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Extended structures consisting of walls bounded by strings appear in some unified
gauge theories. The Spin(10) grand-unified-theory model provides the simplest example,
provided the symmetry breaking proceeds via SU(4) X SU(2) X SU(2). It is shown that the
presence of such structures may cause conflict with standard cosmology.

Extended topological structures like magnetic
monopoles, strings, and domain walls can appear!
in spontaneously broken unified gauge theories. It
has been pointed out by various authors' 3 that
domain walls occur in any gauge theory in which a
discrete symmetry, which is not part of the gauge
symmetry, is spontaneously broken. The presence
of such domain walls has been shown to be cosmo-
logically unacceptable.

In a recent note® we introduced a new type of
extended structure that is predicted by some uni-
fied gauge theories. It consists of a domain wall
bounded by a string. In this paper we discuss
these objects in more detail and study their cosmo-
logical evolution. Such structures can appear, even
though no external discrete symmetry is imposed
on the gauge theory. Their occurrence is intimate-
ly related to the symmetry-breaking pattern of the
unifying gauge symmetry. The simplest example
of a theory that produces such structures is provid-
ed by the breaking of Spin(10) (Refs. 7 and 8) to
SU(3) X SUQ2)x U(1) via SU@4) x SU(2) xSU(2).°
The first step of symmetry breaking produces to-
pologically stable Z, strings. These form bound-
aries of domain walls, produced when the second
breaking occurs. The domain walls separate vacua
that are related by charge conjugation, a discrete
symmetry which is contained in Spin(10). [Note
that P and CP invariances are not contained in
Spin(10). They can thus be broken explicitly so

that no P or CP domain-wall problem arises.]
Other examples of theories that produce such ex-
tended structures are easily constructed [for in-
stance,'® Spin(4n +6)— Spin(10) X Spin(4n —4)
— SUB)X SUQR)XU()XSUQR)xSUR)— - - 1.

The occurrence of domain walls bounded by
strings need not, a priori, prove catastrophic. Such
a domain wall can disappear, in principle, by the
production of a hole bounded by a string on its
surface, which then expands with the speed of
light. However, the probability that the wall
disappears through this tunneling process is found
to be utterly negligible. The walls, for all practical
purposes, are locally stable. They lose energy
mainly by interacting with the surrounding medi-
um. The most optimistic assumption, which is to
allow the formation only of the smallest possible
walls, leads to the result that the walls disappear
before dominating the expansion of the Universe.
Their presence does not affect standard cosmology
in any essential way. Allowing for bigger walls,
which would certainly be the case if a certain
amount of supercooling precedes the phase transi-
tion that produces them, leads to disaster. The
walls never enter the horizon but proceed, instead,
to collapse into long-lived black holes that dom-
inate the energy density of the Universe.

We consider the following symmetry-breaking
pattern® of Spin(10):
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Spin( 10)§>Spin(6) ® Spin(4)Ez[SU(3)><SU(2)] ® U( I)TO>SU(3) ®U(1) . (1)

One-loop renormalization-group analysis,
neglecting Higgs contributions, gives®!!
(sin®0y, =0.23, A=0.1 GeV)

M, ~1.9%10" GeV ,
Mp~4.4%10" GeV .

2)

Let us discuss the first stage of symmetry break-
ing. The expectation value of the Higgs 54-plet
takes the form

($s4) =y diag(2,...,2,-3,...,—3), 3)

where 2 occurs 6 times and —3 occurs 4 times. It
is certainly left invariant by the subgroup
H,=Spin(6) ® Spin(4) of Spin(10). Let T;j=0;;/2
=[T;,T;1/4i (i,j =1,...,10) be the generators of
Spin(10), where T'; (i =1,...,10) are the general-
ized Dirac matrices in 10 dimensions. The sub-
group H, of Spin(10) is then generated by T,
(1<a,b<6) and Top (7<a,B<10). Note that Hy
is not a global direct product of Spin(6) and
Spin(4) since these groups have the following non-
trivial element in common,

exp(27iT ) =exp(2miTag) = —1
(1<as#b<6,7<a#B<10). (4)

This leads'? to the appearance of topologically
stable Z, magnetic monopoles.

