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This paper examines the operator product using the example of scalar field theories
with unstable vacuums. We find that an operator-product expansion about the unstable
vacuum, with the additional assumption that nontrivial operators subtracted with respect
to this vacuum have nonvanishing expectation value in the physical vacuum, does not
reproduce the predictions of the operator-product expansion about the stable vacuum, ex-

cept for the leading-twist contribution. We discuss the implications of this for applica-
tions of the operator-product expansion in QCD.

I. INTRODUCTION

The operator-product expansion and its generali-
zations are a basic tool in the analysis of QCD ef-
fects. In such analyses it is assumed that whatever
nonperturbative effects occur can be absorbed into
operator matrix elements, and that the calculation
of large-Q behavior of coefficients can be done us-

ing renormalization-group-improved perturbation
theory. ' It is also a widely held belief that the
nonperturbative effects modify the vacuum —that
is to say, that the physical vacuum differs signifi-
cantly from the vacuum defined order by order in
perturbation theory. One signal of this difference
is that composite operators such as P(x)P(x) or
F„„(x)F""(x)may acquire nonvanishing expecta-
tion values in the physical vacuum, even though
their expectation values in the perturbative vacuum
have been defined to zero via subtractions. The
nonvanishing of (P(x)g(x)) has long been a
feature of the PCAC (partial conservation of
axial-vector current) understanding of the pion
mass via the relation

m f =mq(f( )fx( ))x.

Nonvanishing vacuum expectation values for other
operators have also been much discussed in recent
literature.

The purpose of this paper is to investigate the
question of whether these two viewpoints are mu-

tually consistent. The operator-product expansion
involves subtracted operators and is made with
reference to a particular choice of vacuum. The
question studied here is whether an operator-
product expansion about an unphysical vacuum
can reproduce the results of an expansion about the

correct vacuum simply by allowing nontrivial vac-
uum expectation values for the various operators of
the theory. By "results" we mean in particular the
predictions for Q evolution of physical processes.

We use the case of spontaneously broken scalar
theories to investigate this point. In such theories,
as is well known, one can perform a shift of vari-
ables and rewrite the Lagrangian in terms of vari-
ables which are fluctuations about the classical
vacuum. If one performs an operator-product ex-

pansion for this shifted theory one can evaluate the

Q behavior of coefficients for any physical pro-
cess. These results we consider the correct, or
physical, answers for this theory. However, one
can also consider the operator-product expansion in
terms of the variables of the original unshifted
theory. We compare these two expansions and
show that, even when the operators appearing in
the expansion of the unshifted theory are allowed
to acquire vacuum expectation values, the results
for Q evolution of the nonleading-twist contribu-
tions differ. Mathematically the reason for this is
quite clear. The process of shifting variables and
the renormalization-group improvement of the
operator coefficients both involve summation of in-
finite sets of perturbation-theory graphs. The reor-
dering of these summation processes, together with
the subtraction of divergent loop graphs, can cer-
tainly change the answer.

Section II of this paper contains the details of
these calculations for real scalar field theory. We
show that the operator expansion about the un-

stable vacuum does not reproduce the results given

by the shifted theory for the next-to-leading (or
higher) twist terms. Section III contains a similar
discussion for the case of the operator j(x)j(0) in
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a complex scalar field theory and in Sec. IV we ex-
amine the effect for matrix elements between states
other than the vacuum state. In all cases we find
the two approaches do not agree beyond the
leading-twist term.

In Sec. V we turn to a discussion of the implica-
tion of these results for the @CD case. We suggest
that the problems observed in our example, for
which the instability of the vacuum is observable
even at the classical level, will also occur in a case
where the instability is due to nonperturbative ef-
fects. However, in this latter case we know of no
way of performing the equivalent of the shifted
scalar field calculations, that is, of defining a con-
sistent expansion about the physical vacuum, so
that we cannot directly check our suggestion.

II. REAL SCALAR FIELD THEORY

We begin by analyzing the propagator in a real
scalar field theory with a negative M parameter.
The Lagrangian is

FIG. 1. The combination of counterterms which al-

ways appear together as a mass counterterm.

