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Twist-4 effects in electroproduction: Canonical operators and coefficient functions
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The interpretation of observed scaling violations in leptoproduction is complicated by
the possible presence of significant higher-twist effects. We refine the machinery of the
operator-product expansion sufficiently for a study of twist-4 effects. In particular, we
introduce and review the advantages of a special, "canonical" basis. We demonstrate that
the canonical basis is adequate for the necessary twist-4 perturbative calculations, and cal-
culate the operators' tree-level coefficient functions in electroproduction. Our results es-
tablish a framework within which careful analysis of more accurate data can provide in-

formation regarding correlations among the constituents of the proton.

I. INTRODUCTION

There is a growing realization that the scaling
violations seen in leptoproduction at low and even
moderately large Q may be due in part to higher-
twist effects. ' This poses a difficult problem for
theorists because the importance of higher-twist ef-
fects is affected by nonperturbative features of the
hadron bound state for which we have no entirely
satisfactory model. Also the parton-model intui-
tion applicable to leading twist has not been ex-
tended to twist 4 or beyond. In two previous pub-
lications ' we have suggested and outlined a pro-
gram for the evaluation of twist-4 efftx:ts in lep-
toproduction based on the operator-product expan-
sion (OPE). The OPE is particularly attractive
because it allows a separation of the perturbative
and nonperturbative pieces of the calculation and
organizes the perturbative piece in a manageable, if
somewhat formal, fashion.

In earlier papers ' we described at some length
the physical foundations of our program, outlined
the steps necessary to extend the classic twist-2

analysis to twist 4, and combined our perturbative
results with nonperturbative information from the
bag model to calculate the twist-4 corrections to
the lowest nonsinglet moment of the electroproduc-
tion structure function F2. In the course of that
work it became clear to us that it is necessary to
demonstrate the adequacy of a special "canonical"
operator basis for twist-4 perturbative calculations.
Furthermore, the canonical operators' coefficient
functions are the critical link connecting experi-
ment with the sort of bound-state information
available in simple relativistic quark models.

Therefore, we will describe in detail in this paper
the construction of the twist-4, spin-n canonical
operator basis and the calculation of the operators'
coefficient functions in tree approximation in the
OPE of two electromagnetic currents. Some of
the results are not new but have been included for
completeness. Discussions of the other elements in
an OPE analysis of twist-4 effects, namely of
anomalous dimensions and matrix elements, will
be given elsewhere. With these important applica-
tions in mind we have taken pains to cast our re-
sults in terms convenient for both such calcula-
tions.

The remainder of the paper is organized as fol-
lows: In Sec. II we define a canonical basis of
twist-4 operators and list those members which oc-
cur naturally in the calculation of the coefficient
functions in tree level. We also show that a con-
sistent treatment of the renormalization-group
equations requires us to keep all tree-level coeffi-
cient functions. Section III contains the most im-
portant details of the coefficient-function calcula-
tions. It is divided into a number of subsections
which treat the contributions from Figs. 1 and 3.
The major results are Eqs. (l), (2), and (46). In
Sec. IV we present our conclusions. The more
technical details of the calculation and related is-
sues are presented in a series of appendices. In
Appendix A we list the elements of the complete
canonical basis. In Appendix B we present the cal-
culation leading to Eq. (2). We prove in Appendix
C that the spin-averaged single-particle forward
matrix elements of any traceless, "not-totally-
symmetric" operator vanish. Appendices D, F,
and G contain many of the technical details in the
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derivation of Eq. (46). In Appendix E we present
algorithms to relate any twist-4 totally symmetric
noncanonical operator to twist-4 canonical opera-
tors.

II. OPERATOR BASIS

We have argued, building on the work of Pol-

itzer, ' that the current product should be expand-

ed in a basis composed of operators which (a) are
totally symmetric, (b) are traceless (in all index

pairs), and (c) have no contracted derivatives. We
will call such operators "canonical. " The advan-

tages of this basis have been described at length in
Refs. 3 and 10. In brief, the set of all twist-4
operators is an overcomplete set, because the
single-particle forward matrix elements of opera-
tors which vanish by the naive operator equations
of motion are zero. " The set of canonical opera-
tors is complete, and better tailored to the bound-

state problem for two closely related reasons.
First, the matrix elements of canonical operators
are interpretable as generalized longitudinal-
momentum distributions in an infinite-momentum

frame; and second, in practice the evaluation of
such matrix elements in a model quantized on the
light-cone makes use of the model wave functions

only, and not the model Hamiltonian. The corn-

plete set of twist-4 canonical operators is given in

Appendix A.
Not all of the operators listed there actually ap-

pear in the expansion of the current product at tree
level. The ones which arise naturally in the calcu-
lation are listed below with the appropriate flavor
structure. For convenience an arbitrary lightlike
four-vector rP has been contracted with all free in-

dices. Terms necessary to make an operator trace-
less are proportional to g p. Consequently, they
vanish when contracted with h. It should be
remembered that the completely symmetrized
operators should be traceless as well. Define
d:i b, .D, fP=Fl'~b, z, an—d *f~=*Fi'~b,

z
=(e 'F )6&. We use the abbreviated notation

where r, is a generator of SU(3) color normalized
to tr(r, rk) = , 5,k, and D"—=8"+ igr, A," Qis the.
charge Inatrix of the up, down, and strange quarks.
The relevant operators are

(l4~gl
)

FIG. 1. The tree graphs required for the calculation
of Ft-'" 4.

& 0„"'"=g(it)gd d kr, g)(pgd" ' 'kr, g),
5 0„'"'"=g(it)gd d ky, r, g)(pgd" " 'ky5r, f),
g 03(k) ydknf dn —I —kg2y

g.04(k) i ydkfdn —1 —kg2q

/. 05(k, l) gitldkf pdlf dn —3—k —lgg2y

g.0,A ig~ps g yd f dlf dn 3 k —l~ ~
—Q—2y

b, 0„""'=g(pg'd d" ' "kr,g)(/k', f)
In operators 3, 4, 5, and 6 the derivatives act on all
fields to the right. Operator 7 differs from a spe-
cial case of operator 1 only in its flavor structure.
Here the subscript n is the actual spin of the
operator.

