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Choice of a gauge in the light of Dirac quantization
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We discuss the choice of a gauge from the point of view of Dirac quantization of constrained systems. In order to
illustrate the discussion, we build up a mechanical example of a gauge theory. It consists of the motion on a straight
line y = 0 imbedded in a plane (x,y). Gauging the model introduces a third Cartesian coordinate z. We show there
exist three classes of gauge conditions: (I) gauge conditions involving only x,y and the momenta p„and p; (II) gauge
conditions involving the z coordinate; (III) gauge conditions involving the time derivative of the z coordinate. Class I
allows, in general, the decoupling between physical and unphysical variables and the existence of an effective
Hamiltonian depending only on x and p . It corresponds to the choice of a unique representative for each gauge-
group orbit. Class II is a generalization of the ungauged model of a particle moving on a straight line imbedded in a
plane. Separation between physical (x) and unphysical (y) degrees of freedom is not directly possible. External
constraints must be imposed on physical states as well as on the measure defining the physical Hilbert space. Class
III keeps all the unphysical degrees of freedom y and z. An indefinite-metric formalism is needed to introduce a
cancellation between these unphysical degrees of freedom. Application to Abelian and non-Abelian Yang-Mills
theory is easily done by the correspondence x,y+-+A~, z~A 0. Usual gauges are discussed according to this
classification. In particular, we try to derive the class-II gauge conditions n"A, n,+0 from a suitable class-I
condition. This is not possible in the non-Abelian case. In the Abelian case, the lightlike gauge n ' = 0 does not lead
to an effective Hamiltonian depending only on physical degrees of freedom.

I. INTRODUCTION

Quantization of gauge theories is affected by
various dif fic ulties: indef inite metric, Faddeev-
Popov' ghosts, gauge ambiguities, ' etc. The ori-
gin of these difficulties rests on the fundamental
question in the quantization of a gauge theory —the
choice of a gauge condition. In this paper, we try
to clarify how this choice should be made in the
best possible way.

Dirac' quantization is the best tool to study this
problem. Since the method applies to any con-
strained system, it is interesting to try to build
up a mechanical example of a gauge theory, i.e.,
a gauge theory involving only a finite number of
degrees of freedom instead of fields. The simplest
possible example is a particle on a plane, con-
strained to move only along a straight line that we
take as the x axis. The requirement of Lagrangian
invariance for time-dependent translation along the

y axis introduces a new variable z, without z de-
pendence in the Lagrangian. The Euler-Lagrange
equation corresponding to this additional variable
leads to the desired constraint, the vanishing of
the variable canonically conjugate to y. We get a
Lagrangian depending on three variables but only
one of them is independent. Analogy with the free
electromagnetic field is evident since only two of
the four components of & are independent.

From the point of view of Dirac quantization, the
choice of a gauge consists in the replacement, in
the Hamiltonian, of an arbitrary function by a
well-defined one. It fixes the time evolution of the

additional variable by giving z. This time evolu-
tion can, however, result from a condition on z
and the other coordinates and momenta. In the
same way, the condition involving z can, with the
help of the equation of motion, result from a con-
dition involving only x, y, P„, and P,. The gauge
condition can therefore be classified into three
classes that we will give explicitly in the frame-
work of Maxwell or Yang-Mills gauge theories
where the role of z is played by the time compo-
nents of the potentials.

Class I: gauge conditions involving only &, and
their canonically conjugate momenta m„

Class II: gauge conditions involving also +p,
Class III: gauge conditions involving p+p.

Class III is the most general one. Any gauge
condition of class I or II leads to a gauge condition
of class III. Physical degrees of freedom cannot
be directly separated from unphysical ones. An
indefinite metric is necessary.

Class I is the most interesting one. The separa-
tion between physical and unphysical degrees of
freedom is possible. When it only depends on co-
ordinates, it consists in a choice of a unique rep-
resentative for each gauge-group orbit. With the
help of a gauge condition of this class, it is in
general possible to get an effective Hamiltonian in
terms of physical degrees of freedom only.

Although frequently used, class II is annoying.
In our example, the variable z can be eliminated
and the Hamiltonian depends on two variables and
their canonically conjugate momenta. The physics
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is not contained in the sole Hamiltonian. The con-
straint must be imposed independently and the
measure of the Hilbert space I'(R', dp, ) must be
manipulated in order to reduce to &'(R', dx).
There is no natural mathematical way to realize
this reduction, except by introducing by hand a &

function &(y -ya) inside d2x. For these reasons,
and although the procedure is quite consistent, we
think class-II gauge conditions should be avoided.
Two methods are possible. First, we could work
with the resulting class-III gauge condition and the
underlying indefinite-metric formalism. Second,
we could try to find a class-I gauge condition im-
plying the given class-II condition.

The problem of classification of gauges will be
discussed for free Maxwell as well as pure Yang-
Mills gauge theories. In the case of electromag-
netic field theory, essentially two class-I gauges
are known: the Coulomb gauge

e„A,=O

and the axial gauge

however always possible.
Our paper is organized as follows. In Sec. II,

we will develop our simple example of a particle
in a plane, constrained to move on a straight line.
The question of choosing a gauge will be treated
with several illustrative examples for each case.
In Sec. III, we will attack this problem for the
free electromagnetic field. In Sec. IV, the same
will be done for the pure Yang-Mills field. And

finally, in Sec. V, we will conclude with some re-
marks.

II. MOTION ON A STRAIGHT LINE
AS A GAUGE THEORY

Let us start from the Lagrangian

I.=z(x'+y')

describing a free particle in the x, y plane. We
could add a potential to I . It will, however, play
no role in the story provided it depends only on@.
L is invariant for translations along both axes

n' A=O.

