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Eliminating lattice fermion doubling
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The problem of fermion doubling on a lattice is analyzed. Two new solutions are found in one space dimension.

The first fails in the usual manner to generalize to three dimensions. The second solution generalizes to eliminate

doubling in any number of dimensions.

I. INTRODUCTION BU' 1—-—[U(x+ a) —U(x —a)] .
~x 2a (2)

It has been known for some time that problems
arise when we try to put massless fermions on a
lattice. The usual formulation of the Weyl equa-
tion on a Kogut-Susskind lattice in D+ 1 dimen-
sions describes not one but 2 fermions.

Various procedures have been proposed for get-
ting rid of the extra states. '"' None succeeds in
eliminating them completely for D = 3, except Ref.
3, which has problems with nonlocality. Now,
in a quark model the doubling is not a disaster
(e.g. , Ref. 3), but it is in a theory of neutrinos.
Recently, Nielsen and Ninomiya have argued4 that
doubling prevents our putting both weak interac-
tions and chirally invariant quantum chromo-
dynamics (QCD) on a lattice.

In this paper we argue that we can get around
the conclusions of Ref. 4 and eliminate doubling
altogether. In Sec. II we analyze the problem in
one space dimension. Our analysis leads first
to a partial solution (which does not generalize
to three dimensions) and then to a full solution
(Secs. III and IV).

Substituting Eq. (2) in Eq. (1) Fourier transform-
ing, we get

. sU(())) sin(pa)
a

o(Up. (3)

sin(Pa) Q.
a

That is,

sin'(pa)
a

(4)

E ach zero eigenvalue corresponds to a massless
fermion (e.g. , Ref. 4), and there are tu)o of these
in the Brillouin zone p: —))/a-+ )(/a, at P = 0 and

p =)(/a. One fermion has become two. How?

B. Origin of doubling

The right-hand side of Eq. (3) is zero at P =)(/a
because

The energy spectrum is given by the eigenvalues
of the Hamiltonian matrix

II. DOUBLING IN ONE DIMENSION

A. The problem

Consider a massless fermion in 1+ 1 dimen-
sions. It obeys the %eyl equation

.8U . 8U
S —=2& —,

Bt Sx '

where

g e' ' ""'[U(n+ 1) —U (n —1)]= 0,

or

e - i (a / a ) a g e i (a / a & ( n+ & & aU (& + 1)

e+i(a/a)a+ ei(a/a)(n l)aU(- I p

a=('
ol

ei (v / a)2a

is a two-component spinor and

(0 I)
(I 0)

I.et us put space on a lattice (x=na). It is usual
to take

The last is the crucial relation. The Pxoblem
arises because the lattice sPacing (la) is a factor
of 2 less than the sPace betu)een the Points used
to estimate (BU/Bx) (2a).

Another way to see this is to consider time-in-
dependent solutions. In the continuum Eq. (1) im-
plies that these can only be given by a constant
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spinor. By contrast, if we use Eq. (2) on the lat-
tice we find solutions

U(2n) = U(0)vn, U(2m+ 1)= U(l) ym . (7)

There is nothing in the theory to connect U(0) and

U(l). The 2a spacing for BU/Bx distinguishes in
this way between odd and even lattice sites, and

gives rise to extra solutions. 'These last need
not be continuous in the continuum limit.

In the general case we expand about the extra
solution, taking

B. Solution A

BP, 1
~X+0 —

j X

8, 1
2X — 2X —0

(15)

Equation (15) leads to a Hermitian Hamiltonian

Instead of using Eq. (12) or (14) we can imitate
Susskind' and distinguish between tp, and l(t, . We
take

fP= +Pa

Now

ein~U(n) = e&P'na[( )nU(n)]

sin(pa) = —sin(p'a) .

If we treat P' as the momentum, therefore, the
new solution is given by

(8)

,.~,),sin(pa/2)
a/2

with energy eigenvalues

g2 s jn2 ~

„,.&, sis(Ps/2))e+ gPC 2

(16)

(17)

U'(x) = (-)"U(x) (x = na)

Bnd satisfies

.BU'(p') sin(p'a)
&~
-,

Bt a

(10) The energy spectrum has only one zero in the
Brillouin zone, so there is only one massless
fermion.

An alternative formulation of solution A is ob-
tained if we define

Owing to the lack of restriction on U(x+ a) -U(x),
the space of solutions is too large. Every solution
(U) is related to another (U ) by a z, transforma-
tion which leaves the theory invariant.

(.'( p) = e'""P.(p-) (18)

U'(p) -=I (1g)

III. A PARTIAL SOLUTION

A. A new problem

Now U'(p) satisfies

.BU'(P 2 . Pai ' = —sin —aU'(p) .et g 2
(20)

We conclude from Sec. II that we need to make
the lattice spacing the same as the distance over
nthich BU/Bx is measured. Note that Susskind'
effectively makes both 2a by separating g, and

g, so that one lives on odd and the other on even
lattice sites.