Before proceeding to the calculation of the coef-
ficient functions, it is important to address a prob-
lem involving the consistent treatment of orders in
perturbation theory. ' In an abbreviated notation,
collectively call 0'i =(fg) and 02 /FAN (not in-——
cluding QFFitl operators). The coefficient function

Ci (q /(p, g), of 0), is given by graphs such as
Fig. 1. It is order g, while C2(q /)(4, g) is order g.
One is tempted to ignore C'i ( l,g) relative to
C2(l,g) because g is small at large Q . This pro-
cedure is not correct however. The standard
renormalization-group analysis yields a result of
the form

(Q )

(p io; ip). .. Texp —I, dg', C, (l,g(Q')) .
(p ) g(p&) g
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FIG. 3. The tree graphs required for the calculation

of I|-'"4.

g'VZ1 8 TZ2

The canonical form of the mixing matrix (i.e., pro-
portional to g in lowest order) can be regained by
a redefinition of the four-quark operators 01
=g (Pg) . Of course, the dominant logarithm it-
self is independent of such conventions. Only. the
path to its calculation is made clearer. Afterward,

FIG. 2. Typical graphs relevant to the operator-
mixing problem as described in Sec. II.

0 0
F11 712

P-g 0 where )'i i ——)'i i+Pa0 0'

To leading order the coefficient functions Ci(1,g)
n.

are of the form Ci(l,g) =g 'cj where ci are calcul-
able constants. In general the leading q depen-
dence will be a logarithm raised to a calculable
power determined in part by the CJ's and in part
by the exponential of the anomalous dimension
matrix, and will multiply a linear combination of
coefficients cj and a linear combination of operator
matrix elements (p

~
0;

~ p )
~

2,. At first glance ci(p )'

will not appear in this linear combination. Howev-

er, a closer look at the operator mixing problem
shows both that the (PP) operators cannot be ig-
nored in the calculation of the anomalous dimen-

sion matrix and that the coefficient c, cannot be
ignored under the circumstances at hand. The re-
normalization constant Z12 is order g, and Z21 is
order g, as can be seen from inspection of the
relevant diagrams shown in Fig. 2. A direct calcu-
lation of the dominant logarithm is made difficult
by the complexity of

and C, (q /p, g) is order g. It is clear then that
the weighting of the dominant logarithm will in-
volve both c1 and c2. Incidentally, the matrix ele-
ment of Oi is suppressed by a factor of g (p ) rela-
tive to that of 02. This factor would be signifi-
cant if the renormalization scale p were large.
However, in the scheme we have outlined in Ref.
3, p,

2 is around 1 GeV, and the (Qf) matrix ele-
ments should be kept. It is evident that the same
general considerations apply to the gFFP operators
as to the (Pf) operators.

III. COEFFICIENT FUNCTIONS

The contributions at tree level to the coefficient
functions naturally divide into those arising from
the graphs of Figs. 1 and 3. We write

i Id xe'—'i "T[Jq(x)J,(0)] =Xq„+Yq„,

because of the form of

where X&„(Yz„) is the contribution from the
graphs of Fig. 3 (Fig. 1). Let the twist-4 pieces of
Xz and Y be denoted by X,= and F „= .

A. Calculation of F„~=

A calculation of Y&„= has been given in Ref. 12. We repeat the calculation briefly in Appendix B in or-
der to express the coefficient functions in a form more suitable for our purposes. The result is
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Yr=4 g
n=2
(even)

n —2
2 Tv@2 p,, p,„

pv 9'

n —2 n —2—k

O 1(k, I) 7l. 1 1

k!I!(n—1 —k —l)! n —k n —I

k+( (I +k +1)!
l!k!

0 (k, l) 1 1

k!I!(n —1 —k —I)! n —k n —l

k+I (1 +@+1)!
k!l!

1 1

k+1 I+1 (2)

where

M1I2 2 I1 l 2 ~1 ~1 I2 P1 P2
~ pv =9 gp gv (gp 9v+gv Vp)V +gyve

In anticipation of the day that the operator mixing problem can be handled properly, we give the flavor-
SU(3) Clebsch-Gordan decomposition of QQQQQQ (Ref. 13) in terms of the isospins 1 and 2, I,=0, Y =0
operators:

(3)

QQQQQQ=OI 2+Or—)+—OI' )+lsospln slnglets,

where

(4)

OI—2
———,[(uuuu +dddd )—(duud +uddu +uudd+ dduu )],

OI—,———„[(uuuu dddd )+(ds—sd+sdds+ddss+ssdd ) (ussu +su—us+ uuss+ssuu )],
Oz*

&

———„I (uuuu dddd )+ [——, (dssd+sdds —)+(ddss+ssdd )]

—[——,(ussu+suus)+(uuss+ssuu )] I .

Later we will need the decomposition of QQ QQQ=OI ~ + isospin singlets. Here

OI &

———,(uu —dd)(uu+dd+ss) .

B. Calculation of XP 4

The calculation of XP' 4 requires more effort. From Fig. 3 one establishes the operator identification'

XPv q P vl(j+ P~&
q+0

Here II"=ia". For convenience the quarks fields will be omitted hereafter. We will often recall their pres-
ence and use the quark equation of motion PQ=O as necessary. To maintain manifest charge-conjugation
symmetry, we write

[r"(4+II)Ar"+r"«4+~)r"]+ ~" (10)

where A=(q +2q II+@ ) '. The expansion of A as
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1 g2
A= Ao —Ao Ap+ (11)

with Ap ——(1+2q II/q )
' leads rather directly to an expansion in twist. It can be shown that all twist-2

operators are contained in the first term and all twist-4 operators are in the first two terms. Combining
Eqs. (10) and (11), one can rewrite the relevant piece of X&", defined to be X"', as

X""= 2y"qy"Ap+(y "gy"Ap+Apy"gy")
2q

2 [Apy"(qg +g q)y"Ap+(y"gApg Apy"+y&Apg Apgy")]
q

(12)

It is advantageous to simplify the products of Dirac matrices as far as possible without introducing F's.
To this end we use the identity

y"(q gg+ g Hq )y'=A""+B""+C"

where

B& =2i[ (e —"~'lissy, y, ) II +Il"(e»'II.qIiy, y, )]+(q v),
C"'=2[ —g""[(q.ii)II+II(q II)]—H(q"y"+q'y" —g""q)8 +q"(HII"+II"8)+q"(HIP+IPH) I,

(13)

(14)

and A&" are terms antisymmetric in p and v, whose effects vanish when averaged over target spin. After
use of the quark equation of motion (dropping further spin-dependent terms),

X""=X/"+X/,"+Xiii'i+Xg,

where

XTi"=—

XP=— [ 2(g"" q q "y" q "y"—)Ap ——[(IPy"+II'y")Ap+ Ap(IPy" +II"y")] I +
2q

1

2q4 q~ —q

XP,", =—,A,C& A, +1

Xg =—,(IPA, m'A, y"+y~A, g2A, II")+

(17)

(18)

(19)

(20)

Before proceeding with the analysis of XP 4, several general comments are in order. The first concerns
certain operators which have appeared and which cannot be symmetrized in all indices. One such not-
totally-symmetric operator can be extracted directly from Xfi'..