Generalizations of the axial gauge given by

(2)
x-x+a,
y-y+&

(ea}

(9b)

n "&„=0, n0& 0

are class II. We show that they can be deduced
from class-I generalizations. For lightlike

n =0, (4) (Sc)

If we allow the translation along they axis to be
time dependent, we need an additional variable z
in order to restore the invariance of the Lagran-
gian. z transforms as

z-z+b
however, it is not possible to find an eff ective
Hamiltonian allowing the quantization in term of
physical degrees of freedom only.

Relativistic gauges involve ~0&,. They are of
class III and need therefore an indefinite-metric
formalism. We also give the Lagrangian for the
indefinite-metric formalism of class-I, -II, and
-III gauge conditions. In the case of the axial
gauge (2), the Lagrangian is nonlocal and contains
second-order derivatives.

For Yang-Mills gauge theory, it is known that
the Coulomb gauge is not suitable. It gives rise
to Gribov' ambiguities. Only the axial gauge and
the Izergin, Korepin, Semenov- Tian-Shansky and
Faddeev' gauge given in the SU(2) case by

~~A~=O, n' m'= n m =0

are suitable class-I gauges. The temporal gauge
condition

A, =O

or, most generally, a class-II gauge condition

n "A. = 0, n0& 0

cannot be deduced from a suitable class-I gauge
condition. An indef inite-metric formulation is

BL,
p.= —.=~

ex
(12)

it reads

p =0.
Among the three variables x, y, z only one is in-

dependent since p, and p, vanish. The Lagrangian
(10) describes a theory with one degree of freedom
with the help of three variables as the Maxwell-
Lagrangian describes a theory in terms of four
fields, only one of them being independent. We
have then a simple model for a gauge theory.

We now apply the Dirac quantization method for
constrained systems. The nonvanishing canonical

and L becomes

i. = 2 (x'+y') —yz + zz'.

In contrast to field theory, no new interaction is
introduced and no kinetic term for the z variable
is allowed. The Euler-Lagrange equation corre-
sponding to z is given by

8I
ez

= -(y -z) =0.

In terms of canonically conjugate momenta
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Poisson brackets

b,P.)=b,P,)=4,&,3=1

are evidently incompatible with the constraints
P, =p„= 0, which should be taken in a weak sense.
This means that p, and p, vanish only when all the
Poisson brackets have been calculated. In quantum
theory, the corresponding operators do not vanish
on their whole domain but only on a part of it,
which is taken as the physical Hilbert space.
From Eq. (10), the Hamiltonian is

a=-,'(P.'+P, ')+zP„
and ca,n be generalized by

a, =-,'(P„'+P„')+zP,+XP„

where X is an arbitrary function of coordinates
and momenta. H& is weakly equal to II, which we
denote by the symbol =, i.e., &2 reduces to H if
the constraints (ll) and (13) are taken in their
strong sense. H~ gives rise to the same equations
of motion as those deduced from I but in the weak
sense defined above. In addition, we get

and, more generally, x, y, p„, and p, . Since p,
weakly vanishes, we can even drop it from the
gauge condition for which only the weak form is
required. The Poisson brackets of a gauge condi-
tion of this class with the constraint p, do not van-
ish. The Poisson brackets with p, do. In Dirac
terminology, p, is a primary and p„a secondary
constraint, i.e., it results from the primary con-
straint by time derivation and use of equations of
motion. A class-I gauge condition can essentially
be taken as the variable canonically conjugate to
the secondary constraint. By time derivation, it
gives a class-II gauge condition.

Class J~. Gauge conditions involving x, y, p„,
and also z. The Poisson brackets with the primary
constraint do not vanish. A class-II gauge condi-
tion can be taken as the variable canonically con-
jugate to this primary constraint. By time deriva-
tion, it gives a class-III gauge condition.

Class III. Gauge conditions involving z, i.e. ,
conditions fixing the arbitrary functions ~ in the
generalized Hamiltonian (16).

Some examples will clarify the classification.
1. We can take

X characterizes the gauge freedom and the choice
of a gauge consists, generally, in a choice of a
given A, . This choice can be made directly on ~ or
X can be determined from other conditions. For
instance, if we give a relation between the coordi-
nates x, y, z

f(x, y, z) = 0,

(23)

as a gauge condition. By time derivation and use
of Eq. (11), z and also z vanish. This is the natur-
al class-I gauge condition. It allows a direct phys-
ical interpretation of the theory as describing the
motion of a particle on the x axis.

2. Another class-I gauge condition can be

it is time independent. Therefore y-f( )=o. (24)

It implies, by time derivation and use of the equa-
tions of motion,

and, from the equation of motion and the definition
of canonical momenta,

z -P f'=0 (26)

Bf Bf . Bf
p —+z —+z —=0.

Bx By Bz

Equation (20) can be solved with respect to z,
which is therefore fixed by (18).

In the same way,

f(z, y)= o

(2o)

gives, by time derivation and the use of equations
of motion,

i.e., y and z are fixed in term of the physical de-
gree of freedom x and its canonically conjugate
variable p„. The gauge-group orbits, i.e., the
points of the configuration space related one to the
other by a gauge transformation, are plane ortho-
gonal to the x axis. The choice of a class-I gauge
condition depending only on coordinates clearly
consists in a choice of a representative for each
orbit, all the points of which are physically equi-
valent.

3. We can generalize the condition (24) into
(22) f(x, y)= o. (26)

i.e., z can be determined from a condition on x
and y and more generally on x, y, p„. Time deriva-
tion of (22) will give A. =z.

We can therefore classify the gauge conditions
into three classes.

