination of the
solutions is required to have the same logarithmic
derivatives for j& 1 as outgoing free waves
hL". (kjr) or Coulomb waves FL, (kr)+iGL (k, r). .l l l
This, together with a normalization condition on
channel 1 determines the linear coefficients, which
are also the production amplitudes for channels

j& 1. Comparison of the logarithmic derivative of
channel 1 with hl '+SI hi" (or the Coulomb ana-

log) at rf then determines the S matrix for the in-
coming channel.

The special case takes advantage of the condi-
tion Vz ——0, i', to integrate one channel j& 1 at
a time to obtain the outgoing JL+, . function [Eqs.
(18)]. Beginning with outgoing Hankel or Cou-
lomb functions at ry it integrates each channel in
to ro. At ro the derivatives of J~+. are computed

l
and Eqs. (10) are used to obtain the relative nor-
malizations Cz of the UJ(rp)=CJJ& (rp) for j&1,l
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ular, there has been a need to supplement the data
with information from forward dispersion relations
and theoretical calculations of some imaginary
phase shifts. Together with energy-dependence as-
sumptions this makes many of the results less than
convincing. However the more recent analyses
have tended to agree with each other, although
only qualitatively at higher energies.

Under the circumstances a least-X fit to phase
shifts did not seem to be indicated. Instead the
coupling parameters were varied "by hand" in or-
der to get a fit "by eye" that seemed best in obtain-
ing the most important and stable features of the
phase-shift results.

The procedure was not arbitrary. The lowest-
mass isobar channel and lowest value of L' allowed

by strong selection rules were coupled to each NX
partial wave. In a two-channel case, for each
choice of fzz and ftz, ftt was chosen using Eq.
(22) so that f' at EI ——0—200 MeV was con-
sistent with the well-known low-energy phase

shifts. Then f,z was varied, with f» in correla-
tion, to produce the experimentally indicated phase
shifts, including indicated resonances, in the inter-
mediate energy region (200—800 MeV). Finally, a
few values of fzz were chosen, and f~z and ft&

correlated, to obtain the best overall fit, including
details near the inelastic threshold. If the
boundary-condition transition interaction of the
strength required for the attraction needed at the
higher energies (500—800 MeV) provided insuffi-
cient attraction at lower energies (200—500 MeV),
that was an indication that the range of the transi-
tion interaction was too short. Then the fitting
was done again with a transition-potential tail re-
placing all or most of f&z. The procedure was
more complicated for a three-channel system, but
similarly used the low-energy data (which consists
of three quantities 5q t, 5J+t, and eJ) to determine
three of the parameters whenever another parame-
ter was varied.

In most cases the fit is clearly adequate quanti-

10—

0 =--

Lt
tn—-10—
OO

-20—

I

200
I

400
E,( Mev)

I

600
I

800

FIG. 2. The 'F3 phase shift. The open triangles denote the 1980 phase-shift analyses of Ref. 29. The vertical bars
denote the single-energy phase-shift analysis and the short-dashed curve the continuous-energy phase-shift analysis
SM80 of Ref. 31. The open squares denote the analysis of Ref. 30. The filled circles denote solution 1 and the open
circles solution 2 of Ref. 32. The solid curve is the model prediction for NN( F3) coupled to Nh(I'). The effect of the
width I' all . 5MOeV is included (the transition potential is consequently ignored). f~~~~=0. 1, f&N&q=1. 16,

fxa, ra= —0 4.
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tatively for the S matrix as it is known from the
present data. Only the F2 phase is clearly defi-
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FIG. 4. The F3 phase shift and inelasticity for
several models coupling to F-wave isobar channels and
without inclusion of the effect of isobar widths. The
open triangles are the 1980 phase shifts of Ref. 29.
Coupling to Nh(F) with fN~~~=1. 29, f~Iv ~q=3.0, and

f~q ~q=0.0 and Vr ——0 is shown by the dashed curve.
This fits 5 for EI. & 515 MeV and is a qualitative fit to
the position and width of the structure of Ref. 3, but is
too elastic. The solid curves represent coupling to
NN*(1470)(F) showing the effect of increasing

f~&=f ~ from 0.0 to 10.0 as indicated beside the
t

curves. V, =O, f ~ + ——0.0, and f&N~~ is adjusted so

that f,ff(0)=0.0 [see, Eq. (22)] as in the case of cou-
pling to Nb, (f). The phase shifts for El. (325 MeV are
closely determined by f~f(0). The NN channel is
closed for E«1200 MeV requiring that g=1.