A closer examination reveals that the stability
group of (@s4) is bigger than Spin(6) ® Spin(4).
This may be seen as follows. Consider the follow-
ing element of Spin(10):

explifT,,), 1<a<6,7<ax<10, (5)

which represents a rotation by angle 0 in the aa
plane. The aa submatrix of (¢s4) transforms
under this rotation as follows:

2.0 — % + % cos260  — % sin26

0 -3

—

5 . 1 5
—5sin28  —5 —5 cos260

(6)

We see that {¢s4) is left invariant under
explimnT,,) , n€Z . (7)

It is easy to verify that successive rotations in vari-
ous aa planes that leave {¢s,) invariant can al-
ways be written as products of group elements

[
from (7). Since expQwiT,,) = — 1€ Hy=Spin(6)
® Spin(4) and

expimT,q)explinTyg)=explinT,g) , a#B,
(8)
explim Ty JexplinT,o) =explinTyy) , az£b ,

all the group elements in (7) can be reduced by
transformations that belong to Hy to the single
group element

exp(iﬂ'Tﬁ—,):i(meHo . 9)

Note that (iog;) (i053)=C, the charge-conjugation
operator. Now iog; anticommutes with i,
(@a=1,2,...,5) and with ioq, (@=38,9,10), and it
commutes with all other io’s. It then follows that,
for every g €H,, there exists a g’ € H, such that

g(i067)=(i067)g’ . (10)

Consequently, the stability group H of (#s,) con-
tains not only the elements of H but also the set
of elements

K={gliog) gEH,} . (1)

Since Hy and K have no elements in common, H is
not a connected group. It consists of two connect-
ed components, H, and K.

The fact that H is not connected implies the ap-
pearance of topologically stable Z, strings after the
first step in the symmetry breaking of Spin(10).
This is because

m(Spin(10)/H)=my(H)=2Z, . (12)

Note that these strings are unrelated to the Z,
monopoles that are also produced in the first stage
of the symmetry breaking.

Consider an open string along the z axis. Its
thickness is of order M, ~! and it has mass per
unit length o of order M,%/a;. The expectation
value (¢s4) vanishes along the z axis. For
r=(x2+y?25>M, !, the Higgs 54 lies in the
vacuum manifold and may be taken in the form

(¢s4)(@=0), (13)

(¢s4) (@) =exp LZQ(T23+T67)
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where @ is the azimuthal angle. As one moves
around the string, the expectation value of the
Higgs 54-plet gets transformed by a gauge
transformation which continuously interpolates be-
tween the identity element and the charge conjuga-
tion operator C.

At the second stage of symmetry breaking the
126 acquires a vacuum expectation value which
breaks H down to SU(3)XSU((2) X U(1). (A Z,
subgroup of Hj, is also left unbroken by (¢;y)-
This leads to the formation of new Z, strings
which are unrelated to the Z, strings that we pre-
viously considered. These new strings are not dis-
cussed in this paper.) This transition also breaks
the discrete charge-conjugation symmetry and has
a profound effect on the Z, strings that we previ-
ously discussed. The strings become boundaries of
domain walls that separate vacua related by charge
conjugation. This may be seen as follows. Consid-
er a string that lies along the z axis. Assume that
(@16) lies along the (10,1,3) direction on the
semi-infinite plane y =07,x >0(¢=0). Then

(b126) (@) =exp L?(T23+T67) (126 (@=0) ,

O<p<2m, (14)

which means that (@,55) (p=2m) lies along the
(10, 3, 1) direction, which is the charge conjugate
of the (10,1,3) direction. Thus, in contrast to
(¢s4), the expectation value of the Higgs 126 does
not return to its original value after a full rotation
around the string. This implies the existence of a
physical domain wall along the y =0, x >0 semi-
infinite plane. The wall is bounded by the string
along the z axis and separates vacua related by
charge conjugation. Its thickness is of order My ~!
and its mass per unit area p is of order Mz>/ag.
Note that {#;55) =0 on the midplane of the wall
y=0,x>0. (It should be kept in mind that the
breaking of the discrete charge-conjugation symme-
try may also produce domain walls without bound-
aries.)