Class I. Gauge conditions involving only x, y

If Bflsy& 0, z is also fixed but the representative
of the orbit is not generally fixed unambiguously
since many solutions of Eq. (26) may exist. When
the curve (26) intersects the projection of a gauge-
group orbit on the z =0 plane in many points, z,
as a function of x and p„, remains also ambiguous
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and the gauge is not fixed. This is nothing other
than the Gribov ambiguity. A condition for the ab-
sence of such ambiguity is that Sf/&y be of con-
stant sign. For instance, y'-x= 0 is not a suitable
gauge condition, in contrast to y'-x= 0, which is
quite equivalent toy -x' =0, since, for reasons
of self-adjointness, only real solutions are taken.
With y'-x= 0, however, we have, as the resulting
class-II gauge condition

y'z -p„=0 ~ (27)

by adding a term quadratic in the primary con-
straint. This addition does not modify the weak
form of the equations of motion. II~ is now a Ham-

iltonian with three independent degrees of freedom.
The corresponding Lagrangian is

I- =lx'+2(j -z)' —2(z —&)' (30)

with an arbitrary motion along the z axis. y and z
degrees of freedom should cancel and an indefinite
metric is needed to assure this cancellation. We

do not insist here on this procedure which is better
known in the free Maxwell theory.

Class-I and class-II gauge conditions can be con-
sidered as constraints and added to the original
ones p„and p, . A class-II gauge condition and the
primary constraint no longer first-class, i.e., their
Poisson brackets are not weakly zero. Following
Dirac, ' the Poisson brackets must be modified
according to the rule

At x =0, y =0, and from Eq. (27), we should get
(P„)„.,=0, which is generally nonsense. The acci-
dental vanishing of &f/&y has not to be taken into
account and (27) must be solved with respect to z
in order to get

z p.
y

even at the origin. This value of z is exactly the
same as the one given by the equivalent class-I
gauge conditiony -x' '=0.

4. The simplest class-II gauge condition is z= 0.
From the equations of motion, it results that y is
a constant which is not fixed in contrast to a class-
I gauge condition. From the physical point of
view, there is, however, no fundamental differ-
ence between the class Iy =constant and the class
II z = 0. The motion is on a straight line. Only the
choice of the origin on the y axis remains arbi-
trary for class II while it is fixed for class I.
There is a physical equivalence between all class-
es of gauges, as there should be. Only the formal-
ism is quite different.

5. A class-III gauge condition fixes the value of
X in &T. We rewrite

(29)

(a, a), =(x, a) (w, y.)c. fy„a), (31)

where (, )~ are the new Dirac brackets, P are the
second-class constraints, and

is a nonsingular antisymmetric matrix. The use
of Dirac instead of Poisson brackets allows the use
of second-class constraints as strong equations.
If they can be decoupled from the other degrees of
freedom, an effective Hamiltonian results. In our
example, the class-II gauge condition z = 0 allows
us to set z and p, strictly equal to zero in the Ham-
iltonian. We get

&

(p 2+p 2) (33)

i.e., a Hamiltonian describing a two-dimensional
motion. The secondary constraint is no longer im-
plied by the Hamiltonian (33) which therefore does
not contain the whole physics of the problem. We
must select the allowed states by imposing the
condition p, ~phys)=0. In addition, the measure of
the Hilbert space I '(R', d'x) must be modified in
order to get only I 2(R', dx) as the physical Hilbert
space.

This difficulty can be avoided when a class-I
gauge condition is imposed. The secondary con-
straint becomes also second-class and can be de-
coupled in the same way. The effective Hamilton-
ian becomes

H=2p„, (34)

III. THE CHOICE OF A GAUGE. FOR THE FREE
ELECTROMAGNETIC FIELD THEORY

Let us now turn to the free Maxwell field theory
described by the Lagrangian density

which is the usual one for the description of a free
one-dimensional motion.

In our example, the decoupling of the constraints
and gauge conditions is trivial. It is no longer the
case for more general gauge conditions or when
nonlinear constraints occur. In principle, we
should find a canonical transformation such that
the constraints and gauge conditions appear as
pairs of new canonically conjugate variables whose
Poisson brackets with the physical degrees of
freedom are strongly vanishing. Such a transform-
ation should, in principle, solve the problems of
operator ordering and configuration-space repre-
sentation of momenta, which can occur in quantum
theory. The example of a motion on a half-line
where the second problem occurs has been given
elsewhere. '
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where

F„„=B„A„-B„A„.
The field equations are

0gV

while canonical momenta are given by

BR

e(e,A, )

(35)

(37)

(39)

gauge freedom. According to the previous sec-
tion, there are three classes of gauges. Class I
is characterized by gauge conditions involving only
A~(x) and m„(x). For class II, the gauge conditions
involve also A, (x), while in class III &(x) is given
directly. Let us now look at the different usual
gauges in light of this classification.

A. Coulomb gauge

k (39)

It is clear that there is no variable canonically
conjugate to A, (x), which therefore corresponds
to the variable z in our mechanical example. A
secondary constraint is given by the field Eq. (37)
for p=0. It reads

The natural class-I gauge condition is the Cou-
lomb condition

e,A, (x) =O. (45)

Using the equation of motion (45a) and the con-
straint (39), it clearly implies the class-II gauge
condition

and corresponds to the vanishing of p, .
The canonical Hamiltonian is

H= dxg m x +p Bx

aA, (x) = O,

which reduces to

A, (x) = O

(47a)

(47b)

where

-v, (x)e,A, (x)],

H~=H+ dx A x vox

1B.= 2g,.)kF)k

It can be generalized into

(4o)

(4l)

(42)

if we assume the vanishing of the potentials at in-
finity.