Notice that the mass counterterms in this theory
always occur in the combination given in Fig. 1

which contributes exactly (Z~ Z —1)m2.
The quantity Zm —1 is thus given, to lowest or-

der, from the diagrams of Fig. 2 (Z =1 to this or-
der). We notice that the diagrams of Fig. 2(a) oc-
cur only in the shifted theory and that their contri-
bution to Z and hence to y in this theory is
nonzero. In fact in the BPHZ scheme the only
contribution to ym at this order comes from the
second graph of Fig. 2(a). Using the usual
renormalization-group arguments one can show
that for large q the propagator to leading order in
A, has the form

W= —,(Bqg ) ——,M P —,P . (2.1)

We will renormalize the theory by introducing the
rescalings

Po=Z'i P& Mo=ZmM& &(o=&(p'Zz (2.2)

and defining all Feynman integrals by dimensional
continuation. The counterterms will be fixed by
Bogolubov-Parasiuk-Hepp-Zimmerman&n (BPHZ)
subtraction.

Let us first consider the usual treatment where
we introduce a shift to the classically stable vacu-
um

d(q )=
q —m (q )

m (qo)1
2+

2

+0 g
q

~m
q

2
qo

2
1

q

where

Tm = —p lnZm
2a

~P Ao e

(2.6)

(2.7)

P =u +p with —,&(u = —M

The Lagrangian can then be written as

2
4

4|p + ct.

where we have introduced the notations

/pe — 2~ g —g
2

and the counterterms are given by

(2.3)

(2.4)

We note that (2.6) could also be derived using the
operator-product expansion, with the usual Zim-
mermann prescription for X2($ ), which defines
(x,(y') ) =o.

We consider the result (2.6) to be the correct re-

3 3
W, , = —,(Z —1)(B„p) — (ZgZ —Z Z)p

2g
——,m ( —,ZxZ ——,Z~ Z —1)p

2

(Z Z —1) — (Z Z —1)
4t

(2.5)

(b)

FIG. 2. (a) Lowest-order diagrams which contribute
to the mass counterterm and contain three-point interac-
tions. (b) Lowest-order diagram which contributes to
the mass counterterm and has no three-point interac-
tions.
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suit to this order. We now examine whether this
same result is obtained if, instead of proceeding
directly to the shifted theory, we calculate d (q )

from the operator-product expansion in the un-
shifted theory, but then allow the nontrivial opera-
tors to acquire a nonvanishing vacuum expectation
value. Thus we will study the quantity

r

F(x,q)= f d4(e'~~T t))
2 2

(2.8)
The usual operator-product expansion for this
quantity, using the Lagrangian (2.1) and ignoring
temporarily the negative value of M, is

F(x,q)=co(q, M (q ))I+c2(q,M (q ))N2(P (x))+ operators of dimension )4, (2 9)

+ higher-order corrections . (2.10)

In (2.10) we have defined

2 y2 2 2

;(q M(q))= ' q, ' 1+0 M(q)
qa

(2.11)

The quantity (Z~ —1) comes from the diagram
of Fig. 2(b) only, so that it is clear that P~Qy~.
In fact P~ =y~ =0 to this order. Thus it is clear
that, although the leading terms in (2.6) and (2.11)
are the same, the q evolution of the terms of
next-to-leading twist is different. [Clearly these
terms can be made to match at any one qo by a
choice of (N2(P (x))).] This discrepancy obvious-

ly will not be improved by performing a higher-
order calculation. Similar discrepancies will also
occur in the q evolution of all higher-twist contri-
butions.

The discrepancies between (2.6) and (2.11) can be
understood in a straightforward fashion. As
shown in Fig. 3(a) the zeroth-order propagator of
the shifted theory corresponds to an infinite sum
of diagrams, which contribute to all n-point func-
tions in the unshifted theory. Similarly, as in the

where M(q )=M(qo2)(q /qo ) . The quantity
N(P (x)) in (2.9) denotes a composite operator sub-
tracted as an operator of dimension 2 with respect
to the naive perturbative vacuum (that is, in lowest
order the state such that P ~

v ) =0). Now we take
the physical vacuum expectation value of (2.9) to
find the propagator, and again use a
renormalization-group-improved analysis. This
gives, to the same order as kept in (2.6),