The domain walls, with or without boundaries,
are not topologically stable. This is because
charge-conjugation symmetry is part of Spin(10)
and can be continuously connected to the identity
in the full Spin(10) space. Quantum and/or ther-
mal fluctuations can destroy the walls locally
through the creation of holes bounded by Z,
strings. However, we now show that the probabili-
ty of hole creation is utterly negligible so that the
walls can be taken to be locally stable.

Consider a plane wall along the xy plane at zero
temperature. The probability per unit area per unit
time to create a hole (bounded by string) on the
wall due to quantum fluctuations is given'? in the
semiclassical approximation by

dp Mg’
dA dt ag

exp(—Sp) - (15)

Here S is the Euclidean action of the bounce
solution which corresponds to this tunneling pro-
cess. The creation and subsequent disappearance
of the hole causes the action to change by

S=30—-Vu, (16)

where = is the invariant area of the closed world
surface described by the string and V is the invari-
ant three-volume described by the hole. Minimiza-
tion of S can be achieved by a spherical world sur-
face of invariant radius Ry=20/u. The corre-
sponding change in the action is then

6

yo(M
So= 12"‘2’ ~ |5 | ~10°. (17
m R
Thus,
M 3
dezN ~exp(— 101, (18)
G

which shows that the probability to create a hole,
even on a wall the size of our present Universe,
within the age of our Universe is utterly negligible.

The bounce solution considered above also de-
scribes the hole creation process at nonzero tem-
peratures, provided T <R,~!. For T>>R,~!
(relevant just after the wall-producing transition at
T, ~Mp /g), one has'*

dP Mg’
dA dt ag

exp(—Ey/T), (19)

where E, in our case, is the change in energy due
to the presence of a static hole of radius R
bounded by a Z, string. One finds that

3
E, M, |"M,
— —>10°. 20
T Mg | T~ 20)

This shows that the probability for hole creation,
just after the phase transition that produces the
walls, is extremely small. For all practical pur-
poses, the walls are locally stable.

The extended structures we have been consider-
ing presumably can be produced in the very early
Universe. As the Universe expands and cools after
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the big bang, it undergoes a series of phase transi-
tions. For T > M, /g, the Spin(10) gauge symmetry
is unbroken. For T'~M, /g, Spin(10) breaks down
to H and a network of topologically stable Z,
strings is produced. The scale of the string net-
work grows® with the time and becomes of order ¢
at t ~15, where 15 ~2x 10~ sec as computed'’
from 3ago Mp2 .
, O~ T (21)
T[1n( M, )]
Here Mp=1.2X10" GeV is the Planck mass. For
t > ty, friction due to the relativisitic gas of parti-
cles can be neglected, the strings move with rela-
tivistic velocities, and the scale of the string net-
work is essentially given by the size of the hor-
izon.?

Let us next discuss the phase transition form H
to SU(3) X SU(2) X U(1). Suppose that the phase
transition takes place without supercooling at some
critical temperature T, ~Mpy /g. For definiteness,
we take T,~5X 10'* GeV which corresponds to
cosmic time #,~6X 10~%° sec. Since ¢, > t, fric-
tion effects on the strings are negligible and the
scale of the string network at this phase transition
is of order .. The phase transition leads to the
production of domain walls which terminate on the
strings.

The most optimistic assumption one can make is
that the production of the walls at ¢, forces the
string network to rearrange itself in such a way
that one ends up with one wall per horizon volume
t.3, bounded by a closed string of length ~,
(closed walls of size <, may also be produced).
The walls at ¢, are to be thought of as random sur-
faces with persistence area [,>> (gMp )~2. The to-
tal area of a typical wall is ~2,3/I,, so that the en-
ergy density in the walls at 7, is given by
3

s

Lo~
*= 3 M,?