A. The F3 channel

We examine the F3 channel first because it con-
tains the most firmly established structure as
shown in Figs. 2 and 3. In addition to the model
parameters expected to be dominant we discuss
several other versions here to illustrate how the re-
sults depend in an essential way on the nature of
the coupled channel. Because the I'3 channel is
an I =1 state it can couple to the lowest-threshold
isobar system, NA. Furthermore it can couple to
an L'=1, Nh system, because the total spin can be
as large as S'=2. We expect the L'=3 or S chan-
nels to be dominated by the L'=1 channels.

Figure 4 shows the results for coupling to either
the Nh or NN* channels with L'=3 and vanish-
ing resonance width. In both cases the resonance
is too narrow and much too elastic. The high
NN*(1470} threshold (EL ——980 MeV) makes the
I'3 resonance completely elastic. Putting in the

width of the isobars improves the prediction, but
not sufficiently. Figure 5 shows the result of cou-
pling to the expected channel, Nh with L'=1, but
with a vanishing isobar width. The results are now
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coupled to Nh(P) with no effect of isobar width. The
solid curve is the model of Figs. 2 and 3 except that
I q ——0. The phase-shift analyses are denoted by points
as in Fig. 2.

I2—

much more realistic, having about the correct
width and inelasticity near resonance. However
the phase-shift maximum, while it does not go
through 90', is too large, and the inelasticity is not
sufficiently spread into the tails of. the distribution.

Figures 2
anted

3 show the best fit when I a ——115
MeV is used. Given the uncertainties of the
phase-shift analyses, it seems to be wholly adquate.
The analyzed phase shifts are slightly lower at res-
onance than the model prediction, but this may be
due to lack of sufficient experimental detail on the
energy dependence. In this fit the choice of
faa =f22 affected the shape of the real and imag-
inary parts of the phase shift near inelastic thresh-
old, but could not change the resonance width or
inelasticity by substantial amounts.

I I

500 520 540 560 580 600 620 640
E„(Mev)

FIG. 6. The 'D2 phase shift when coupled to Nh(S)
with I q ——0. The cusp is at production threshold. The
solid curve is the model for Vr=0, fzzz&=5. 19,
f~N zq= 1.5, fNq ~s = 1.0. The open triangles denote
phase-shift solutions as in Fig. 2.

of the 5 is used. The cusp becomes "woolly" and
a gentle rise of 5('D2) is followed above threshold
by a more rapid fall, and a substantial inelasticity
is spread over several hundred MeV. This follows
the general coupled-channel structure described in
Sec. II and is not dependent upon the cusp. The
fit to the data is good.

B. The 'D2 channel C. The Po channel

Because the 'D2, NN channel can couple to the
Nb, channel in an S wave, the effect is expected to
be particularly strong. For L'=0 the values of p
are large near threshold (see Appendix A) and a
first-order cusp appears in the phase shift. As il-

lustrated in Fig. 6 a moderate coupling strength,
consistent with the increase of 5('D2) up to
EI ——515 MeV, produces a narrow (10-MeV wide)

cusp at inelastic threshold, for zero-width 6 parti-
cles. Such a structure is not seen in the data. A
weaker coupling giving too small a phase shift at
515 MeV will still give too large a result at 630
MeV.

However, as shown in Figs. 7 and 8, the situa-
tion is drastically changed when the actual width

%e next examine the Po channel because several
of the phase shift analyses ' ' have shown a slow-

ing down of the rate of decrease of 5( Po) near 515
MeV, and more recent analyses ' ' indicate much
inelasticity over a wide energy range. These exper-
imental features are shown in Figs. 9 and 10. In
the coupled-channel mechanism a large amount of
inelasticity is associated with a resonant structure
at or below inelastic threshold, which is 630 MeV
in this case. The recent Amdt phase-shift anal-
ysis ' indicates a shoulder in 5( Po) in that energy
region (see Fig. 9).