The constraints being linear, the canonical
transformation allowing the decoupling of physical
degrees of freedom from constraints and the use
of these as strong equations is simply given by
transforming &,. into first-class quantities accord-
ing to the Dirac prescription

@0=0 (43)

is taken into account. In the following, we will
take the constraints (39) and (43) only in a weak
sense and assume the Poisson brackets

where ~ is an arbitrary function. H~ clearly re-
duces weakly to H when the primary constraint

A' =A —(A, (j) )C (48)

Since the Coulomb gauge example has been
treated explicitly in Ref. 6, we will not give here
the details of the procedure and direct the inter-
ested reader to this reference. An explicit exam-
ple which is not found in the literature will be giv-
en later. We get here

IA„(x),v„(y))„.„=Z„.~"'(x—y) . (44)

Using these Poisson brackets, the constraints
(43) and (39) are first-class. The generalized
Hamiltonian H~ gives rise to the following equa-
tions of motion:

Ar(x)=I(5, ) e, a 'e )A ](x),

where the operator ~ ' is given by

(& 'f)(x) = ——J - - f ( ~) .
47t'

) x y[

(49)

(5o)

eoA, =(A(, Hr]= v, ye(AO, -
eo&; =(&„&r)= eg&p, , -
e,A, =(A„e,]= ~.

(45a)

(45b)

(45c)

Any generalized Hamiltonian &2 with a fixed ~
leads to the same weak equations although the
strong form of these equations may be quite differ-
ent. The physics is described by the weak equa-
tions while the strong equations are an integral
part of the mathematical formulation. Different
~'s lead to different mathematical theories de-
scribing the same physical situation. This is the

A~(x) = (e,. a 'e~A,.)(x),
A', (x) =A, (x) .

(5Ia)

(5Ib)

This implies the following transformation on m„:

v;(x) = I.(5,, —e, & 'e, ) ~,](x),
v~(x) = (e,. & 'e, m, )(x),
v', (x) = m, (x) .

(52a)

(52b)

(52c)

In order to get a canonical transformation, we
must add the following transformation giving the
unphysical degrees of freedom in terms of origi-
nal +~ s:
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d x r + curlA (55)

H is clearly nonloeal. This fact simply results
from the appearance of derivatives in the second-
ary constraint (39).

It may be interesting to look at the indefinite-
metric formulation corresponding to the Coulomb
gauge. It consists in forgetting the class-I and
class-II gauge conditions and taking as fundament-
al the resulting class-III gauge condition which
reads

The Poisson brackets between transverse (T)
quantities are identical to the Dirac brackets be-
tween original A, 's and &, 's:

{A', ( ), ;(y)]„,.„={A,( ), , (y)), „...
= [(5,—s, & 's, ) 5'"] (x —y) . (53)

Equation (53) is the basis of the canonical quantiz-
ation of the free electromagnetic field in the Cou-
lomb gauge.

On the other hand, we have

{A, (x), v& (y)]„.„=(&,.6 '&&5'")(x—y), (54a)

{A'.(~), v'. (y)}„., =5'"(x-y), (54b)

while the Dirac brackets involving these quantities
are all vanishing.

The linearity of the canonical transformation
implies the absence of any ordering problems,
which are evidently absent from the generalized
Hamiltonian Hr and the transformations (49), (51),
and (52) can easily be inverted in order to obtain
the effective Hamiltonian in the Coulomb gauge

(see Sec. IIIC).
Here a remark is in order. There are three

possible formulations of the Coulomb gauge ac-
cording to which class gauge condition is taken as
fundamental. The class-III indefinite-metric
formulation is clearly the most general one. It
keeps all the unphysical degrees of freedom and

introduces a cancellation between them. This
cancellation depends on the chosen formulation
and also on the chosen gauge. It is not possible
for the class-II gauge condition where the scalar
temporal degree of freedom is ignored. For the
class-I gauge condition, the cancellation is trivial.
Both scalar and longitudinal degrees of freedom
are ignored.

B. Axial gauge

Another frequently used class-I gauge condition,
known as the axial gauge, is

n A=O, (62)

Applying Eq. (48), we easily get the canonical
transformation allowing the decoupling of physical
from unphysical degrees of freedom. It reads

A;. =[5,, s, n, (n S)-']A,

+[-~,(n &) '+n, ](n s) 'v, , (64a)

Using the field equation (45a), it implies the class-
II gauge condition

n' m —n' 8Ao= p. (63)

&oAo= P . (56)

The generalized Hamiltonian density of the Cou-
lomb gauge is

3C, =-,'(I;I + IIil ) (5&)

The corresponding Lagrangian density is given by

A',.' =s,.n, (n s)-'A, -s,. (n s)-'v„

AO=A. , (n s) 'n v,

n, (n s)-'s,]v„
v", =n, (n s) 's, v, ,

I
tt o 7T o

(64b)

(64c)

(64d)

(64e)

(64f)

&c =&'~oAg+&o~oAo -3'a
=-—,'E„„J"""+g, e Ao. (58)

where the terms depending on v, in (64a) and (64b)
are added in order to have

BoAo=p,

(59)

(«)

Such a Lagrangian allows a direct quantization
without the necessity of resorting to the Hamilton-

ian formalism. The field equations are

{A',.~ ~, AO]= 0.
For the particular case

n=(O, O, I),
(n S) ' is given by

(65)

while the canonical commutation relations are

[A„(~),v„(y)]„., =f~ 5'"(x-y).
The theory develops as in an ordinary relativis-

tic gauge. A generalization is possible if we take
(56) only in a weak sense. This will be done later

(~, 'f)(x) = 2 d'y 5(&,-y, ) 6(&2-yg) &(&, -y3)f (y) ~

(66)

The Poisson brackets between the physical vari-
ables A,. and m,. are identical to the Dirac brackets
between the original A, 's and m, 's. They read
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{A,.( ), ,(y)j„....=(A, ( ), ,(y)),„...
=[5„—S(n, (n S) ']5(3'(x-y) .

(6v)

For n given by Eq. (65), the effective Hamiltonian
in the axial gauge is

( 2 2

H=2 d g Pal +1T2 + 83 ~ 7f ~

~w f~l

4 (s,A3)3+(s3A3)3+(B,A3- 83A, )3 . (68)

It is also nonlocal, as it should be, since Gauss's
law (39) contains derivatives.

