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Spontaneous breakdown of a (compact) internal-symmetry group G to a (unbroken) subgroup
His analyzed using the procedure developed in a previous paper. It is found that the desired

analysis can be carried through only if the pair (G,H) is such that the corresponding coset space
G/His a symmetric space (a Riemannian globally symmetric space).

In a recent publication, ' we analyzed the structure
of spontaneous symmetry breaking for the limiting
case where the symmetry is broken completely. Here
we wish to discuss the more general and physically
more interesting case where the symmetry breaking is
not complete and a subsymmetry of the original sym-
metry remains unbroken. Throughout this paper, by
symmetry we mean a global (not gauge) symmetry
group, which is assumed to be a simple, compact,
connected Lie group to be denoted by G. We consid-
er the breaking of G, by the vacuum, down to the
unbroken closed (Lie) subgroup H of G. We find
that the desired extension of the analysis of Ref. 1 to
the present situation is possible only when the coset
space M = G/His a symmetric space (a Riemannian
globally symmetric space) .

Consider symmetry breaking triggered by the non-
vanishing vacuum expectation value (VEV) of some
scalar field (Higgs field) 4(x). For the VEV, we as-
sume the form '

(oI +(x) lo) = NT(g) vp

where vo is a fixed element belonging to a normed
vector space V in which the group G acts according to
some unitary or orthogonal representation T. Here
T(g) is the representation of the element gof G.
We have chosen the norm of the fixed vector vo to
be unity, and N is some real parameter giving the
overall strength of the symmetry breaking. Let H
denote the stability group of vo, then it is a closed
subgroup of G. The orbit of the VEV, or equivalent-
ly that of the vacuum, is the set T(g) tp, where g
runs over G, and can be identified with the coset
space M = G/H. For g C G, we may write g = ch,
where h C H, and setting q = T(c) we rewrite Eq. (l)

in the form

&olclo& =xq» . (2)

Starting with any one of these vacuum states iqup),
the standard GNS (Gelfand-Naimark-Segal) construc-
tion of field theory will give us a (separable) Hilbert
space with a cyclic (and unique) vacuum. Thus we
have an assignment of Hilbert spaces for each point q
of the coset space M; we look upon this as a Hilbert
bundle based on M This is one description of the
state space.

With respect to the invariant measure p, on M,
normalized as p, (M) = 1, let us now construct' a Hil-
bert space H which is the directintegral over the
preceding Hilbert bundle. Thus we have the vacuum
state i n ) in H which is the direct integral

pSl»=J (3)

With the aid of q that is at our disposal via Eq. (2),
we now construct the operator U (in H):

r Q
U=

~ qIq„ (4)

where I~„ is the identity operator for the Hilbert

space (fiber of the Hilbert bundle) that corresponds
to the vacuum iqup). Then it is clear that Ucom-
mutes with all the operators that reside in the Hilbert
space H, in particular, with the operators that
represent the elements of the Poincare group. There-
fore, acting on i n), the operator U produces another
vacuum state i nt) which also is in H. From the
analysis of Ref. 1, we expect the existence of a whole
string i n„) of vacuum states in H, obtained as

in„& = U"in&,
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and now we are faced with a problem: The right-
hand side of Eq. (6) has no meaning for a general
homogeneous space M To see the nature of the dif-
ficulty, as well as the procedure that should be adopt-
ed to resolve it, let us first consider the special case
n =—1. What we are now seeking is an assignment
for each q of its inverse, that is, a map q q '.
Again, such a map does not, in general, exist even
though q is given here as a unitary (orthogonal) ma-
trix. To see this we proceed as follows. Let g and X
denote the Lie algebras of 6 and H, respectively, and
let (P be the complementary vector space in the
direct-sum decomposition.