Indeed, increasing the coupling of Po to
Nh(L'=1) sufficiently to obtain the large inelasti-
cities of the phase-shift analysis always induces
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such a shoulder. The problem in this case is to
keep ri( Po) small over the large energy region,
515—800 MeV, indicated. Typically, as in the F3
and 'D2 case just examined, g has resonance shape
and a width of about 100 MeV. The same is true
in this case for two-channel fits. In order to better

approximate the experimental inelasticity, a three-
channel fit has been used: NN(3Po) coupled to
Nb, (P) and NN*(1440)(P). Figures 9 and 10 show
the best fit obtained to the moderately and strongly
inelastic phase-shift solutions. The fit to 5( Po) is
quite good. The prediction for the strongly inelas-
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FIG. 8. The D2 inelasticity. All points and curves are denoted as in Fig. 7.
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FIG. 9. The Po phase shift. The phase-shift-analysis points and short-dashed curve are denoted as in Fig. 2. The
filled triangles are from the 1981 analysis of Ref. 29. The long-dashed curve is the continuous-energy analysis from
SP81 of Ref. 31. The model curves correspond to NN('Po) coupled to NA(P) and NN*(1440)(P) ~ith I"q ——115.0
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FIG. 10. The Po inelasticity. Points and curves are
denoted as in Fig. 9. The 1981 analysis of Ref. 29 does

not fit g, but takes g=1 from a theoretical calculation.

tic rl( Po) does not succeed in being small enough
over the whole range, but is qualitatively adequate.
The moderately inelastic values favored in the
most recent analyses are fitted well. Long-range
transition potentials may help in a fit to the
strongly inelastic case, but the present numerical

methods are inadequate to test that hypothesis
with the necessarily nonvanishing I ~ and I

D. The 'So channel

In this case it is not clear which coupled isobar
channel is to be expected to dominate. Angular
momentum selection rules prevent the XA channel

(spin S'=1 or 2} from coupling to J=O when
L'=0. Therefore the lowest orbital angular
momentum for the EA system is L'=2. The
NN*(1440) system or the b 6 system can couple to
the NN('So} channel, but their thresholds are 400
MeV higher (in laboratory energy). In the region

EL & 800 MeV the extra orbital-angular-momen-
tum barrier for WA is qualitatively similar in effect
to the raised thresholds of the other channels. The
result is (see Fig. 11) that either version of the
model adequately fits 5('So). However the NN*(S)
version (the b,h coupling would be very similar)
fits the small r)('So) of the recent Amdt analysis
much better than coupling to Nb. system (Fig. 12).
The Nh(D) coupling version, on the other hand, is
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FIG. 12. The 'So inelasticity. Points and curves are
denoted as in Fig. 11.

consistent with the r)('So) = 1 of Hoshizaki. 3o Re-
cent data on D&&, D&~, and D&I spin correlation
coefficients for pp scattering of 800 MeV protons
strongly favor the Amdt solution.

Also shown in Fig. 11 is the effect of adding the
one-pion-exchange NN-Ah and NN-NN* transition
potentials. The boundary-condition coupling is

only slightly changed and the fit to 5('So) is very
similar. However the predicted nn scattering
length is much improved, becoming —15.6 fm in-
stead of —12.6 fm.

E. The P~ channel

The phase-shift analyses are fitted well by the
elastic Feshbach-Lomon interaction for EI & 515
MeV. In recent analyses small inelasticity is indi-

cated for E~ & 500 MeV which implies a weak cou-

pling, presumably to the Nb(L'= I ) channel. As
shown in Fig. 13 this coupling is consistent with
the inelasticity and the phase shifts up to El ——800
MeV. The one-pion-exchange potential does not
alter the result significantly except in the threshold
region where the 6 width is more important.