It is interesting to look at the indefinite-metric
formulation corresponding to the axial gauge. The
resulting class-III gauge condition, which will be
taken as the fundamental one, reads

n 8 g . +n 8 BpAp 0, (69)

can result from the Coulomb gauge condition, the
appropriate linear and local class-I condition must
be of the form

c(s(A(+ p n(A(+ yn,.((( = 0, (75)

n p Q +P A p P +y n ' m —y ~ + P ——n ' A

= (((n3AO —n'A) . (77)

where &, P, and y are operators and «0. Using
Eq. (45a), (75) implies the class-II condition

n&,.((,. +o'DA, —Pn(v, +P. n &A,

—y a n A+ yn' s s( A( = 0 (76)

which must be equivalent to (74). Assuming o.' =n,
for normalization, solving (75) with respect to

S,A,. and substituting it into (76), the equivalence
gives

Its solution with respect to ~pAp is

s,A, = —(n s) 'n(s, F„, (vo)

It results in

n'~
t&= &+p-

Pl p

2
n' ~

P =-y'
Pl p

y=1.
which is nonlocal. Equation (70) can also be writ-
ten as

& "A„+(n' &) 'd n' A =0.

The generalized Hamiltonian density is

x .,=-.'(lE l' lHl') .,s,A,

+v, [&,A„—(n s) 'an A].
The corresponding Lagrangian density

4F„„F""+v-—[&"A„+(n S) '4n' A]

(vl)

(72)

(73)

is nonlocal and contains second-order derivatives.

n "A =0 (v4)

C. n"A„=O gauges

The case n, = 0 has been discussed in the previ-
ous section. We now assume np&0, which means
that we have a class-II gauge condition. Theories
with class-II gauge conditions suffer from the fact
that the physics is not contained in the sole effec-
tive Hamiltonian. External constraints must be
imposed on the physical states and a manipulation

of the Hilbert-space measure must be done in ord-
er to get the desired physical space. We can avoid

the occurrence of class-II gauge conditions either
by trying to derive them from appropriate class-I
conditions or by using as fundamental the result-
ing class-III conditions.

Let us first try to derive the class-II gauge con-
dition

p, =n, A, —n'A, p3=((3,

y3=n, 's(A. n an A+n, n v —lnl 7(o

n44='3'3-
np

7t p

for which the C z matrix is

~ B(»y) =9.(&» 4 3(yo...,
0 n, 0 0

-n 0 0 0 5(3(( )
0 0 0

- 0 0 -~' 0-

Therefore the class-I gauge condition implying
(74) is

np B,A,. —n ~ n'A+npn'm =0. (vs)

It contains the Coulomb gauge and the axial gauge
as particular cases. The axial gauge must, how-

ever, be treated separately.
Let us now proceed with some details of the Di-

rac quantization. We first consider only the class-
II gauge condition and the primary constraint.

They are second-class constraints such that
Q&„$3]=n,. Using Eq. (48), we transform the
class-I gauge condition and the secondary con-
straint into quantities where Poisson brackets
with the other pair of constraints vanish. This
gives us the four constraints

from an appropriate class-I condition. Since Eq.
(74) contains, as a particular case, A, = 0, which where

(so)
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~'=n, '~- (n &)". (81) [n,'a- (n &)"]&' '(x-y) =~"'(x-y), (82)

Letting 4' ' be the solution of we easily get the inverse of the C matrix. It reads

c ~ '(x, y) =

—&'"(x- y)
no

——&'"(x-y)
np

b,' '(x-y)

-&' '(x-y)
(88)

Applying Eq. (31), we get the following nonvanish-

ing Dirac brackets:

(A. (x), A. (y))D „., = —no(n, .e&+n&s, )4' '(x —y),

(84a)

(A, (x), m, (y))D „~, =-&„&'"(x-y)

-s, (n ~ en, -n, '&, )a' '(x- y),

(84b)

(A, (x),A&(y))~ „., = —(~n ~'&&+n& n' S) &' '(x —y),

(S4c)

2lnl'--
(A, (x),A, (y)]D „.„=- n & S' '(x- y), (84d)

0

which are transformed into commutators by quan-
tization.

Let us now take

n= (o, o, n, ). (85)

Equation (78) can be solved with respect to A, ex-
cept if np'=n, ', which corresponds to the lightlike
gauges. When A, can be expressed in terms of Ay

and A„ these two fields can be kept as fundament-
al and there is no problem for getting an effective
Hamiltonian depending only on physical degrees of
freedom. For the lightlike gauges, A, must be
kept as a fundamental field. However, by (84a),

fA, (~),A, (y)), „.„~0 .
It is clear that such brackets cannot be the canoni-
cal Poisson brackets of a theory with an effective
Hamiltonian having A, as a canonical variable.
There is no effective Hamiltonian in the lightlike
gauges.

The indefinite metric formulation corresponding
to n'A„=O gauges can easily be obtained by taking
the class-III gauge condition

{A,(x), v~(y)}D „., = -—~ 6'" (x—y)
0

(n. sn, -n, 's, )a' '(x- y),
np

(84e)

oeoAo n' BAo— (86)

The corresponding Lagrangian density is

(87)

Z =-4E E""+—voso(n"A ).4 PV n 0 0
0

(88)

It allows a direct quantization based on the field
equations

8 "I' „„—comp
—"= 0,

0

s,(n A )=O

and the canonical commutation relations

[A (~),~„(y)]„., =fr„.~'"(x- y).

(s9)

(80)

The Lagrangian (88) can be generalized in order
to give Eq. (90) not as a strong equation but as a
weak one. This is done by adding a term

Q77 0

to the Lagrangian density. The strong form of the
resulting gauge condition is

S,(n "A,) = o.v, (80')

which weakly reduces to (86). The term o'v, '/2
must also be added to the Hamiltonian (87). Such

terms quadratic in the constraints play no role at
all in the derivation of the weak equation since the
Poisson brackets of ~0' with any quantity are al-
ways weakly zero. That is the reason why they
have not been taken into account up to now. They
are, however, integral parts of the indefinite-
metric formulation.

which results from (74) by time derivation and use
of the equations of motion (45), as the fundamental
gauge condition. The Hamiltonian density is, from
(40) and (42),
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D. Relativistic gauges

Relativistic gauge conditions are written in weak
form as

A —A"„+B„g + gf" er68A„".