Let t denote the representation of the Lie algebra g
that corresponds to the representation T of the group
G. Then every q has the shape

q =exp[t(P)]
l

for some, P C O'. Here t(P) is the representative of
the point P. Thus taking the inverse q q

' is the
same as multiplying t(P) by minus one, t(P)
—t(P) While thi. s procedure allows us to find the
inverse of one given point q, it does not necessarily
permit us to assign an inverse to every q in M. Let P~
and P2 both belong to 6' and consider the commuta-
tor

[t(Pt), t(P2) ] = t(P3)

Under the transformation t(P;) —t(P;) (i =1,2),
the term t(P3) remains unchanged. Hence, if P3
also belongs to (P, then the map q q

' does not ex-
ist. Quite clearly, the condition for the existence of
the desired map is that the commutator of every pair of
elements from tP, if nonvanishing, must belong to X. In
other words, we have the commutation relations4

[tp, ap] c X . (10a)

The same argument that led to the above, now gives
us the further relation

[X,(P] c tP, (lob)

since the subalgebra X, according to Eq. (10a), is in-
variant (pointwise) under the transformation con-
sidered. And, of course, we have also

[X,X]c X . (1oc)

where n is an integer. Let us inquire under what cir-
cumstances our expectation might be fulfilled. First,
we infer from Eq. (4) the direct-integral decomposi-
tion

r
U"= J q "lq„

Equations (10a)—(10c) are necessary and sufficient
to ensure the existence of the desired map q q

' of
M to itself. This map is (1) an involution, (2) an au-
tomorphism of G (the derived map preserves the
commutation relations of the Lie algebra), and (3)
under it the subgroup Hremains elementwise fixed.
Whenever these conditions are satisfied for a com-
pact, connected, simple Lie group G and the closed
subgroup H of G, the corresponding coset space
M = G/His a symmetric space. '

Having shown that the symmetric space character
of the coset space M follows directly from the study
of the special case n = —1, we are in a position to
consider the remaining case n )0 in Eq. (6). We re-
call the property of a symmetric space: Every point q
on a symmetric space Mean be made to lie on a
maximal torus of M; all maximal torii of Mare con-
jugate under the adjoint action of the stability group
of the origin6 (in our case, the subgroup H). Let us
combine this result with the standard property en-
joyed by every torus, which is that the map p„:q q"
exists for q on a torus. ' We thus conclude that the
desired power mapping exists on our symmetric space
Mand Eq. (6) is well defined. This establishes the
main result of this paper.

Our method of looking at the power map p„, by
use of the maximal torus, is a straightforward exten-
sion of a procedure adopted by Hopf for studying
the power map on the manifold of a compact Lie
group. This is as it is expected to be since the group
manifold is a particular example of a symmetric
space. In particular, the conjugacy of maximal torii,
as well as the fact that these conjugates cover the
manifold, is true also for the group manifold. Thus
the rank of a (compact) symmetric space is defined
exactly as in a (compact) Lie group; namely, as the
dimension of the maximal torus. However, there are
important differences as well between the two cases.
The mod-2 degree of the map p„on a symmetric
space M of rank A. is easily found to be

deg2(p„) = n" (mod 2),
from the fact that the equation y =x", with y a (regu-
lar) point on a k-dimensional torus, has exactly n"
solutions. When Mis, in addition, a group mani-
fold, Eq. (11) continues to be true if we read, in

place of deg2(p„), the Brouwer degree. s This is,
however, not at all true if M is not a group manifold
but just a symmetric space. In the latter event, no
simple closed expression exists for the Brouwer de-
gree, which has to be computed in a case by case
basis, as has been done by Araki, ' for the restricted
values n =2 (m a positive integer). A careful defin-
ition of the power map p„on a symmetric space for
the special case n =2 was earlier given by Harris. "

The fact that M = G/H is a symmetric space puts a
restriction on the allowed pattern of symmetry break-
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ing; namely, that (G,H) has to be a compact sym-
metric pair. If G is taken to be SU(n), then it fol-
lows from Cartan's classification" that there are ex-
actly three possibilities for H: (1) H =SO(n); (2)
H=Sp(n/2), n =even; and (3) H =SU(n —m)
x SU (m) & U(1). It is remarkable that when H is a
unitary group (product of unitary groups) it must
have a U(1) factor —just the thing that we need to
describe one unbroken universal conservation law
(charge conservation). However, we do not under-
stand the significance, if any, of this observation.

Working with an entirely different model, based on

the harmonic maps, Misner" was earlier led to sur-
mise that (G,H) ought to be a symmetric pair; since
the model then contains the least arbitrariness.

On a separate occasion, Professor A. S. Wightman
was kind enough to favor me with an instructive
communication explaining how not to interpret the
vacuum degeneracy. For this, I wish to thank him
once again. I acknowledge the benefit of fruitful
conversations with Professor W. D. McGlinn, Profes-
sor C. W. Misner, and Professor T. Nagano of the
Notre Dame Department of Mathematics.
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