II ' II '[II '+'e '+' '+' II y y —e '+' '+' II y II '+']II '+' II " .

It appears to have a sufficient number of free in-
dices to contribute as a twist-2 operator; however,
restrictive symmetry conditions forbid the single-
particle forward matrix element from containing a
term proportional to p

' . p ". The operator
will lead to twist-4 effects at most, though its twist
is not manifest. Similar operators arise out of Xg"
after projecting out the totally symmetrized twist-2

operator. In evaluating the matrix elements of
not-totally-symmetric operators, one cannot assign
the value + to all free indices. Consequently,
such matrix elements lack the physical interpreta-
tion of generalized longitudinal-momentum distri-
butions in an infinite-momentum frame. Perhaps
more importantly, the calculation of these matrix
elements in a model quantized on the light-cone
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makes unnecessary use of the model's transverse-
momentum distributions or Hamiltonian, typically
less reliable features than its longitudinal-
momentum distributions. The problem is avoid-
able because traceless not-totally-symmetric opera-
tors do not contribute in leptoproduction. In Ap-
pendix C it is proven that their spin-averaged
single-particle forward matrix elements vanish. As
a result, any not-totally-symmetric operator can be
replaced by the terms which must be subtracted
from it to render it traceless. %e will refer to
these somewhat loosely as "its traces. " The traces
of a not-totally-symmetric operator can always be
expressed in terms of totally symmetric operators
of lower spin. A simple example can be found at
the end of Appendix C.

In practice the structure of X&' in the external
indices p and v is often made clearer if one imag-
ines taking forward matrix elements. Neglecting
terms of twist 6 or higher the matrix element of a
totally symmetric twist-4 operator is

~ ~

&p I
oT'=. "

I ~ & =~.s"'
To the same order one can make a substitution
such as

p, &~'''&n
gp, qp, 2 qp„oz =4

As is well known, there are two gauge-invariant
tensors which can be constructed out of p"p',
p"q'+p q", g", and q"q . Using substitutions
such as Eq. (21), we can identify the coefficients of
these different tensors directly in the OPE. To
save labor we have chosen to drop twist-4 p"p'
terms. At the end of the calculation we will be
able to reconstruct the full gauge-invariant form,
with one highly nontrival check on the algebra.

It is now possible to give an outline of the pro-
cedure that we have followed in our computation
of XP 4,. As stated before all twist-2 pieces lie in
XP". We write Xf' in terms of the totally sym-
metrized twist-2 operators and not-totally-sym-
metric operators of the sort discussed above. Care
must be taken to construct traceless twist-2 opera-
tors. Of course, the twist-2 result is well known
and the twist-2 operator can be dropped. In light
of our discussion of not-totally-symmetric opera-
tors, it is clear that for our purposes XP can be re-
placed by its traces. The same holds for Xg&", as it
contains only not-totally-symmetric operators. Xf,",

can be put in canonical form by commuting the
factors of II to the appropriate ends and using
HQ=O. Finally, since Xgv produces only p"p
twist-4 terms, it can be ignored from now on.

p&
qp

' '
qjM, OT=4

p q
1 n

(21)

Traces ofXg"

Expanding Ao in Eq. (17) gives

n 'n

XP=— gpv
n=1 q
(odd)

a &1. . . ~ng (n —1)
p&

~ - ~ p„;a
—2q& g

n=1
(odd)

~va ~1. . . i"n~(n —1)

—2

n=O q
(even)

(n)
Hp, . . . p„;ap +(p~&) t (22)

where

(n —1) =y 5[II„.. II„], (23)

).IIP[ll„, II„]+S[ll„. . II„]Z.II~]+(~ P) . (24)

As discussed above, both E and 8 are to be replaced by their traces when dropping the well-known twist-2
term. Keeping only twist-4 pieces,

2
qaq '

q
"K'" " .a

— . . —. (n —1)q K'" '~'+n(n+1)q. K'" (25)



TWIST-4 EFFECTS IN ELECTROPRODUCTION: CANONICAL. . . 55

and

jtl V
vn &). . . &nK(n —1) 2 q P

p q 2(n+1)'
+3 .~(n —1)p; .g (n —1);p

P

V

(n+1)
(n —1)p; . (n —1);pq.
p

'+nq- (26)

by Eq. (D3). The notation used here is established in Appendix D. The arrow in Eqs. (25) and (26) denotes
the procedure of replacing the operator by its traces. Similarly, by Eq. (D5)

g" g" q
'

q
"H'"' . . . . ~ g"" [ 2nq—H'"'P+(n —1)q H'"'P' ]Pl . P n~~+2( +2)2 P P

P V

+ 2 [2nq HP"' . (n ——1)q HP"' ' ]+((M~v) . (27)
p q (n+2)'

The explicit forms for the traces of H and K are

a.x(""p=
P

s-sc(")p' =
p

n

dkg dn —k

(n+1} k

n —1 k
d)IIgk —llIpdn —1 —k

&(&+1) k =o)=0

(28)

(29}

n n —1

h.H'"'P = 2 g d I()ld" "+$ g (II+ Ii~d" ' +d"III)d" ' II~)
4n k=0 k=0

(30)

n —1 k
g H(")P' — $ 2 y y d11Ipgk

k=o)=O

n —1

y (11/kilpdn —1 —k+dkllpn —1 —kilj3)

(31)

where d =E.II and all II s act to the right. The factors involving n arise from the partial cancellation of
factorials used in symmetrization. Only three of the traces are independent. We choose to eliminate
a a'"'p

P

~ H'"'= "+' ~ K'""' 4~ H"-'P ""+"~ K''""P .
n —1 P n —1 P n(n —1)

(32)

Combining various results gives the form for X(1'",
' n+1

xp= g
q (n+2)

(even)

—g" q KP"'P'+(n +1)(n +4)q.KP"'P 2n (n+2)q HP—"'Pn (n + 1)(n +4)

+ u q"+s'"q
p.q

n (n +1)(n +8) q-E n P'

—(n +1)(n 4)q.KP"'P 4n (n —+2)q HP"'P— .