It has been suggested that this channel may
resonate at EI -400 MeV. In a recent paper' it
has been shown that consistency with the available
data and phase-shift analyses would require such a
resonance, if it exists, to be very narrow (I' ~ 1

MeV).
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F. The P2- F2 channels 6. The F4- H4 channels

The Feshbach-Lomon interaction does not
reproduce 5(3F2) well for El p 300 MeV, as it
remains positive and nearly constant while the data
indicate a change of sign for El -500 MeV. The
potential in the F2 state is attractive for large r.
Although it becomes repulsive for r &0.8 fm, the
orbital-angular-momentum barrier shields this ef-
fect (and that of the boundary condition) up to 700
MeV. The attraction in the P2 channel comes
from the core. Because of that it has little influ-
ence through the tensor potential on the I'2 state.

Long-range coupling of the F2 state to an iso-
bar state only increases the attraction at higher en-

ergies. Coupling the NA(L'=1} system to the P2
channel does improve 5( P2), ez, and the inelastici-

ty parameters, as shown in Figs. 14 and 15 but has
negligible influence on 5( F2}. The lack of fit of
5( F2) is most likely to be ascribed to a deficiency
of' the semirelativistic nucleon-nucleon potential,
for instance the neglect of spin-orbit and quadratic
spin-orbit terms. This difficulty has little rele-

vance to the validity of the coupled-channel
mechanism.

These are satisfactorily described by the elastic
Feshbach-Lomon interaction. The boundary con-
dition, which was not well determined by the low-

energy data, was refitted to the intermediate-energy
data. This results in a good fit to the data, as
shown in Fig. 16 for 5( F4) and eq. The 5( H4) is
essentially OPE and also agrees with the phase-
shift analysis.

The analysis of Amdt ' indicates that there may
be a small inelasticity of the I 4 wave for EL ~ 400
MeV, but q remains greater than 0.995. This
could easily be reproduced with a weak-to-mod-
erate coupling to the Nh channel, which can only
couple for I.') 3, with negligible effect on the
phase shifts or e4. The OPE transition potential
will have little effect because of the large angular
momentum barrier.

H. The S~- B& channels

The Feshbach-Lomon-interaction fit to the S&-

D~ tensor coupled channels is only satisfactory for
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EL & 210 MeV. In comparison with the experi-
mental phase shifts at 325 —515 MeV the model
5( S& ) is slightly too repulsive; its 5( D, ) is ap-
proximately 10' too repulsive and its e~ changes
signs at El -425 MeV instead of remaining posi-

tive and increasing (see Figs. 17 and 18). Coupling
the S-wave NN" (1440) channel or b,b, channel de-
creases the repulsion in the DI channel as the en-

ergy increases. The change in the D& channel in
turn improves et and 5( S&).
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FIG. 15. The I'& phase shift and the P& inelasticity. Inelastic, tensor coupled S-matrix parameters are as defined in
Ref. 30. The imaginary coupling angle P &3.5' and g( Fz) )0.999. The points and curves are denoted as in Fig. 14.
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other cases discussed here, coupling to the isobar
channel would cause an attraction increasing with
energy. The reverse effect is desired and indeed is
obtained in this case because of the strongly non-
monotonic interaction of the diagonal NN interac-
tion. The attraction due to the interchannel cou-
pling allows a drastic reduction of the attraction of
the core in the diagonal interaction. The effect of
the core increases sharply with energy and this en-

ergy dependence dominates providing that the tran-
sition potential is of longer range than the core.
The reduction is core attraction therefore corrects
the energy dependence.

Both VT ——1 7r '.exp( pr) and —Vz 3.0r-—
)& exp( 2IJ,r) give—moderate fits as shown in Fig.
19. The longer-range potential is better at low en-

ergies, and the shorter-range potential is better at
higher energies [although there is ambiguity in the
phase-shift results at 650 MeV (Ref. 31)]. This
suggests a mixture of one- and two-pion range
transition potentials, and the possibility that OPE
predictions supplemented by a phenomenological
—,p

' transition potential may represent the data.

