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Semiclassical representation in quantum theory of a strong electromagnetic field
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A semiclassical representation is introduced to the quantum theory of a strong field, based on a possibility of
defining the semiclassical evolution operator in quantum theory, whose effect on the operators of a field and a
quantum system transforms them into the solutions of an appropriate semiclassical problem. This representation
enables one to go, in a simple way, from a quantum problem to a corresponding semiclassical one, and to use

equations of the semiclassical theory as a calculational apparatus in quantum .theory and to determine the

applicability limits of the semiclassical theory. The possibilities of using the semiclassical representation introduced
are illustrated by its use in nonrelativistic quantum electrodynamics.

I. INTRODUCTION

The semiclassical representation method for-
mulated in Refs. 1-3, which is based on the ap-
paratus of operators of a classical. field and their
eigenstates, enables one to study the transition
from a quantum description of an electromagnetic
field to a semiclassical one. In this paper the
semiclassical evolution operator, based on this
approach, is constructed. It converts the free
classical field operators and medium operators
to the operator solutions of corresponding semi-
classical equations. Its existence in the quantum
theory is proved and its properties are investi-
gated. The semiclassical representation is for-
mulated, using the semiclassical evolution oper-
ator. It is shown that this representation simpli-
fies the transition from quantum theory to semi-
classical theory and the determination of the ap-
plicability limits of the latter. The transition
from nonrelativistic quantum electrodynamics to
a semiclassical approximation is considered as
an illustration of the use of the semiclassical
evolution operator and the semiclassical repre-
sentation. The physical meaning of quantum cor-
rection is discussed using the semiclassical repre-
sentation. In Sec. II the semiclassical evolution
operator Q and the semiclassical representation
of the quantum evolution operator are obtained.
The operator 0 operates both on the quantum sys-
tem operators and the classical amplitude opera-
tors and converts them to the operator solutions
of corresponding equations of semiclassical ap-
proximation, which shows that this representation
is similar to a conventional representation in quan-
tum theory.

Section III illustrates the use of the representa-
tion suggested by the example of nonrelativistic
quantum electrodynamics. In particular, the
transition to equations of semiclassical electro-
dynamics is studied, and the problems of the de-
termination of their applicability limits and physi-

cal meaning of quantum corrections for the semi-
classical approximation are discussed.

In Sec. IV the method of eliminating the conse-
quences of heuristic elements of the semiclassical
theories is indicated. Also, the representations
of the quantum evolution operator, which have
previously been discussed, ' are compared with
the semiclassical representation.

II. THE SEMICLASSICAL REPRESENTATION

Different variants of the semiclassical repre-
sentation, considered in previous papers, ' have
one distinguishing feature: there is no possibility
to determine one evolution operator in it whose
operation on the variables of the quantum system
and strong field would yield the time dependence
of these values in accordance with the equations
of semiclassical approximation. Now we show in
what way such an evolution operator 0 can be con-
structed and we thereby show that the semiclassi-
cal representation based on the existence of Q has
all the properties of the conventional representa-
tion in quantum theory. This semiclassical repre-
sentation enables one to simplify significantly the
derivation of the semiclassical approximation from
the quantum theory and to clarify the physical
meaning of its applicability limits.

The Hamiltonian of our problem has the usual
form

a=a„+a»(a, a', x}+e,(x) .
Here II„ is the Hamiltonian for the radiation field,
II2 for a quantum system and H&2 for the interac-
tion, at and a are the creation and annihilation
operators of the field, and x stands for an appro-
priate set of operators for the quantum system.

The field is considered to be strong, hence,
according to Refs. 2 and 3, it will be convenient
for description of the field to go to the extended
Hilbert space W =XS X and to introduce in W the
operators of classical field amplitudes a, and ao
as follows: ao ——a(3 I+ I at

~
aot at I+I a

26 399



400 E. P. GORDOV 26

Here X is the conventional Hilbert space for the
field and I is the unit operator in X. There is a
complete and orthonormal system of eigenstates

l g,) of operators ao and aot in W, which are defined
from the equations ao l g,) =a

l g,) and ao l g,) =a
l g,) .

The eigenvalues of ap and atp are the amplitudes of
the classical field a and V, which are determined
as a=(a la la), a=(ala la), where la) is the co-
herent state in X. The operators a and a are de-
fined in W as a~=a I and a+ ——a I and we have
a~=ap+b, a, a~~=ap+ 6a . If p is the field density
matrix, the state R in 8' has to be defined as fol-
lows: R =pop l0)„(0l„, where l0)„denotes the
vacuum state from the right-hand K in W'.

The main rules of using the classical amplitude
operators ap and ap to proceed to the case of the
strong field can be formulated briefly as follows.