4
q&q"

2

n ()2 + 1) K(n)p; +( + 1)2 .K(n);p (33)

At this stage much of the preliminary combinatoric manipulations have been completed. The central

problem, still to be addressed directly, is the issue of reexpressing the traces in terms of canonical operators.
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(34)
a=O

In Appendix E we present a proof by exhaustion that any twist-4 noncanonical operator can be traded for
canonical ones. The algorithms described there are not the most efficient ones at the tree level. For exam-

ple, it is easier in practice to do the tracings in a way which naturally pairs any term containing DpI'@' with
another containing F—pDP to form a commutator [Dp,F~p] =gr, gyp', p by the gluon equation of motion.
The methods we have followed are described below. Most of the actual calculations have been relegated to
Appendices F and G.

The treatment of the traces of E and H is greatly simplified through the use of the generating function
g(a) =1/1 —da. Equations (28)—(30) may be rewritten as

r n

h.Kp"'p —— [g (a)gg(a)]n+1 n! Ba

~(n)p; M
n(n+1) (n —1)! Ba

n

n —1

[g(a)II~(a)Ii~g(a) ] ~

a=O
(35)

4 H'"'P = 2[g(a)gg(a)](). 1 1

4n n! Ba
n —1

1 8+
(n —1)! Ba

k[llpg (a)ling(a)+g(a)II'(a)II~] .
a=O

(36)

The manipulations needed to eliminate contracted
derivatives can be performed relatively easily on
these generating functions. The identity

[g(a), II~]=ag(a)z~g(a),

where

zp=[d, II~]= ig a.F'i'= —igfP, —

based on the operator identity

[1/A, B]= ——[A,B]—,1 1

facilitates the calculations.
As a simple example consider g(a)gg(a).

Operating symmetrically gives

2g(a)Hg(a) =a[g(a)Sg'(a) —g'(a)gg(a)] .

n n —1

dkIIdn —k g (n 1 2k)dkz dn —1 —k

k=O k=O

(37)

Note that there is an unavoidable ambiguity in

writing this operator because of the identity

od "p d" '=0, obtained by moving II all the

way to the right in Hd" +'. We have chosen to
write the operator in a form which has manifest
charge-conjugation properties.

The calculations of

g(a)II@(a)ling(a)

[11@(a)ling(a)+g(a)II@(a)IIP]

Performing the appropriate projection, i.e., apply-
ing 1/n!(8/Ba)", yields

are more laborious; their details are in Appendix F,
as is the final form for XP.

2. Traces ofXft"

The general outline of the calculation of the traces of Xgi is quite similar to that for Xf . Expanding Ao
in Eq. (18) gives

XP"=—

where

2l

n=2
{even)

'n —1—2 g~l
' ' ' I n —l, a;pv

9'p,
' Vp„,9'a

g
(38)

n —1q„.- q„Z"' ""-"""=g (q II)'(ll"ei'p"II~y, l, epp'II~), —);II )(q II)" ' "+.(i--
k=0
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Because J is a not-totally-symmetric operator, it can be replaced by its traces. By Eq. (D7),

q
.

q qnJ ' " ' ' ~—
I (n —1)q J'"'P" +(n+1)q J'""P'

&n —i n (n+2) P

qP V+ V P
+ [2(n —1)q J(")p" +nq J )'p' ] . .p.q (n +2) P P

The explicit forms for the traces of J are

n —1

g.J(n);p; M dknZ dn —1 —k
p ~ VS

k=0

n
n —1 k —1

J( )p;; g 2 g g dk —1 —ill dl+1& ppklI }' }'tI —1 —k

(n —1) 0 A, 5
k =1 1=0

n —1k —1

dk —1 —lllpdl&aPPA, II }'}'dn —k

k=1 l=o

n —2n —2—k

+ y y dk+1 &ppkII diII dn 2 k —l- —
c 'VQ's p

k =0 1 =0

Equation (42) can be rewritten in terms of a generating function:

g.J(n)p;; a ~PCTpA Q
(n —1) (n —2}! (}a 5

(40)

(41)

(42)

X [ 2g (a)IIpg(a)dII g(a) —dg(a)IIpg(a) II g(a) —g(a)IIpg(a)II g(a)d ]
(43)

In Appendix 6 further details of the calculation are given. Also, an explicit canonical form is presented for

Xgi, combined with the result of the next subsection.

3. Calculation of Xf~~

The treatment of XI(n involves no tracing, and is quite easy as a result. In the usual way, expanding Ao in

Eq. (19) gives

XI(ii =

where

I V
pv 2 q pq''qp n=2

(even )

2

q

n —1

q.I'"'+(p~v), (44)

n —1

Z I'"'= g d"(dH+Hd —HAH)d"
k=0

The standard manipulations give

n —1 n —3n —3—k

5 I"= g (n —1 —2k)d Zdn k g g g ((+1)dkz dlzpdn 3 k —1——

k=o k=o 1=o

n —3n —3—k
+t&pn" }'g 7' g y (1+1)dkz d'z d" 3 k

k =0 1=0
(45)

The expression of Xp" 4 is completed upon combining Fqs. (F7} and (65). The result is
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' n+1
00

Xr"=4=g g
n =2 9'

(even)

1

(n +2)

JM V n —1 n —3n —3—k

X —g"" (n+—1) gq 0„.'"' 2—(n+1) g g (1+1)q.O„" '"
k=0 k=o l=O

n —3n —3—k
(k+1)(n —2 —k —l)q.O„" '"

k=0 l=0
n —3n —3—k

+2(n+1) g g (I+1)q.o„"""
k=o 1=0

n —2
7(k) " ++ 2 g ( —)"(k+1}(n—1 —k)q 07(k) + g&"—p q +p + q p p

k=0 p'q (p q)'

n(n —1) + O3(k) (5n+4) y y (I 1) O5(k, !)
X

4
q' n

—
2

+ q n

k=0 k =0 l =0

n —3n —3—k (g 4) n —3n —3—k
—(n+g) g g (k+1)(n —2 —k —l)q.O„' '"+—" g g (t+1}q 0„' '

k =0 l =0 2 k=0 l =0

g
5 —2

g ( —)k(k+1)(n —1 —k)q 0„' '

2 k=0
(46)

As in the Appendices, we have used a notation in
which any group of terms should be ignored if the

upper limit on the group's summation is negative.
In particular, the expression for X„""z T 4 is in
agreement with Eq. {11)of Ref. 3 and Eq. {2.17) of
Ref. 16.' The coefficient functions themselves
can be read off from Eqs. (2) and (46) immediately.