0

-8 —, —~a(p)
', NN('Pi) —NN" (P

1/2
VTr'= g(V,')2 (31)

In the present case Vz ('Pt ) « VT ('P, ) and we
may approximate

E

OPEP
~NN, NN+

g OPKP + 0 7 e
- 2P. f/&

1

From Eqs. (13) and (15) we obtain

VT[NN('Pt ) NN-" ('P) )]=O. 1p Vp(pr),

Vy'[NN ( P[ ) AA( P] )]=0.23p Vp(pf )

and

VT[NN('P, )-db( P&)]=—0. 15pV2(pr) .

Because of the factor [1+3(pr) '+3(pr) ] in

V2(pr) the OPE coupling to the b, b( P& ) channel
is much stronger than that to the b, b, ('P& ) channel.
In light of this the computation was simplified to a
three-channel problem by approximately including
the effect of the 6('P& ) coupling in the transition
interaction to the hd ( P& ) channel. Examination
of Eq. (9) shows that the effective strength of
several channels i coupled to the %IV channel by
V& is

-l6—

CL—-32
GQ

-40—

I

800
I

l00
I

700 900
-56 l l I I

0 200 400 500 600
E, (Mev}

FIG. 19. The P~ phase shift. The points and short-dashed curve denote phase shifts as in Fig. 2. The solid curve

represents the model with the OPE coupling of NN('P j ) to NN*(1440)('Pi), hh('Pl ), and hh( P& ), and a —
LM

' range

coupling to hh(P) as described in the text, aud fN&&N 3.0, f ~=3.13,—f— + ~
——2.0, fqqqq=1. 0, and

fN+ qq= f ~ =0.0. The dash-dotted and long-dashed curves represent the best fit with, respectively, p ' aud —p,

range transition potentials to the NN*(P) channel only, with coefficients given in the figure and the text. For the p
case f~~~~ 150.0, f ~

——23.0f +
——+ ——2.0. For the —,p ' case f~~~~ 3.5, f ~=2.5, an—d—f + ~ ——2.0.
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Vr [VT ( 1)+VT ( Pl )] VT( Pl )+ g
VT( 1)

2 V,('P, )

Using pr =3 as an average position to evaluate the coefficient in square brackets we obtain

Vz (NN-b, b, )=Vr ( P, ) —0.33Vr ('Pi) .

Using this, the above OPE NX-NN transition potential, and a phenomenological shorter-range transition
potential to the Ab channel,

—1 —2p, rr e

we obtain a best fit with A =0.7, shown in Fig. 19.
In this case the use of the theoretical long-range potential improves the results obtained with phenomeno-

logical potentials of a single range. The Amdt analysis ' predicts a small inelasticity at higher energies, but
again we are prevented by technical difficulties from putting I'z, +0 to predict the inelasticity.

J. The Dq channel

The 3D2 phase shifts of Refs. 29 and 31 are reasonably well fitted by the uncoupled Feshbach-Lomon
(FL) model. However, the OPE transition potentials alone are significant. Furthermore, the phase shifts of
Ref. 30 hint at a structure for Ez -625 MeV. Therefore it is of interest to examine the effects of channel
coupling.

The OPE predictions are

Vz.[NN( D2) NN'( D2)-] =—0.034@Vs(pr) —0.068' V2(pr),

Vz'[NN( D2 )-kk( D2 )]=0.17@V0(pr) +0.0034@V2(pr )

Vz [NN( Dz)-bb, ( D2)]=0.023p V2(pr) .

In this case the potential coupling to the hh( D2) channel is much weaker than that to the NN'( D2) chan-
nel. We therefore quadratically add the effect of the former to Vz in the latter using Eq. (31), obtaining

Vy' [NN( Di)-NN (D)]=—0.034pV0(pr) —0.071@V2(pr)

reducing the case to a three-channel problem.
By varying the —,p range transition potentials and the core boundary condition we can then get the two

types of fit shown in Fig. 20. Both predict phase shifts which are a little too large for EL ——200 —300 MeV
(the uncoupled FL potential is better at these energies). The fit with moderate core coupling fits the phases
of Ref. 31 well at higher energies. Strong core coupling improves the fit at the lower energies and qualita-
tively fits the structure of Ref. 30 at higher energies.