We will try to make the BU/Bx spacing just la.
The obvious method, replacing Eq. (2) by

eU 1—-—[U(x+ a) —U(x)],
BX CE

(12)

fails immediately, since it leads to a non-Hermi-
tian Hamiltonian with energies

Fourier transforming Eq. (18), we find that the
transition

U U'

shifts P, from x=na tox=(n+-,')a. g, and g, are
now defined at alternate sites of a new lattice with

spacing ~a; and they satisfy Eq. (20). This is
precisely as in the scheme of Susskind and Cash-
er.' The only difference is that in the end we re-
interpret everything on the x = ea lattice by

U U.

S =e" —sin, , 4 . , pa
a2 2

(13)
C. Three space dimensions

In 3+ 1 dimensions the Weyl equation is

8U 1—--[U(x) -U(x -a)].
8X a (14)

Clearly the same problem would arise if we used .BU(x) 1
Bt i (21)

Putting space on a cubic lattice, the analog of Eq.
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(2) gives an energy spectrum

j&' = —,[sin'(p, a}+sin'(p, a)+ sin'(p, a)] . (22)
U(n+-.') =-.' [U(n)+ U(n+1)]. (28)

However, we can equally well work at x =(n+ —,')a,
by averaging U itself:

;-[P,(x+ «;) —P,(x)],

Bg, 1
, x —,x —ax;

(23}

Equation (22) has 8= 2' zeros in the Brillouin zone,
implying eight massless fermions.

The obvious generalization of solution A

Such a scheme gives our solution B.
First, we can show that the theory eliminates

doubling, without reference to points x = (n+ —,')a.
We simply insist that the Weyl equation is satis-
fied using Eqs. (12) and (28). That is,

a U(x+a)+U(x) . ((U(xaa) —U(x))
~t 2 II, a

fails immediately. It gives a non-Hermitian Ham-
iltonian, as a result of the diagonal (o, ) terms.
Solutions in the manner of Susskind' also fail.

A possible outlet is suggested by another re-
phrasing of solution A in one dimension. That
solution replaces the original Hamiltonian matrix
([sin(pa)/a]o, j by Eq. (18), which can be written

Equation (29) Four ier transforms to

.BU 2 pa
(p) =- tan —~U(p).

Bt a 2

The Hamiltonian matrix

2 pa—tan —
~

a
a 2)

(30)

sin(pa) 1 —cos(pa)
a a 2 ~

This is analogous to Wilson's use of

(24)
is Hermitian, with energy eigenvalues

E =—tan —.4,pa
a 2 (31)

H= (r, + —[1 —cos(pa}](r,
sin(pa) K

(25)

in Ref. 1. Generalizing Eqs. (24) and (25) to three
dimensions, we could take

IV. A FULL SOLUTION

A. One dimension

The problem with taking

SU 1—-—[U(x+ a) —U(x)]Bx a (12)

is that Eq. (12) naturally defines BU/Bx at x+ —,
' a.

Thus we have U defined at x =na (yn) and BU/Bx
defined at x= (m+~)a ((tm). In the Weyl equation
both U and BU/Bx must be defined at the same
point. Previously (in Sec. II) this was done by de-
fining (at x =na)

sin(p;a) g (1 —cospq
')

with the K~ real dimensionless three-vectors.
Doing this we can easily reduce the number of
fermions to two. Reduction to one is impossible.
In three dimensions we have no extra degrees of
freedom available to fill the role of o, and o, in
Eqs. (24) and (25).

Solution A cannot be generalized to three dimen-
sions without at least two fermions occurring.

Equation (31) has the correct continuum limit, and
only one zero in the Brillouin zone. The theory
describes just one massless fexmion.

Next we use the JU(n)] to define a new wave func-
tion V(x) and BV/Bx atx=(n+~)a. We take

V(x) =--,' [U(x+-.'a)+ U(x --,'a)],
BV/Bx~ —[U(x+—,

' a) —U(x ——' a)]a

(32)

[cf. Eqs. (12) and (28)]. Now V and BV/Bx must
satisfy the Weyl equation, and we get Eqs. (30)
and (31) again with

PaV-- cos—U.
2

(33)

B. Three dimensions

Note that in the continuum limit V must be contin-
uous and equal to U. The theory in terms of the
7 is given by a configuration-space Hamiltonian

V (-ta) —,
~~ BV

(n+ &/2) e

U(x)xU(x+a) ' . U(x+a) —U(x))
2 a

(34)
Equation (34) gives the same Hamiltonian as in
Sec. II. The theories described are not the same
since the fundamental fields are different (U and
V).

BU & BU y BU—(n) -=— —(n+-2) +—(n ——,')
Bx 2 Bx Bx

(27) The above solution generalizes to three space
dimensions without difficulty. Again, the theory
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is best pictured as using the U(x) to define a new
wave function V(x) and its derivatives on a second
cubic lattice with sites at

Note that Eq. (42) gives an acceptable, if uncon-
ventional, approximation to BU/Bx in the standard
theory.

x: (x), = (n,. +-,' )a Vi. (35) C. Some comments on the solution

We define

v(x) =-,'

and
all combinations

U~ x, w —,x2 +—,x, a — (36)
t' a a a

2' 2' 2

BV 1 I & a a a
U~x, +—,x, +—,x, +-

ex, 4a, ( ' 2' ' 2'

a a a—U x -—,x, +—,x3+— (37)

with BV/Bx, and BV/Bx, defined similarly.
Substituting Eqs. (36) and (37) in the Weyl equa-

tion and Fourier transforming, we get

i = — g —tan '
v& V(p) .. BV(p) 2 p,.a

la ~sl

The Hamiltonian matrix is Hermitian, with an
energy spectrum given by

(38)

CE 2 2 2
(39)

There is only one zero in the Brillouin zone, so
the theory describes just one massless fermion.
The doubling problem has disappeared.