The final results of these lengthy calculations
deserve some discussion. Note first of all that the

coefficients of the three tensors have combined in

the necessary gauge-invariant fashion in Eq. (46).
Accordingly, we feel justified in restoring the p"p
terms as required by gauge invariance. The coeffi-
cient of q&q "/q —g"' in Eq. (46) contributes to

$V&, while the coefficient of
P V+ V P,

gpv pq pq + p v2g(. )z

p '9'

in Eq. (46) and the corresponding term in Eq. (2)

contribute to WT. The relations of 8'I and WT to
the standard definitions of the transverse and long-

itudinal structure functions are'

Wg ——8'1,

(47)

W = 1+ 2 W2 W1=WI-+W

As a second observation, it is quite surprising
that the operator A.O„' ' canceled out from both
the contribution to O'L and to WT. We have no

physical insight into this.
Third, our results are remarkably simple in a

particular sense. If one redefines the operators of
the spin-n basis to include the combinatoric factors
which depend on k or I, there are only five spin-n

operators in X„"T 4, and perhaps four more in
I'„""T 4. The same five operators of X„"T 4 appear
in the contributions to 8'I and WT, and to 8'3 as
shown by Iijima. Pursuing this observation a lit-

tle further, it appears that the twist-4 contributions
to WT will be greater than or roughly equal to
those to WL. The suggestion rests on a compar-
ison of the n dependence of the coefficient func-

tions of the nine suitably defined operators. Clear-

ly, the conjecture could be evaded through cancel-
lations after the evaluation of matrix elements or
through higher-order corrections. Both possibili-

ties are under investigation presently. '

As a final, more speculative remark, it is con-

ceivable that there exists a suitably defined subclass
of spin-n twist-4 operators, including these nine,
which closes under renormalization at least to one

loop. There are certainly some simple features of
the one-loop anomalous-dimension matrix. For ex-
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ample, four-quark operators do not mix into PI'P
operators, as all the counterterms arising from the
relevant graphs come from operators which can be
related to four-quark operators by the gluon equa-
tion of motion. '

IV. CONCLUSION

The examination of higher-twist effects in lep-

toproduction has two primary motivations. The
first is to refine the predictions of perturbative

QCD as far as possible. The second, perhaps more

interesting, object is to establish a vehicle by which

experiment can provide more detailed information

regarding the structure of the proton. We have

proposed a framework for the study of twist-4 ef-

fects which is well suited for the bound-state prob-

lem. It is based on the operator-product expan-

sion, and makes use of a canonical basis of opera-

tors. Proton matrix elements of canonical opera-

tors probe the constituent wave functions on the

light-cone, and are not sensitive to the Hamiltonian

of a model used in approximate calculations.

More precise data on structure functions at
moderate Q should make possible a study of
correlations of constituents inside the proton.

Rote added. After the completion of this paper
we received a paper by S. P. Luttrell and S. Wada
[Nucl. Phys. 8197, 290 (1982)], in which the coef-

ficient functions were calculated in a basis of
operators with contracted derivatives.

g.Q1(k, l)
y gd ~dky y gdn 2 —k ——ly

j) Q.""'"=ger.&d d"A&Id" ' "
&.A

~ Q3(k, l)
y gd (dky y jI(dn 2 —k ——

11(,

b, Q„'"'"=gfltr, gd d /litt'l. I'd"

Qs(k, l)
y j)(d de y j)(dn

—2 —k —lg

j3, Q„'"' '=g1tlr, r, gd d"Ql. gl $d" 'r, QI. ,

g Q7(k) yd "«f dn —I —ky

g.Q()(k) yd
.«f dn —1 ky—

j(«.Q9(k I) qd f ( dlf ) d"

Q, Q
10(k I)

1 f yd fa( dlf ) dn —3—k —lg

Q, Q
1

gd pd fa(d f ) dn —3—k—

lI«. Q12(k, l)
1 yd «fa( dlf ) dn —3—k —lg

6 Q„' =gf,bn1tjd 'fn(d fa)bd" 'I«y5~, (t),

g.Q
14(k, l) ~ d yd «fa( dlf ) dn 3 k —lg——

Here, f, =hjlFf and f=r,f, . Covariant deriva-

tives which act on f 's alone are in the adjoint
rather than the fundamental representation. We
have followed Gottlieb and Owaka by writing the
four-quark operators in a helicity basis. Flavor has
been ignored. It is important to note that only
four-quark operators can transform as flavor 27.
The canonical operators of the form
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APPENDIX A

have not been listed for the following reason.

Rewriting

1 ~pomp «~ ~(j,k, l)
4 P o7&

, pd 'f~d fljd'jj(y5$+—(twist 6) . (Al)

g'& b a& PS«~ 4d f (d f )b(d'f )

This form of Q
"j'"' already appears in the list.

The same substitution for f, reveals that operators
of the form

The complete canonical twist-4 nonsinglet opera-
tor basis is given explicitly below, in a form suit-

able for anomalous-dimension calculations. We
use the notation of Sec. II: are actually twist 6.

Xd '
rgky31(
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There are other identities among canonical
operators. The identity g,". cd~fd" '=0 was dis-

cussai in regard to Eq. (37). Okawa noted anoth-
er identity among flavor-27 four-quark operators.
Under a simultaneous Dirac, color, and flavor
Fierz transformation Q' (Q ) operators can be ex-

pressed in terms of Q (Q ) operators. Unfor-
tunately, this trick fails for the corresponding octet

operators [see Eqs. (6) and (7)]. There may well
exist more relations among canonical operators.