K. The D3- G3 channels

Again the predictions of the FL interaction9 are a moderately good fit to the phase shifts of Refs. 29 and
31. The OPE transition potential situation is complicated by the number of channels, predicting

Vr[NN('D, ) NN*('D3)] = 0-034' V0(p—r)+. 0 0194p V2(pr). ,

Vr[NN( G3) NN'( Di)]=—0.101@-V2(pr),

Vr [NN ('D3)-hb('$3) j=—0.181@V2(pr),

Vr[NN( D3)-hb( Ds) j =0.174@V0(pr)+0. 010iM V2(pr),

Vz'[NN( G3)-kk( D3)]=0.174pV0(pr) —0.063pV2(pr)

Vr[NN( D3)-bh( D3)]=—0.310pV2(pr),

Vr[NN( G, )-bb( D&)]=0.257pV2(pr) .
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FIG. 21. The D3 and 'G3 phase shifts and the J=3 coupling parameter. The points and short-dashed curve denote
phase-shift solutions as in Fig. 20. The solid curve describes the 1VN( D3) and NN( G3) channels coupled to hh( S3),
hh( D3), b 5( D3), and NE ( D3) via the OPE transition potential described in the text and also with transition poten-
tials r 'e "'with coefficients of 1.6, 2.9, and —1.3 for the NN( D3) to hh( S3), for the PAN('D3) to Ah(D) and for
the NN( G3) to bh(D), respectively. The core parameters are fez ——57.0, fnG —3.5, fGG ——0.7, fDqgs~ ———8.0, ——
fnaa(m= —0 4 fgaa(a)= —0» fax(s)za~s) =1 0~ fax(n), aa(D&=0 l~ fDsa(s)=fax(s)aa(D) =0.
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r
+r

in the resonant solution, we include the width
I ~

——115.0 MeV and must ignore the transition po-
tential tail. Adjusting the core boundary condition
we obtain the fit of Figs. 22 and 23. The data fit
of Ref. 30 has a much narrower width 5('F&)
structure than its rl('Iiq) structure. This is incon-
sistent with a true resonance. Our resonant-model
fit is a compromise between fitting the energy
dependence of the 5 and the g of Ref. 30.

VI. CONCLUSIONS

-24—

-28

FIG. 22. The 'I'3 phase shift. The phase-shift solu-
tions are denoted as in Fig. 20. The long-dashed curve
represents the model for XX('I"3) coupled to 44( I'3)
with an OPE transition potential —0. 12V~(pr) plus the
shorter-range transition potential 1.7r 'e ~", I q

——0,
fez, &z —2. 15, fz~qq=0. 4,——and fan, ad=1.0. The
solid curve represents core coupling between the same
channels with I'a=115 OMeV, fzzzz . 50 0, f~~qq-— .
=—14.09, and fan sq ——1.0.

%e have shown that the coupling of isobar
channels to the nucleon-nucleon channels provides
a natural explanation for the observed 'D2 and F3
structures and the possible Po structure. Al-
though core parameters are adjusted to fit the posi-
tion of a resonance, the model itself determines the
width and inelasticity of the resonance.

The Argand diagrams for these three channels
are given in Figs. 24—26 to illustrate the degree of
"resonance" of the model and phase-shift-analysis
results. In Fig. 24 one of the model solutions
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NN ( F3) &&( P3)

VT =0 1"z, =115.0MeV
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I
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FL (MeV)
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FIG. 23. The 'F3 inelasticity. The phase-shift solu-
tion and the model curve are denoted as in Fig. 22.

shows a distinct counterclockwise motion for
EI ——515—700 MeV. In this same region one of
the energy-dependent phase-shift solutions ' is a
straight section between clockwise-turning behavior
at lower and higher energies.

Other investigations ' ' of the 'D2 and F3 cou-
pling to the NA channel agree that resonantlike
structure in the sense of counterclockwise rotation
in the Argand plot is produced by coupled chan-
nels. However there is uncertainty and disagree-
ment as to the presence of poles in the complex en-

ergy plane corresponding to the resonances. The

5I5
425

0
FIG. 25. Argand plot for the 'D2 amplitude. The

SM80 phase shifts fall on top of the model curve (the
same model as in Fig. 7). Energy positions are denoted
as in Fig. 24.

more analytic discussions of coupled-channel
behavior ' "' find associated poles, although some-
times at a great distance. In those models where a
numerical search for poles is required ' " ' they
are often not found.