Note that (as in one dimension) we can express
the theory in terms of the U(x) alone, without ref-
erence to V(x) or the new lattice. Then

3

U= Ieea '
)V

~=1
(4o)

8& Us
H= io'] = U x io]

Xf B

where

(41)

satisfies Eq. (38), and gives rise to Eq. (39).
The configuration-space Hamiltonian [which only

makes sense in terms of the V(x)] is

(1) Solution 8 does not belong to the class of
theories considered in Ref. 4, because neither the
Hamiltonian nor the individual space derivatives
(BV/Bx) can be expressed as a combination of the
wave functions V(x). One way to see this is to
note that if we were to define a theory of W spin-
ors at y„=(n+ —,')a, such that

U(n) =-' [IV(n+ -') + &(n —-')],

we could choose. (say) IV(—,') to have any value at
all. The (IV(x)}have one more degree of freedom
than the (U(x)}. For this reason the conclusions
of Ref. 4 do not apply.

(2) The zero of energy at p = m/a has been re-
placed by a pole (1 dimension). This means that
the momentum is restricted to a finite range (e.g. ,
—v/a-v/a) but the energy can take all values in
that range.

(3) The fact that U(x) is continuous in the con-
tinuum limit distinguishes the new class of so-
lutions from that considered in Sec. II. Here the
only time-independent solutions are

U(x) = U(O)vx.

(4) We could define V(x) on the old lattice sites
by

a a a
V (x) =Vix, +-,x, +-,x, +-2' 2' ' 2

It would give essentially the same theory, in a
less natural way. More natural is to consider
solution B as implementing the Weyl equation on
the d cubes of the lattice, rather than at the points.

(5) Solution B generalizes to eliminate doubling
in any number of dimensions.

V. CONCLUSIONS

+2[U(x, +a, x, —a, x,) —U(x, —a, x, -a, x,)]

+2[U(x, +a, x„x,+a) —U(x, —a, x„x,+ a)]

+ 2[U(x, +a, x„x,—a) —U(x, —a, x„x,—a)]

+ U x, +a, x, +a, x3+a

—U(x, —a, x, e a, x, ex)]I. (42)

SU'
4[U(x, + a, x„x,) —U(x, - a, x„x,)]ex ] 32tz

+2[U(x, +a, x, +a, x,) —U(x, —a, x, +a, x,)]

In Sec. II we analyzed the fermion lattice doubl-
ing problem in 1+1 dimensions. Our analysis led
first to solution A (Sec. III) which failed to gen-
eralize to three dimensions for the usual reasons
(cf. Refs. 1 and 3). Note that like the solutions of
Refs. 1 and 3, our solution A is not chirally in-
variant, so the results of Ref. (4) are not relevant.

Solution B (Sec. IV) was rather different. We
chose to redefine the wave functions, as well as
their space derivatives, for use in the Weyl equa-
tion. The new theory is best pictured as using the
(U(x)} to define (in a natural way) new wave func-
tions and their space derivatives on a new lattice
with sites at the center of the cubes of the first.
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Solution B eliminates doubling in any number of
dimensions. Using it we should be able to put
both weak interactions and chirally invariant QCD
models on the lattice, in spite of the negative re-
sults of Ref. 4.
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APPENDIX: IS THE THEORY LOCAL7

The theory as defined by Eq. (32) (in one dimen-
sion) appears local. However, if we write

—(x) =— g (—)""[V(x+na)—V(x —na)] ~, (A1)
87
XCf nj )'

it appears nonlocal. The infinite series in (A1)
results from the pole in tan(Pa/2) at P = v/a. Such
a nonlocal resolution of doubling wouM be analo-

gous to that of Ref. 2.
Here I will argue that the nonlocality apparent

in Eq. (A1) is deceptive, because it ignores the
underlying U(x) structure. Basically, we cannot
change one V(x+na) in Eq. (Al) —n) 2—without
changing others in such a way that the nonlocal
variations cancel. More precisely, for n ~ 2 any
V(x+na) in Eq. (Al) occurs in a combination of
the form

~ ~ ~ —V(x+(n —1)a) + V(x+na) —V(x+ (n+ l)a) + ~ ~ ~ .

Recalling that

V(x+na) = —,
' [U(x+ (n ——,')a)+ U(x+ (n+ —,)a)]

(A2)

we see that the U(x+(n+2)a) term in V(x+na) can-
cels with the corresponding term in —V(x+(n
+1)a), i.e., both terms cancel. This argument
suggests that the theory really is local.
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