M(q )0

qo

2 ~y2

+ ', ', (N, (y'(x)))
qo

example shown in Fig. 2(b), any higher-order dia-
gram of the shifted theory can be related to an in-
finite sum of diagrams of the unshifted theory.
Thus the perturbation expansion of the shifted
theory arises from summing terms like

(A,P ) in the unshifted theory. This
resumming of an infinite number of graphs which
are higher order in A, in the unshifted theory can
clearly change which diagrams are identified as
leading-logarithmic corrections in the two cases.
Thus the differences between the various y's are
understandable. The collection of diagrams
summed by the inclusion of anomalous-dimension
effects is simply different in the two cases. Furth.-
ermore, discrepancies can arise because many dia-
grams which are unsubtracted in the unshifted
theory are first summed in the shifted theory and
then the summed graph is subtracted. Our point
here is that our results should not be regarded as
peculiar; mathematically they are not unexpected.
They indicate that simply allowing nontrivial

vv +.. .

vO vvO

FIG. 3. (a) Expansion of shifted zeroth-order propa-
gator in terms of diagrams of unshifted theory. (b) Ex-
pansion of shifted one-loop graph in terms of diagrams
of unshifted theory.
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operators to acquire vacuum expectation values
does not achieve all the resummations necessary to
turn the unshifted theory into the shifted theory.

F(q,x)=co(q )I+ N2(p*p(x))

+ operators of dimension 4

and higher . (3.6)
III. COMPLEX SCALAR FIELD THEORY

The phenomenon discovered for the propagator
in the previous section persists for other Green's
functions. Let us consider a slightly more interest-

ing theory, the complex scalar field theory
(F(q,x) ) =a +

bm 2(q 2) 2
'

'Ym

9'o
(3.7)

As in the previous example we allow (N(P*P(x)) )
to be nonzero for the unshifted theory. We obtain

~=ay*ay M'y—*y Vy*—y)'

again with M ~0. In theory we can define a
current

(3.1)

(3 2)

for the shifted theory, whereas for the unshifted
theory we find

bM (qo ) q2 rm

(F(q,x)) = a +
eo

which is conserved for M g 0 but not in the bro-
ken theory. However, since the breaking is soft the
anomalous dimension associated with this current
is zero even in the M &0 case. Now let us consid-
er the operator-product expansion of the quantity

2 'y2+, (N, (y*y(x») ',
q 9'o

+ higher-order corrections .

F(q,x)= f d ge'~~jz j,

As before we can introduce shifted fields

0+P+ig

with

A,v = —M

(3.3)

(3.4)

(3.8)

The constants a, b, b, and c2 in (3.7) and (3.8) are
numbers calculated in perturbation theory in the
usual way; their values need not concern us here.
The essential point is that the leading-twist contri-
butions to (3.7) and (3.8) are the same, but as be-

fore the quantities y and jm are different and

j~ =j 2
——0 to order k. Hence again the q evolu-m

tion of the nonleading-twist terms obtained in the
two calculations are different.

and then, as before, define the shifted Lagrangian.
(Renormalization is dealt with as in the previous
example. ) The operator-product expansion for the
product of two currents then takes the form

F(x,q )=co(q )I+c)(q )N)(p(x))

c,(q')
N2(p (x))

C2(q )
+ 2 N2(X (x))

g

IV. OTHER MATRIX ELEMENTS

The operator-product expansion is valuable pre-
cisely because of the fact that the coefficients are
independent of the matrix elements, and hence the

q evolution of different processes can be related.
So far we have discussed the vacuum-to-vacuum
matrix elements. Let us now discuss some external
particle states to see whether these fare any better.

Consider, for example, a single-particle state of
momentum k, which we will denote by

~

k). Con-
sider the connected Green's function

+ operators of dimension 3

and higher,

whereas for the unshifted theory we have

(3.5)

G(q )= f d xe'2 "(k
~
J„(x')j,(0)

~
k) . ( . )

For large q, in the shifted theory one finds G (q )

dominated by the terms
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G(q )= (k iN (p (0)) ik)
c2(q )

c2(q )
(k iN, (X') ik)

(a)

+ terms suppressed by further

powers of q and 0(A2) . (4.2)
FIG. 4. (a) Contribution to the coefficient of'p (or

g ) which contains three-point interactions (p and g
lines are not distinguished). (b) Similar diagrams appear
as a part of Ã4{P ) coefficient in unshifted theory.