Furthermore, we have shown that if the cou-
pled-channel mechanism is used together with the
Feshbach-Lomon interaction as the diagonal XN
interaction that, for Ei & 800, one can fit all
phases for l. & 3, with the exception of 5( F2). For

I

0

FIG. 24. Argand plot for the Po amplitude. The
dashed curve denotes the phase-shift solutions SM80 of
Ref. 31. The solid curve represents the model for
NN( Po) core coupled to Nh(P) and NN*(1470)(P).
I'6=115.0 MeV, 1 =200.0 MeV, fN~~~ ——111.0,

' fivN ex~
f + ——0.0. The crosses on the model denote the

f

same energies as the circles on the phase-shift analysis
curve. The laboratory energies El. are indicated in
MeV.

2

0
5„

0
FIG. 26. Argand plot for the F3 amplitude. The

dashed curve denotes the S80 phase shifts of Ref. 31.
The solid curve represents the model of Fig. 2. Energy
positions are denoted as in Fig. 24.
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L & 3 one must have L' & 2 for the lowest-thresh-
old (Nh) channel, so that coupling effects are ex-

pected to be weaker in the present energy range.
Other observed structures are at higher energy than
we have explored.

The deficiency of the model for the Ii2 phase
shift can more likely be ascribed to the semirela-
tivistic Feshbach-Lomon potential than to the
coupled-channel mechanism. The inability to ob-
tain the very large Pp inelasticity of the earlier
Amdt analysis ' may be moot due to the smaller
inelasticity of more recent analyses, but one may
get more inelasticity on overcoming the inability to
calculate with long-range transition potentials
when the widths of the isobars are taken into ac-
count. Because of the same technical limitation we
were not able to examine the effect of long-range
potential in channels where inelasticity was impor-
tant and we have not predicted the small inelastici-
ty of some channels where it was essential to use
long-range transition interactions.

Although we did not set out at this stage to use
theoretical transition potentials, we have in fact
shown consistency with the one-pion-exchange cal-
culations. Furthermore, in the S&- Di Sp and
'Pi channels, the one-pion-exchange potential pro-
vides a definite improvement in the fit to the data.

The major physical question remains as to
whether the core is adequately described by an
energy-independent boundary condition. If the
boundary condition has strong energy dependence,
that can cause resonances or otherwise modify the
phase-shift behavior in a major way. The existence
of bound or resonant states of the underlying six-
quark system will in fact introduce poles on the
real energy axis into the fmatrix.

In the bag model the states of the system are
completely confined and the resulting S-matrix
poles are at real energies. However the physical
color-singlet pairs are not confined as in the bag
model. When this is taken into account one may
expect large movements of the S-matrix poles. On
the other hand as Jaffe and Low have pointed
out the f-matrix pole calculated at the confine-
ment radius does not move, because the zero of the
wave function at the confinement radius remains
fixed when the confinement is removed.

Unless the residues of the f-matrix poles are
small the related S-matrix pole may be far away in
energy from the f-pole position. Furthermore, the
S-matrix pole may be far from the real axis and
even on a different sheet. ' Therefore, in princi-
ple one does not expect the experimental structures
to coincide with the six-quark states. A compar-

ison of the predicted six-quark bag states ' with
the data shows that the relation is not direct: (i)
the experimental states are, on average, several
hundred MeV lower than the bag states; (ii) the en-

ergy shift is not uniform, in particular the degen-
erate experimental states are 80 MeV and 130 MeV
apart in the bag-state spectrum; (iii) the bag spec-
trum is an order of magnitude denser than the
states so far observed; and (iv) widths and inelasti-
cities of the structures are, at best, only qualitative-
ly predicted by the bag model. Although correc-
tions to the S-matrix pole distributions have been
discussed qualitatively no quantitative description
has been proposed without reference to the f ma-
trix.