Mp

Pulle)~ (22)

agle

This is smaller than the radiation density p,(z,).
The persistence area /2 grows® rapidly immedi-

ately after the phase transition and p,, /p, drops

sharply. For t >>t,, the growth of /% is given® by

t

ty

12~t? , (23)

where

3a Mp?
w 29T Mp _3
* _——327”73 M ~8.5X 10 sec , (24)

1no=13.25 is the effective number of massless de-
grees of freedom which are reflected by the walls,
and 73=106.75 is the effective number of massless
degrees of freedom in the SU(3) X SU(2) x U(1)
phase. The size of the wall boundary d grows as
t'”2 while the persistence area /2 becomes of order
d? at t=tfz(t:Vtc)l/222X 1073 sec. For t, <<t
<t

3 172

t
2

Mg ty

27
_t ——
(t) Mp

pr = 3ag

(25)
tp

At t =tg, the size of a typical wall is equal to
dfz(tftc)l/zz3.5>< 10~34 sec and the ratio of the
wall mass to the string mass is given by

Mg3
M2

dp~12. (26)

Clearly, the wall mass dominates over the string
mass.

Due to friction from the surrounding medium,
walls of size d and curvature ~d ~! acquire® a lim-
iting velocity v; ~t4/d, where t;~t>/t) is the vis-
cous dissipation time. At =, vty ~ds and the
walls can contract to a point within one expansion
time. The energy loss due to friction during such
a contraction of a typical wall is AE ~Fdy, where

F~ UIPOdf2 (27)

is the force of friction on the wall. Here

T T (28)
Po 30 Mo
is the radiation energy density of the massless par-
ticle species which are reflected by the walls. It is

easy to see, from Egs. (24), (27), and (28), that
3

dg?. (29

This means that the walls lose their energy by fric-
tion and disappear at a cosmic time ¢ ~t;. From
Eq. (25), we see that the Universe was never wall
dominated. Therefore, in the case where the tran-
sition from H to SU(3) X SU(2) X U(1) takes place
without supercooling, the presence of the walls
bounded by strings does not seem to affect stand-
ard cosmology in any essential way.

Matters may become disastrous if the phase
transition from H to SU(3) X SU(2) X U(1) proceeds
only after supercooling by two or more orders of
magnitude. The walls in this case never enter the
horizon. They become gravitationally unstable and
collapse into long-lived black holes that dominate
the energy density of the Universe, thereby de-



stroying standard cosmology. In the model we
have been discussing, this scenario occurs for
T. <1.4x 10" GeV, where T, is the temperature
at which the transition from H to SU(3)
X SU(2) X U(1) takes place. This temperature cor-
responds to cosmic time z. > 1.7 107** sec. For
T < Tg=~3.2X10" GeV (t > t5~1.5X1073* sec),
the vacuum energy density of the phase in which
H is unbroken dominates over the radiation energy
density and the Universe undergoes an exponential
expansion. As a consequence one finds that the
scale d; of the string network at #; is much
greater than ¢,. In particular, for T, < 1.4x 10"
GeV, d, >3.4X 10732 sec. We assume that the
walls produced at ¢, terminate on closed strings of
length d, and therefore extend over several ap-
parent horizons (~t,). For ¢t >1t,, the length d of
the boundary of a wall follows the cosmological
expansion. Thus,
172
d~d, |+ ] : (30)

c

The walls do not enter this horizon at least until
the cosmic time 5 ~6.8 X 1073! sec. Since

ty >tV the persistence area of the walls at tj is
~ty?, and there is effectively one wall piece per
horizon. This gives

3
—=1. (31

For t > ty, the Universe becomes wall dominat-
ed. The walls are conformally stretched and one
finds>* that
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1

Powxa a«t?, (32)

where a is the cosmic scale factor. The horizon
grows as

t o dt’ 2
t)ftH () ~t/ty . (33)
Since the cosmic expansion keeps up with the hor-
izon, the walls never enter the horizon and the
Universe remains wall dominated. At t~4x 10~
sec the wall piece within the horizon enters its
Schwarzschild radius and collapse into black holes
starts.’ These black holes have mass greater than
5.6 10* GeV and their lifetime 7> 10* sec.
Clearly, they lead to a cosmology totally different
from ours.

To summarize, we have shown that a new type
of extended structure, namely walls bounded by
strings, is predicted in some unified gauge theories.
The presence of such structures may cause conflict
with standard cosmology.
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