In the unshifted theory the same matrix element of
a product of two currents is given, to this order in
1/q by

G= (k iNq($~$(0)) ik)
c2(q )

y, =y, =y, =P 4
——y =0. Thus we are oncem

again led to conclude that the two series can only
match for the leading term in the expansion, with

the q evolution for all q -suppressed contributions
differing in the two cases.

+ terms suppressed by further

powers of q (4.3) V. COMMENTS AND CONCLUSIONS

To leading order (4.2) and (4.3) give the same
answer for G. (Note to this order y &

——y &p2 p2

=y, =0.) Once again discrepancies appear when
x

we look at the next-to-leading contributions. Con-
tributions which in the shifted theory come from
higher-order terms in c2 or c2 involving three
point vertices, e.g., Fig. 4(a) will give terms of or-

der

rrt'(q ') 2 I&m+&,z~

(k iN, (p') ik)
qo

or

(p~X),

(4.4)

whereas in the unshifted theory such terms will

arise only as part of the coefficient of the
N4((P~P) ) operator as in Fig 4(b) and. hence will

appear as

(k
i
N4(P~P)2

i
k ) 2 ry4

QG oc

qo

Also at this order there will be terms such as

(4.5)

M (qo )(k iN (P*P) ik)
4

qo

(4.6)

To the order of accuracy of these expressions (y to
order A, only) y QP and

The preceding calculations show that, for the
case of spontaneously broken symmetry, one does
not obtain correct results by making an operator-
product expansion of the theory about the unstable
vacuum and then allowing the physical vacuum
matrix elements of the operators thus defined to be
nonzero. The leading-twist term is given correctly
but not the higher-twist terms.

%e have identified the source of this difference
in the infinite-graph resummation involved in go-

ing to the shifted theory. The problem arises part-

ly because the vacuum values of an operator can be
of order of an inverse coupling constant. This can
destroy the perturbative power counting for the un-

shifted theory, and means that terms which are
naively highly suppressed by powers of coupling
constant are actually relevant contributions to the
correct result. The fact that the propagator itself
is modified means that contributions which in the
expansion are regarded as suppressed by many
powers of q can contribute at next-to-leading twist
to an effective shift of a mass scale, and to a
change in the anomalous dimension associated with

that mass.
Both these effects are relevant to the QCD case.

It is clear that nontrivial values for any composite
operators will modify the two-point Green's func-
tion. Furthermore, it is commonly assumed that
the quantity uEE acquires a finite vacuum expecta-
tion value. This means that the vacuum-value of
the operator EE is assumed to be of order 1/a and
thus that the kinds of problems encountered in our
example are relevant to this case. It is of course
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clear that our example has not dealt with nonper-
turbative effects in any way. However, we feel
that a method which fails to achieve results which
we know are just a resummation of perturbative
graphs will not fare any better when the instability
of the vacuum arises from nonperturbative effects.

If one believes that the operator-product expan-
sion in QCD cannot be trusted except for the
leading-twist terms, what results are changed? The
entire perturbative QCD program is based on a
proof of factorization which explicitly uses the
operator-product approach. ' Our analysis does not
indicate any problem for this approach, since the
discrepancies we find would not invalidate the fac-
torization. Thus the majority of QCD perturbative
calculations, which discuss only leading-twist ef-
fects, are unaffected by this discussion. However,
we would suggest that attempts to extract
nonleading-twist effects from perturbative QCD
calculations may be subject to the diseases found
here for the scalar theory.

Finally, this paper would not be complete
without some comment on the work of Shifman,
Vainshtein, and Zakharov who have led the effort
to incorporate the effects of a nontrivial vacuum in

QCD calculations. In their work the quantity aFF
is assumed to have a vacuum value. However, this
leads to the problem discussed above that contribu-
tions, which naively are suppressed by additional
powers of q and additional factors of o., may
resum to alter results.

Note added in proof It .has been pointed out to
us by Dr. U. Ellwanger that using minimal sub-
traction gives y =y = —,P&, to the order at which

we work here. This would imply that the results
presented here are also scheme dependent, which
requires some further study. We thank Dr.
Ellwanger for his comments, and for pointing out
some numerical errors in our manuscript.
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