APPENDIX B

The calculation of Y""begins with the contribu-
tion to the scattering amplitude of the graphs of
Fig. 1 and their associates:

ZP'&'" P~4 T J& X J"0 P1P3

= —ig' q(p2)Qr. r' r"+r" r' q(pi)q(p4)Qr. r" r,+r, r" q(p3)
pi+4 p2 q- p4+0 p3 q—

+ p~v

+ [p2~p4 if the flavor of particle 2 is that of particle 4] . (Bl)

The set of terms above which is indicated as ob-

tained by crossing is identical to that obtained by
the operation (p&~p3,p2~p4). There are no q "q"
terms arising in twist 4, so that the full answer is

transverse and can be reconstructed from the coef-
ficient of g""using gauge invariance. The advan-

tage of selecting the g&" terms is that the pro-
cedure automatically projects out a totally sym-

metrized twist-4 operator. Define the g"" twist-4
terms of T""to be gI'"T~ 4. Also define

y;= —2p; q/q, w,";J=q(p;)Qr, r"q(pj. ), and

Ua, ig =q(A )Qr rsra'q(pj')
Dropping terms which lead to target-spin-

dependent effects and using momentum conserva-

tion, g""TT 4 is given below in the case where the
two incident quarks have different flavors:

gPV
g TT 4———ig 6 W 43QWa, 21 0fcv ' 2

1 1 1

1 —y1 1 —y1+y2 1 —y1+y2 —y3

1 1 1

1+y2 1+y2 —y1 1+y2 —y1 —y3

1 1 1

1+y2 1+y2 y1 1+y3
1 1 1

1 —y1 1 —y1+y2 1+y3

1 1 1
+Ua, 21 qUa, 43 9

1 —y11—y1+y2 1 y1+y2 y3

1 1 1 1 1+1+y 1+y —y, 1+y —y, —y3 1+y 1+y —y, 1+y

1 1 1

1 —y1 1 —y1+y2 1+y
+(y;~—y;) . (B2)

The identity

(J+k+I+».'
1 —x 1 —x —y 1 —x —y —z . kI 0 k!I!(j+1)!(j+I+2)

may be verified by the application of the following sequence of six consecutive operations from the right,
beginning with differentiation with respect to z, p times:



26 TWIST-4 EFFECTS IN ELECTROPRODUCTION: CANONICAL. . . 61

x=0

With the aid of this identity,

y=0 z=O

pv

g TT 4
———Ipv 2g

j,k, l =0
(j+k+l even)

' j+k+l
p2p4 QQr, q(iq 8 )'(iq d)"/pe(iq 8) Qr, g

q

(j+k+1 +2)! 1 1

k!l!(j+1)! j+l+2 j+k+2
(k+1 +1)!

k!l!
1 1

k+1 l+1

+QQr, hays(iq d ) (iq. d) gfqy5(iq d) Qr, f

(j+k+l+2)! 1 1

k!l!(j+1)! j+1+2 j+k + 2
+ .

(k+i+1)!
k!l!

1 1 'pp

The final result is independent of any condition on
the flavors of the incident quarks. Equation (2) of
the text follows on the restoration of gauge invari-
ance.

APPENDIX C

less rank-2 tensor constructed from g ~ and p~ re-
gardless of symmetry, up to a multiplicative con-
stant.

(ii) S&, . . .&p
' . p""=S"p+0 [can be seen

directly or see (v) below].

Here we prove the theorem that only one rank-n,
traceless (in all index pairs) tensor can be con-
structed from the metric gott, and a single four-
vector pp, and that tensor is totally symmetric. An
immediate corollary is that the forward, single
particle matrix element of any traceless operator
with no totally symmetric part vanishes 2'.

The proof is quite simple. After giving it we
will illustrate it with an example. First we need a
lemma: There is a unique, rank-n traceless, sym-
metric tensor constructed from g p and pp, call it
S& . . .

&
. This result is well known and is easilyIn'

proven by direct construction: start with

p&
.

p& and subtract symmetric combinationsIn
of terms with successively more factors of gott to
render the result traceless. Note the following:

(i) S& &
——p& p&

——,p g& & is the unique trace-

Now suppose there exists a tensor T&,
. p„con-

structed from g p and pp which has no totally
symmetric part. By hypothesis

(ln) p ' ' ' p T~ . . . p =0

and

for any j and k. Note there must be some k, such
that

kT» ~0
Otherwise T"=0. This last remark is the only
nontrival step in the proof. It follows because T"
lives in a vector space spanned by vectors which
are products of pit's and g tt's. If (v) were false
then T" would be orthogonal to all vectors in the
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space and therefore be zero.
Now define

~n —1 I egg n (Cl)

where R" ' has no totally symmetric part. By (2)

p ' ' ' p T~ . . . p =C(S 'p)@0. But

where we have relabeled indices so the index k
which appears in (v) is called n B.y (iv) T" ' is
traceless. In addition T" ' has no totally sym-

metric part. To prove this suppose Tn ' had a to-

taBy symmetric part. By our lemma it must be
proportional to S"

this contradicts (3) unless C =0. So T" ' is trace-
less, with no totally symmetric part. Now contin-
ue this process constructing T" "from T" k+'

until n —k =2. We now have a tensor T& &P&P2

which is traceless with no totally symmetric part
contradicting (1). Thus our hypothesis that there
exists a nontrivial T" is wrong and the proof is
complete.

To illustrate this theorem and the notation of re-
placing an operator by its traces we present a sim-

ple example. Let 0[ p][$y] be an operator antisym-
metric in its first and second index pairs. Symme-
try dictates the form of its forward matrix ele-
ments to be

(C3)&p I 0[.Ii][,s] [» &=A"'(»u,gI]s+ppusS. , »pp, g—.s »usg—p, ) .

If 0[~p][rs] is a traceless operator we are forced to conclude A' '=0 (e.g., contract the indices a and y), in
accord with our theorem. If 0[~]i][rs] is not a traceless operator we proceed as follows: Define 0[~]i][rs] by

0[ap][&s]=0[ap][ys] —(Oayg ps+ Ogigay —0pygas —O~sg&r ) .

If we require 0[ ]i][rs] to be traceless we can solve for the operator 0 ]i.

Oap 2 0[aA, ][ps]g ~p gap0[ov ]
[0~]

(C4)

(C5)

Because of our theorem the operator 0[~@][&s]drops out of the OPE analysis of leptoproduction. We may
therefore replace the not-totally-symmetric operator 0[~p][rs] by its traces:

O[~p][~g]~O+„gps+ Opsg+~ —Opyg+g —O~gg py .

(C6)

Finally note that if the operator 0 p were not-totally-symmetric we could repeat this procedure until, in the
end 0[~p][ys] or any other not-totally-symmetric operator, is replaced by totally symmetric (and traceless)
operators of lower rank.