We have

(100)

8 "A = 0. (92) m" = 8z ~$0
B(B,A„)

(101)

Involving 8,A„ they are of class III and therefore
need an indefinite-metric formulation. As at the
end of the previous section, we can transform Eq.
(92) into a strong equation by introducing an addi-
tional scalar field which should be identified with

We take as a strong class-III relativistic gauge
condition

8 "A„=aS,

where S is a scalar field identified with -m, .
Then the generalized Hamiltonian density is

X=-,'(f. f'+ fBf') ~,B,A,

—S(BkAk+aS) + & aS'. (94)

%e added the term ~ aS', where a is some con-
stant, in order to find Eq. (93) as resulting from
(94). The corresponding Lagrangian density is

2 = -4I' E"" S8"A + 2 aS
p, V (96)

It is identical to the one used by Lautrup' in order
to make a unified treatment of relativistic gauges.
A consistent quantization can be realized with field
equations

8 "+ „+8„$=0 (96)

in addition to Eq. (93) and canonical commutation
relations

[A„(x),rr. (y) j„,.„,= ig„.~'" (x —y) . (97)

Can relativistic gauge conditions be derived from
appropriate class-I or -II conditions'? The answer
is no since it is clear that any of the previously
used class-I gauge conditions lead to Eq. (92). We
have here an example of a class-III gauge condi-
tion which does not result from class-I or class-II
conditions.

DPn ~ 8 0

where

D""8= B"6 8+gf BrA"".

For r = 0, Eqs. (102) give the secondary con-
straints

+k 8~k
8

(102)

(103)

(104)

which are the generalizations of Gauss's law of
Maxwell's theory. These constraints as well as
the vanishing of w, are incompatible with the can-
onical Poisson brackets

{A"„(x),rr'8(y)f„=, = &„'&" 86"r(x- y) (105)

and will therefore be taken in a weak sense. We
have

[Dk 8~k (x)i Dlr +r ( X))x =y gf &Dk 8~k (106)

so that the constraints are first-class since the
right-hand side of Eq. (106) weakly vanishes.

We write the generalized Hamiltonian as

H„= d'x[k rr rr„+ 2
B" 'B~+A„Dk6rrk +A~ rro],

where A„are N' —1 arbitrary functions and

n & n
i &~ij k jk

The resulting equations of motion are

B,A;. = jA, , H,j=- rr", +D,A,',

(107)

(108)

(109a)

B,rr; =(rr";, H )=-D,"8E,; —gf'BrA, rr;, (109b)

so that again A", has no canonically conjugate vari-
able.

The field equations are

B,A, = [A~, Hr j=A (109c)
IV. THE CHOICE OF A GAUGE FOR PURE

YANG-MILLS FIELD THEORY

The non-Abelian pure Yang-Mills field theory is
characterized by the Lagrangian

(96)

Owing to the self-interaction of Yang-Mills
fields, the choice of a suitable gauge is a par-
ticularly difficult task. Before we discuss the
usual gauges, let us assume a set of class-I gauge
conditions

where f (A, , rr, )=0, o. =1,. . . . , N' —1. (110)

(99)

g is some coupling constant, and the f"Br's are
the structure constants of a non-Abelian group,
say SU(N). 2 is invariant under the infinitesimal
transformation

The resulting class-II conditions are, from Eqs.
(109),

r ( rr,"+D,~rA-08)'. + r ( D, "BEB—gfr~gA08rr-", ) =0,
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where it should be kept in mind that sf /sAy and
Sf"/Bw," may be operators. Equation (111)may be
written as

A. Coulomb gauge

The simplest generalization to Yang-Mills field
theory of the Coulomb gauge condition is

sf"
y

af"
ytc BA, — „y w; —

y D; B&,; = 0,
BA.; Bg;

(112)
for which

(115)

where the operator

&f"
y y

sf"
K B= AyD; B

—gf Bz yw;
81Ti

is also given by

(f.(x), (D, 'yw,')(~H. =, = x.'o"'(x- y). (»4)

We have seen that class-I gauge conditions
should appear as variables canonically conjugate
to the secondary constraints. Therefore, (x"B)
should be a constant diagonal matrix. We may
however alleviate this too restrictive constraint in
order to accept gauges analogous to the y' —x =0
gauge condition in our mechanical example. We
impose only a unique inter section of class-I gauge
conditions with the global ungauged-group orbits.
In other words, Eq. (110) considered as an equa-
tion on the group elements must have a unique so-
lution. This will assure that the functions ~ are
univocally fixed in terms of physical fields. From
Eq. (112), it is clear that a necessary condition
for this is the nonvanishing of detL An accidental
vanishing of detg can, however, be allowed. We
have already encountered this problem in our
mechanical example with the gauge g' —x =Owhere
det x =p' vanishes at x =0. We solved Eq. (27)
which corresponds to Eq. (112) for nonvanishing
values of y' and took the limit y =0 in the solution.
The same job should be done here.

The nonvanishing of detg is not a sufficient
condition for unicity of the gauge fixing. Indeed,
in our mechanical example, the gauge y' —x=0
leads to det & =y, i.e., exactly the same situation
as above but there are two solutions y =+ v x for
the gauge condition. This ambiguity problem is
avoided if we require that det & be of constant
sign. In the Faddeev' functional method, this de-
terminant is called the gauge compensating term
and appears as an additional factor in the function-
al measure. When it depends only on canonical
coordinates, it is at the origin of Faddeev-Popov'
ghosts in the Lagrangian. If it also depends on
canonical momenta, it may happen that the func-
tional integration on these momenta cannot be per-
formed. In other words, an effective Lagrangian
does not necessarily exist when det & depends on
momenta.