When the long-range interaction in the form of
the Paris potential is taken into account the inter-
nally (bag state) and externally (phase shifts and
long-range interaction) determined f-matrix poles
agree well with each other for the 'Sp and the Si-
Di states, at EI ——795 and 607 MeV, respectively,

although the physical S-matrix poles are over 600
MeV lower. When the coupled-channel interaction
of this paper is used the Si- Di f-matrix poles
agree excellently. The 'D2 and I'3 bag states, and
therefore the f poles, are at EI -1000 MeV, where
the Paris potential is inadequate for the long-range
interaction and where three-body inelasticity makes
coupled-channel calculations of the externally
determined f poles technically difficult. Neverthe-
less the trend of the energy dependence of the
wave-function zero in the coupled-channel model is
correct.

In the present model the f matrix is calculated
for r = —,p ' and is taken to have constant com-
ponents. As stated above this reproduces the poles
of the f matrix calculated at r=@ ', the confine-
ment radius, for the 'Sp and Si- Di states; and
the zeros of the 'D2 and I'i wave functions are
moving into the confinement radius as those bag-
state energies are approached. States confined to
the smaller boundary condition radius will have
higher energies, and the associated f-matrix poles
occur outside the range of energies discussed in
this paper. This justifies the energy independence
of the shorter-range f matrix.

The agreement of the f-matrix poles calculated
in the present model at r =1.4 fm with those of
the quark bag model implies that the two models
are at least approximately dual for —,p ' ~ r
&p . This is not a priori unlikely as condensa-
tion into mesons must begin before the radius of
complete confinement. This in turn makes the ap-
plication of asymptotic freedom out as far as the
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confinement radius suspect. The extension of the
Jaffe-Low3 and Feshbach-Lomon 7 boundary con-
dition approaches to take into account short-range
quark degrees of freedom and long-range meson
exchange interactions has been discussed. Work
on this aspect is continuing and a publication is
planned in the near future.
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APPENDIX A: COUPLED-CHANNEL EFFECT
ABOVE INELASTIC THRESHOLD

The energy dependence of the attractive contri-
bution of a coupled-channel contribution to the
amplitude may be formally obtained by taking the
derivative of Eq. (1),

—[EReA~I(s)]=—I ' ds'.1 p~i. , 'l. '($ )

ds ~ '~ (s' —s)2

(Al)

This is formally positive which would indicate an
increasing attraction for any s below or above in-
elastic threshold. But this inference cannot be
made if the integral on the right-hand side of Eq.
(Al) is divergent.

We assume that the integral converges as
s' —+ ao. The second-order pole in the denominator
assures divergence for s & s; except for possible
zeros of p(s'). For s (s; it is the possible diver-

gence at s'=s; which must be examined. We
therefore consider the integral from s; to some
value sp at which the first term in the threshold
expansion of p(s') still dominates,

s (si s )(&'+li2)
IL($)=A, J ds',

(s' —s)
(A2)

where 6'(s) is weakly dependent on s. This yields

where A, is a positive constant. The remainder of
the integral in Eq. (Al) is weakly dependent on s.
Equation (A2) converges for s (s; and also at
s =s; when L' & 1, but diverges for L'=0 at s =s;.
Therefore for all L'~ 0 the increase of attraction
with energy persists at threshold, as well as below
threshold. As the slope is positive definite at
threshold, the increase must continue beyond
threshold, as the derivative in continuous for
L'~0.

The situation for L'=0 is more complicated for
s =s; as we see by explicit integration of Eq. (1) up
to sp.

p (S —$0)6 Red p(s) =A,I, ds'+4'(s),
(A3)

' 1/2

b, ReA~o(s) —b'(s) =22(sp —s;)'~ —k(s; —s)'~ tan
S —S

s(s;

(sp —s;) +(s —s;)1/2 1/2

(sp —s;) —(s —s;)1/2 1/2 s)s (A4)

from which it is apparent that the amplitude is in-
creasing for s (s; and decreasing for s ~s; (see
Fig. 6). Equation (A4) also demonstrates the

discontinuity in the first derivative at s =s;. For
L'=0 the attraction due to coupling begins to de-
crease immediately above threshold.
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