APPENDIX D

In this appendix we calculate the terms, needed in the main body of the text, which must be subtracted
from certain not-totally-symmetric operators to make them traceless. Three forms of not-totally-symmetric
operators will be considered in turn. By convention an operator is totally symmetric in any subset of indices
not separated by a semicolon, and is traceless if barred. Indices which should be omitted in operators are
enclosed by parentheses.

Consider an operator of the form 0 ' I n, a

(Dl)

There are two different equations which arise through the contraction of any one pair of indices. For con-
venience an arbitrary null vector LF has been contracted with all free indices which remain:

0=»V 'Oi' ' —2nh" 'M 2h' 'N O=b," '—0 '~ (n —l)b," 'M——(n+3)h" 'N . (D2)

Here, for example, b" 0 p' Ap 5p 0 p In the text, where the spin of the operatorp p& In —1

is specified, we write 6 0~" 'i" for b," '0 i".
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The solutions are

.M=
(n+1)

gn —1.~
(n+1)

'"+"a"-'Op —a"-'Op'
p p

& —& ~n-i.0P;+„~n- i.0P;(n —1&

p p

(D3)

~ ~ » ~gp
The second form of operator of interest is 0 '

g&1
' '&» ~ OP1' '&»' ~ aPp&1' ' '&» ~ &1 ~&1' ' ' 1&11' ' '&»~

'R
l(J

(D4)

In the case required 0'pp 5=0, and 5 R is not needed. The expressions for 6 P and b, Q are

goal. p 1 1
[ 2n —5" OP' +n(n —1)b," OP '],

(n+2)2 P P

5" Q= [2nl" OP' (n ——1)h".Op '] .
(n+2)2 P P

The final case is that of 0 '

(D5)

0~1 In' 'I ~~1 In' » F' Pa~~I1'''In « ~ Ii gI1' &i InI= 0 —Lg A +(p~V)] — g 8

gg ' C ' ' " +(p~v) g""D '—
PgPJ P &

' ' ' [Pi i ' ' ' '[P) i ' ' '
Pgg Pg''E

I (J
(D6)

In the case required 6.0p "=0 6-0"p = —26.0'p. and 6.0p' '= —26.0p" . Also 6.8 and 6 E are notp P ~pl P P'
needed:

Q" + g= [nb" + OP" +(n+2)h" +'0 P' ],
2(n +3) P p

gn+1.C
1 [3g»+1.0p;; +gn +01; ]p

2(n+3) P p (D7)

5"+'D = — [n lP+'0 P+(n +2)h" +'O'P' ] .
(n+3) P P

APPENDIX E

In the main body of the text the particular non-

canonical operators which appear in tree level are
eliminated in favor of canonical ones through a
wide variety of tricks. It is important to know,
though, that any twist-4 noncanonical operator,
which may arise under renormalization, or in
higher order, can be reexpressed in terms of canon-
ical operators. The proof that we present for this
is by construction.

Operators which are manifestly twist-4 four-

quark operators can be readily put in canonical
form. The only possible operation needed is the
elimination of extra y matrices by successive appli-
cation of three-y identities.

Operators of the form P f (with no more
quark fields) may be more difficult to put in

canonical form. By chirality they must contain an

odd number of y matrices excluding y5 matrices.
Repeated application of three-y identities can be
used to eliminate all but one y matrix. Give the
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generic label O~ to any operator with one y matrix
and no e tensor or y5 matrix, and 02 to any with
one y matrix, one e tensor, and one y5 matrix. In
the operators, all covariant derivatives may be
reworked so that they act to the right.

Consider first the operators of the sort 0&. If
the y matrix index is contracted internally, the
noncanonical operators can be expressed in terms
of g(b H)'H(b 'IIYQ, which is easily handled.
Otherwise, the basic noncanonical operators are of
the form 1(t(h II)'II (b, .HyH (b, II) gf. These
can be reexpressed as canonical operators, and

y(a. H)'H. P(a H)'gy,

y(a. H)'y H.(a.H)'ky,

and

+y(a H)'H'(a. H)'+'gy.

The first operator can be related to the third
through the identity

II f =—II [H~, H ]b,p
g

= '
{ [H., [H~, H ]]+(H~H' —H'H~) jb~.

2g

A similar trick relates the second to the third. Fi-
nally, the identity II =IIII——,[y,g][H, Hp] can
be used to transform the third into a canonical
ofm.

The operators of the form Oz may be treated
along the same lines. The noncanonical operators
with the y-matrix index contracted internally are
related to

and

e.~,~syH y'y, (a H)"H~y.

One may use the identities (G3) to rewrite these in
terms of operators of type 1. The noncanonical
operators without an internally contracted y matrix
are related to

E.~,a'q(a. H)'H (a.HyHP(a H)'H'(a H)'ky, y .

Moving II to the left and H~ to the right as far as
II, noncanonical operators arise which are of the
form

~.~,a'q(~ H)~y'(~ H)-y'~(a H)"H'(~ H } h),y,

~.~,a'lt H (a H)~y&(a H) H'(a H} g),1(,
and

~.~,~'yH (a H~'r&(S. H) g};y.

Moving II to the right in the first of these, and
application of identities (G3) enables all of these to
be reexpressed as canonical and type 1 operators.

APPENDIX F

The calculations of the quantities 6 E'"'~' and
6 Hz"'~, defined in Eqs. (35}and (36), are ad-
dressed in detail in this appendix. As emphasized
in the main body of the text, the generating func-
tions provide a considerable short-cut. Define

~.~,as'(a H)'H (.a Hy'H~(.a H)')"}.,y .

Moving II to the left and II~ to the right will pro-
duce noncanonical operators of the form

Cn+]. n~

'n

[g(a)IIpg(a) H~g(a) ]
Bcx a=0

(Fl}
e ~gh sgII y ~@5( 5 II )'f~( b, II )

~.~,a'y(a H)~y (a H. ) H~}'.),y,
Moving the IIp's together symmetrically in the
generating function gives

2g(a)Hpg(a)Hpg(a)=g(a){ g(a)H~+[Hpg(a}] ]HPg(a) +g(a)Hp{ Hpg(a)+[g(a), H~] ]g(a} . (F2)

A little more algebra yields

g(a)Hpg(a)H~g(a)= —, { g (a)II g(a}+g(a)II g (a)+ag (a)[Hp, z~]g (a) —2a g (a}z~g(a)z~g (a) ] .
(F3)

Performing the appropriate projection gives
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n n —1

«„ i= —(n+2) g d II d" + g (k+1)(n —k)d [Hp, z ]d"n+1
k=0 k=0

n —2n —k —2

k=0 1 =0
(k+1)(n —1 —k 1)d—zpd zPd" (F4)

(~e have used a notation in which any group of terms should be ignored if the upper limit on the group's
summation is negative, i.e., ci ——II .)