Let us now examine the various usual gauges,
as we have done in the ~belian case.

B=sBDBB=+5 B+gf ByeBAB+gf ByABBB

= ~'"B+gf B»",S, . (118)

Since det ~~ may vanish for large fields, there is
a problem of unicity of solution of Eqs. (115),
known as Gribov' gauge ambiguity. Intrinsically,
the Coulomb gauge condition (115) is not a suitable
one. It can however be used for perturbation the-
ory around g'=0. This method keeps only one so-
lution of Eqs. (115). The resulting class-II gauge
condition

r A" +gf ~ ABS.A" —S.w. = gp AB - S.wo = 00 i i 0 i i g 0 i i
(117)

can be solved, at least formally, by a perturbation
expansion as

A",(x) = (u-", s,.w,.)(x) . (118)

B. Izergin, Korepin, Semenov-Tian-Shansky,
Faddeev4 gauge

ce Eqs. (115) are not a suitable extension to
the non-Abelian case of the Coulomb gauge con-
dition, how must this extension be effected& As-
suming locality and the same naive dimensionality
for each gauge condition, the most general exten-
sion of the Coulomb gauge is

f'=ul s AB+a~ n wB=O,
g O' 0 g

where (u'B) and (a B) are matrices not necessarily
transforming as tensors under the group action.
We get

KyB u B++u &f "B &
sA+ ~usaf yBAi ~s

gfyB, a yn ~ w~. - (120)

Here Faddeev-Popov ghosts are present; we refer
the reader to the traditional literature for more
information. The problem of operator ordering
also occurs in the Coulomb gauge. It is solved'
by a point-canonical gauge transformation from a
gauge without an ordering problem (the temporal
gauge, see below) to the Coulomb gauge. This
kind of solution consists in decoupling with the
help of a canonical transformation, physical from
unphysical degrees of freedom. Since in any gen-
eralized Hamiltonian there is no ordering problem,
the canonical transformation and its unitary quan-
tum partner solve the ordering problem which can
occur in a class I gauge.
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We restrict ourselves now to the SU(2) case and,
without loss of generality, we may assume that
&~B takes the following form:

for nonvanishing values of n. 43 and take later the
limit for vanishing values.

C. Other generalization of the Coulomb gauge

This gives

(121)
In the derivation of the Izergin et al. gauge con-

dition, we made the explicit assumption that each
gauge condition has the same naive dimension.
This may be too restrictive. In this section, we
assume

and

u' =u' =u' =u' =u' =u' =01 2 3 3 2 1

a n ~ y2 a n ~ p =01 2

a', (n 4)' —a', (n ~ w)' =0.

f' = 8 A '+ a' n ~ TrN
B

f'=n 0'+a' n ~ 7l'
3

f'=(n ~ 7l)'+ a', n ~ m'.

(122a)

(122b)

(122c)

Now, it is clear that, since the f"s are canonical
variables,

On the other hand, the nonvanishing of ~33 leads to

u =u 2=0~1

a', n 4'=a3 n ~ Tr'=0.1

Equations (119) reduce, then, to
n 8 gn A'

(K ~)= -gn A' n ~ 8

ge,.(A'. ~ ) -gs. (A'. ~ )

-gn A2

on A'~

gn ~ A' o)
-gn ~ A'

~oo;(A! )

0

-g 8,. (A',. ~ )

8,43, =0

while

f'=f (A~„m~) =0, o'. =l, 2,
for which the simplest case is

f'=n A, @=1,2.
We get, in this last case,

(126a)

(128b)

(127)

(128)

(f ( ),f,(X))., „,=0.
This leads to

(123) where

DetK = [(n &)'+ g '(n A')' ]a (129)

—gn ~ 'f 34,2 —D, 'B F~j,.n,- = 0, (124a)

(124b)

~', -g(s,.A',. +A',.s, )A,'+g(s, A', +A',.a, )A,'—s,.K3 = 0,
(124c)

a' = a' = a' =03 ~

By this simple method, we rederive, in the SU(2)
case, the gauge condition first obtained, for SU(Al),

by Izergin et a/. It consists in assuming ~~&~ =0
only for values of a corresponding to group gener-
ators which can be diagonalized. For the other
indices, the class-I gauge conditions are n r =0.
Such a set of gauge conditions leads to an effective
Lagrangian without Faddeev-Popov ghosts, which
is easier to derive in the functional formalism.
For details, see Refs. 4 and 12. We restrict our-
selves to the derivation of the corresponding class-
II gauge conditions

is of constant sign. From the point of view of un-
icity, such a gauge condition is acceptable. Due
to the &'s dependence on det&, it generates how-
ever, Faddeev-Popov ghosts. This will also be
the case for more complicated gauge conditions
of this type.

nD
B n ~~

B (131)

which is a constant diagonal matrix. There is
ther efore neither the problem of Faddeev- Popov
ghosts nor of gauge ambiguity. The resulting
class-II gauge condition is

D. Axial gauge

Here, the set of class-I gauge conditions is
simply

n ~ A =0. (130)

We have

DetK, = (gn ~ m')2b, (125) n 8&, -n ~ w'=0. (132)

and Eqs. (124) can be solved with respect to A;.
The accidental vanishing of n 5' does not lead to
any difficulty provided we first solve Eqs. (124)

Quantization can be carried out according to the
Dirac prescription and an effective Hamiltonian
depending only on physical degrees of freedom can
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be written. We do not here reproduce the details
which are given in Ref. 6. Owing to the fact that
the left-sides of Eqs. (130) and (132) are not
strictly variables canonically conjugate to the con-
straints, the axial gauge cannot, however, be
considered as a natural gauge condition, as was
the Coulomb gauge for Maxwell theory.

conditions. Let us see if the same can be done
here. In the case of a positive answer, the ques-
tion of finding the natural gauge for non-Abelian
Yang-Mills theory is solved by considering the
case n=0.