The troublesome term remaining is

d„+,=g g d"II'd"
k=0

Its generating function is gg(a)H g(a). Using the relation II =gg ——,[yz, yp][Hi', Hp],

2)kg(a)II g(a) =g(a)(&IIg+ IIII')g(a) —
4 g{a)(@[yes,yp]+ [y&,yp]g)[IF, II ]g(a) .

The II's can be moved easily to the appropriate end after rewriting (PIIII+ IIIIQ) = —2IIQII+2(d II+ IId )
in the first term on the right-hand side of (F5). The second term leads directly to a canonical form after the
use of the standard three-y identity. The appropriate projection gives the canonical form of $d„+i. Then,

«„+i can be written as

n —2n —2—k«.+i=& X X
k=o l=o

(I+1)—(k+1)(n —1—k —1) dkz dlzPdn —2—k —1

2

n + y (n 2k)dkgdn —k+ ~ n + y dkez dn —k

k=o k=0

n+2 n —2n —2—k
eP~sxg y y (I+1)dkz diaz dye —z—k

k=o l=o

+—g (k+1)(n k)dk[IIp, zP—]d"
k=o

Identical techniques can be employed to rewrite

n —1

g y (HgkHPd" —i k+dkHP" i——"HP)
k=0

in its canonical form.
Combining the previous results of this appendix and Eqs. (33)—(37) gives

' n+1

Xg=g g
z q (n+2)

(even)

T

n +4n+2) " '
03i~i n(n+2), .03(0) .03(N —1))

k=0

(F6)

~ (n —1 —2k)q.O' '+ (q 0 ' — 0 "
)

k=o

g (k+1)(n —1 —k)( —)"q 0„' '+ g ( —) q.O„' '

k=0 4 k=o
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n —3n —3—k n+I+(n+4) g g (l+1)+(k+1)(n—2 —k —l) q 0„' '

k=0 l=0

k =0 l =0 k=o l=o

~Pqv n —1 l n —2
+4(n+1)

z
——, g q 0„'"'+ g (k+1)(n —1 —k)( —) q.g„' ''

k=o
" 2("+1) k=o

r

3" 3—k

(„+,) X X (l+1)+(k+1)(n —2 —k —l) q.g„' ' '

n —3n —3—k

(l + 1 ) .06(k, l)

k=o l=o

(p "q"+p"q") (n'+7n+4) ~ 3(k) n(n+2) . 3~o~ . 3( —i)

k=0

(n+2)2 n —1

(n 1 2k) .04(k)+ n(n+ )
(

04(o) 04(n —1))
k=0

n —3n —3—k—n(n+2) g g q 0„"' '

k=0 1=0
T

n —3n —3—k

+(n+8) g
k=o l=o

(l+1)+(k+1)(n—2 —k —l) q.g„'"'"

(n'+7n+4) " '" ' "
l 1 ggk, n n(n+2)" k 7(k)Z, l+1qg. '+ ( —)qg„

k=o l=o k=o

8 5 —2

Q (k+1)(n —I —k)( —) q 0„' '

k=0
(F7)

APPENDIX G

In this appendix we continue with the calculation of Xf& at the point of Eq. (43). By the definition of
g(a), g(a)d =(I/a)[g(a) —1]. Then, Eq. (43) may be rewritten

g J(n)p" a
(n —1) (n —2)! Ba

X ~ ——g(a)'gysg(a)+ —ei " 6 yky5[II@(a)II g(a)+g(a) IIg(a)II ]a a a=o

The two noncanonical terms are treated in quite a similar manner. One begins as in Appendix F, e.g.,

&I "g(a)II@(a)II—yky5 ~~"
I g(a)[g(a)IIp —ag(a)zpg(a)]11a a

+g(a)II&[II g(a)+ag(a)z g(a)] Jykyq . (62)
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The procedure is hindered at this point by the fact that the z and the II in the second and fourth terms do
not have the same index. The resolution of the difficulty is to move the II to the appropriate end and use
either of the identities

e&'y, IIiiy, y= i(I—I y& II~—y")q, e ~'yy, II.y, = iq—(II y& n~—yi') .

The further manipulations are straightforward, as the z and II naturally pair to form a commutator.
The result is

(G3)

—el " b,„ ii@(a)II g(a)+g(a)IIg(a)II yky,a
1

[g (a)'Z+2g(a)*Zg(a)+'gg (a)]y5+2ae~" h~(a)z), g (a)z g(a)yky5

i[g—(a)zg(a)+g(a)zg (a)]d+id[g (a)zg(a)+g(a)zg (a)]

it g—(a)[II,z ]g(a)+g(a)[II,z ]g (a) }P,

+2ia[g (a)zing(a)z~g(a)+g(a)zing (a)z~g(a)+g(a)zing(a)z~g (a) }g .

n —1

II
2( +2) II tl

3n+ — n —)

n+2 k () 4 n+2

After making the proper projection, and combining with Eqs. (38), (40), and (41) we obtain

n+1

xf;+xg= g g2 n=2
(even)

(G4)

n —3n —3—k n —3n —3—k

(/+ 1 ) .g5(k, l) n y y .g (k, l)

k=o l=o + k=0 l=o

n —3n —3—k n —2+ ) y y (I + 1 ) 06(kyl)+ y ( )k g7(k)
(n+2) k=o l o

=" 2(n+2) k

—g (n —1 2k)q 0 '"'+ — [q 0„' ' —q 0„'" "]
p'q k =o

"
(n +2)

(n +1) y .g (k) n
[ .03(ll —))+ g3(o)]

(n +2) k o
" 2(n +2)

n —3n —3—k n —3n —3—k

(i+ 1)q.g&(k, l) n y y 05(k,l).
k=o l=o ("+ ) k=o l=o

n —3 n —.3—k

(I+1) .g6(k, l)

n+2+ k=0 l=o
n

n —2

( )kq. g7(k)
"+2 k=o

(G5)
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