The weak identification of Eqs. (112) and (139)
leads to

K~~g =g(7l g
—7I' t6~~) .

The class-II gauge condition

gG~gA. O
—e .

y
D.~F j.= 0

(136)

(136)

does not reduce to A, =0. For this reason, the
Goldstone-Jackiw gauge cannot be a natural gauge
condition. Moreover, det&« is not of constant
sign and no effective Lagrangian can be written.

The same difficulties occur with the so-called
upper triangular gauge used by Halpern and Kop-
lik," for which

E. Other class I gauge conditions

To our knowledge, two other class-I sets of
gauge conditions have been tried in order to find
an ambiguity-free class-I gauge for non-Abelian
Yang-Mills field theory. In the framework of
SU(2), they read

(133)

(134)

and are, respectively, due to Goldstone and Jack-
iw" and Halpern and Koplik. It is clear that, for
the Goldstone- Jackiw" gauge

,'F;„F""+——S8o(n"A~ ) ——S,S
0

where & is an arbitrary constant and S is a ghost
field canonically conjugate to Ao.

(141)

G. Relativistic gauges

As in the Abelian case, relativistic class-III
gauge conditions are written in the weak form

(140)

when ~
~ is given by Eq. (113). Equations (140)

are complicated nonlinear equations involving op-
erators. For the temporal gauge &, =0, the so-
lution of these equations should be a generalization
of the Coulomb gauge to the non-Abelian case.
Such a generalization has been discussed previ-
ously. The only suitable solution is the Izergin
et al.' gauge whose resulting class-II condition
does not reduce to &, =0. Therefore, there ex-
ists no class-I gauge condition equivalent to the
temporal gauge or more generally to n"A, =O.

We turn now to the indefinite-metric formula-
tion. Since there are no Faddeev- Popov ghosts, the
Lagrangian can be written as a simple generaliza-
tion of the Abelian one

0 —gm3 0

(&erg) = g&g 0

0 -gm', gw,'

and the class-II gauge conditions are

HE/ 0 1 jg j i 2 jg ji 3 jg ji

F. n"A„=0, no 4 0 gauges

(137)

(136)

8~A =0 . (142)

V. CONCLUSIONS

It is known they involve Faddeev-Popov ghosts in
order to assure a complete cancellation between
unphysical degrees of freedom. Since these ghosts
are outside of the program fixed in this paper, we
do not look further in relativistic gauges and send
the reader to the existing literature. '

n'A = 0,V (139)

which, for not 0, are class II. In the Abelian
case, we derived these from appropriate class-I

Up to now, we failed to find a natural class-I
gauge for non-Abelian Yang-Mills theory, i.e.,
a gauge for which the class-I and the resulting
class-II gauge conditions are strictly the variables
canonically conjugate to the secondary and the
primary constraints, respectively. Two gauges,
however, admit an effective Lagrangian free from
Faddeev-Popov ghosts. These ghosts are known to
be absent for generalized axial gauge conditions

We have made a review of the various gauges
used in Abelian and non-Abelian gauge theories
in the light of a classification based on the number
of unphysical degrees of freedom which are con-
served. For class-I gauge conditions, the theory
does not contain any unphysical variables at all.
For class-II gauge conditions, the secondary con-
straints like the Gauss law are not decoupled from
the physics, while, for class III all the unphysical
degrees of freedom are kept. Relativistic gauge
conditions are class III and cannot be derived from
appropriate class-I or class-II conditions. This
is the fundamental reason that any relativistic
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e„w,(x) =j,(x) (143}

formulation of the Maxwell theory implies an in-
def inite- metric space.

For the free Maxwell theory, we succeeded in
deriving the class-II generalized axial gauges
from equivalent class-I gauge conditions. As a
particular case, Coulomb and temporal gauges
are equivalent from the physical point of view.
Only the formalisms are different. A suitable
formalism for the Abelian temporal gauge has
been given by Creutz" and Willemsen" and con-
firms the equivalence.

For the non-Abelian case, there exists no class-
I conditions equivalent to the generalized axial
gauges. As a particular case of this result, there
exists no natural gauge condition for Yang-Mills
theory, i.e., a gauge condition representing a sur-
face orthogonal to the orbits. This result has been
proven by many authors'"'" using geometrical
arguments. Some class-I gauge conditions are,
however, free from ambiguities and ghosts prob-
lems. They allow Yang-Mills theory to be de-
scribed by a number of variables equal to the num-
ber of degrees of freedom.

We developed the arguments for gauge fields
without interaction with matter fields. The last
ones can be introduced into the formalism without
any particular difficulty. I et us do it for the Cou-
lomb gauge in the Abelian case. The secondary
constraint is now

8~A„(x) = n(x}

with

80& =-jo ~

(145)

(146)

Again, the Poisson brackets between ~ and any
gauge quantity vanish, while, from naive dimen-
sional arguments,

(~(x),j.(S)). „=«'«"'(x-y), (14&)

where e is the coupling constant and & a constant
depending on the chosen matter field. We have

f 6,A,(x) —~(x), 8,~,(X) ~.(X)).. .—,
=6(1+ze')5"'(x —y) (146)

so that there is again no essential difference be-
tween the pure gauge theory and the interacting
case.

and the class-II condition corresponding to the
Coulomb gauge is

(144)

instead of &,= 0. Since the Poisson brackets be-
tween the charge density j, and any gauge field or
conjugate momentum vanish, there is no essential
difference between the quantization procedure for
0 and j,.

The problem could be different if we look at the
class-I condition corresponding to the temporal
gauge. It is
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