(i) One has to convert the initial state p and the
operators a and a~ into the Hilbert space W, to
expand all the operators f(a~, at~) corresponding
to the physical values and the Hamiltonian of the
problem H(apt, atpt) over the powers of ha and b, a~,
and then truncate the expansion of f and H by
the terms f(ao, ato, x) and H =pH(a , pa, p)x
+ [BH(ao, ato, x)(Bao ] b, a + [BH(ao, ao, x)(Batp] n a .

(ii) One has to find the operators ao and at or
the state R in the Heisenberg representation with
the Hamiltonian H~ and to calculate the average

values of f in accordance with the following for-
mula:

( f) =TrS(t)RS ~(t)f(ap ap x)

=TrRS '(t) f(ao, ao, x}S(t)

=Tr„da, SRS ', a, a,x,
da —= d Rea d Ima .

Here Tr„denotes the trace over the states of the
quantum system.

It is necessary to add that in the interaction
picture one has to use ap(t) =ape '"', a(t) =(I '"',
and t4a(t} = 6ae '"' instead of ao, a, and 6 a.

Now we start from our Hamiltonian H and write
down the Schrodinger equation for the revolution
operator in the interaction picture U(t} as follows'.

aU
iX

B
= H&(x)+H&p(ap(t), at(t), x)

BHn(ao(t), ao(t), x)
t) a t

+,p(ao(t), a,'(t), x)

(2)

Let us write the evolution operator U in the form

U=QQ( (2)
and require Q to obey the Schrodinger equation

BQ B4(a„(t),at(t}lt) B4(ap(t), at(t) lt)

+ — aa(t), + 1 a'(t), I,Q=ttaQ, Q(t, )=1. (4)
1 84 BC

Here the designations B4(ao(t), a~o(t)lt)/Bap(t) and B4(ap(t), ato(t)l t )(Bato(t) mean that 4 is differentiated only
with respect to a, and at written to the left of the vertical line, t= tlap, ao]. The oPerator 4 is not yet de-
fined. The need to take into account the dependence of 4 on ap and a~p through t will become obvious later
when we define 4. The commutator terms in the right-hand side of Eq. (4), i.e. , the functions of ao and

ap, are added for Hz to be Hermitian only.
In the representation determined by Q the operators of the problem vary with the time as follows:

Q 'xq=x,

Q
(

( )q (t) (t) ( H( ) H( )l Q q) -4 ( )dp 4-
t0

aat~ 7

which is equivalent after differentiation with respect to t to the conventional Hamiltonian equation

i B4(aH, aHIQ 'tQ)
aH = —Z(daH ——

8 BaH
a (to}= ao(to) .

The equation for the operator Qq follows from Eqs. (2)-(4) and has the form

f BHttaQ tt( )att t( t )+) 4 t(a"'a"'a)-att(a"'a")Q Q
)Q

ta (t)Q+tt
t -1

~aH

+-,'q' ta(t), + ~a'(t), , ql q, .94 t 84
cap t cap t j

(7)
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The structure of the Hamiltonian in Eq. (7) allows
one to separate out from Qf the semiclassical
evolution operator C of the quantum system, in-
teracting with the classical field g„,g~. This
evolution operator obeys the following equation:

. BC
ilt —=[If2(x) + &f2(aff, aff, x)]C, C(tp) = 1 . (8)

It can easily be seen that the operator C changes
the time dependence only in the operators of the
medium. The operators ao, ao, aH, a& remain
unchanged.

It follows from Eqs. (5), (6}, and (8) that the
operator 0,

ZS- SIff2(aB ajt I «c) SC'(a~, aH I'Q tQ) Q-tea t Q"Bt 8.. 9..
+H. c. +-,'Q mfa(t),'sap t

+ aa'N, , BIB, x, —=
.C 'xC. (11)

~ay t,
The operator 6 describes the quantum and fluctu-
ation corrections for the semiclassical scheme
(5), (6), and (8). Equation (11) makes it possible
to choose C (ap, aP t) in Eq. (4) in such a way that
the Hamiltonian in Eq. (9) will have an evident
fluctuation structure. For these purposes we de-
fine 4 as follows:

Q=QC, (9)
@'(ap, aP t) = »„&&f2(ap, aP QC xCQ ) . (12)

changes both the field operators and the medium
operators. The field amplitudes Q ap(t)Q and
Q apf(t}Q are the solutions of the Hamilton equa-
tion for motion in the potential 4(a~, aP Q tQ);
see Eqs. (5) and (6). The medium operators
Q f«Q = C xC; see Eqs. (5) and (9). Now we can
say that 0 leads to the semiclassical theory which
is based on Eqs. (6) and (8). These semiclassical
equations are not yet defined because the potential
4 in Eq. (6) is not yet defined. In order to define
4 let us represent the quantum evolution operator
U as follows:

(10)

Now, using Eqs. (7) and (8) and the definition Qf
=CO, which is an obvious consequence of Eq. (10),
we can write down the equation for the operator 8:

I

Using the definition (12), the semiclassical theory
equations, namely, Eqs. (6) and (8), can be writ-
ten as follows:

Q 'ap(t)Q—= a„, »(%2(aa, aa i xc)&x
Qg = SCOgg

8Qyg

(13)

xQ = C «C = xc, i 5 =[Hf (x) + &ff(aH, a—~, x)]C .BC

(14)

Now the set of equations (13) and (14) is the set of
self-consistent Hamilton equations. The evolution
operator ~ changes the operators go, a(), and x ac-
cording to the semiclassical theory equations (13)
and (14), so it can be called the semiclassical evo-
lution operator. The equation for 0 follows from
its determination [Eq. (9), (4), and (8)], and from
the definition (12). We have

Qop 0() C

&ao t

S(Iff2(ap~ ai! I QxcQ )), + H+2 &a t), ,(t)
(15)

Thus, we formally constructed the semiclassical
evolution operator, assuming the evident form of
4, Eq. (10). Now we have to prove that the oper-
ator 0 exists in quantum theory, i.e. , that our
determination of C and Eqs. (4), (8), (9), and

(13)-(15)are consistent. To check the consistency
of these equations it is necessary to prove that the
operator QC xCQ is Hermitian and depends only
on the operators x of the quantum system and the
operators of classical amplitudes go and go~. The
Hermitian character of the operator Qx&Q follows
immediately from the unitarity of Q and C. To
show that the operator QC xCQ is a functional of

I

&0, po, and x only, let us consider the unitary
operator M = QCQ in more detail. The equation
for M follows from Eqs. (4) and (8):

[Iffy M]+ [If2(x) + Hf2(ap, ap, x)]M .. BM

Bt

The equation for I enables one to write M as M

=COL, where the operator Co is determined by the
following Schrodinger equation. '

ih = [H2(x) + Hff(ap, ap, «)]C„8Cp
Bt

and L satisfies the equation
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ih =—Co [Ho, Co]L+ [Ho, L].
Having written the solution of this equation as an
iteration series with the zero-order approximation
L, satisfying the equation

iS —=Co '[Ho, Co]L,
Bt

one can see that the operator L, and, therefore,

the operator M are the func tionals of the operators
ap, ap, and x only. Hence, our preceding equa-
tions are consistent. Therefore, the operator ~
exists in quantum theory and can be constructed
according to the above procedure.

The equation for the operator 8, determining the
quantum and fluctuation corrections for semiclas-
sical theory, based on Eqs. (13) and (14), can be
rewritten as

&H|2(aa, aa I xc) s(%2(a~, aH i xg))„l q, , s(H(2(ao, ao i Q~cq '))„
g,h —= " ~+H. c. 8."Bt sa~ sa~ ) Bap

(16)

Rewriting Eq. (10),

U= 08, (1o')

III. NONRELATIVISTIC QUANTUM
ELECTRODYNAMICS

Let us consider the use of the semiclassical
representation U= 08 for nonrelativistic quantum
electrodynamics of a strong field. The multimode
case will be considered. The Hamiltonian of the
problem is of the form

H =Hp + II~ + P~A rq

where the operators 0 and 8 obey Eqs. (15) and
(16), respectively, one can see that Eq. (10') en-
ables one to introduce the representation which
can be called a semiclassical one. In this repre-
sentation the operators depend on the time accord-
ing to Eqs. (13}and (14) and the time dependence
of the state is described by the operator 8. Con-
trary to the representations discussed previous-
ly, ' here we introduce the semiclassical operator
representation simultaneously for both groups of
operators of the problem, the field operators and
the operators of the quantum system.

The convenience of using the above representa-
tion for the transition from the quantum theory to
the semiclassical theory and for defining the ap-
plicability limits of the semiclassical theory will
be discussed in the next section, when we illus-
trate the application of the semiclassical repre-
sentation method taking the nonrelativistic quantum
electrodynamics as an example.

I

the point r, and the other designations are stan-
dard.

Now we proceed to the extended space 8' and
write the operator of the vector potential in the
interaction representation A(r, t) as follows:

A.(r, t) = A, (r, t) + a A(r, t),
where the operators Ap and 4A are defined by the
following formulas:

(16)

2 IC '"
A, =P ( e (lice[ (c)e'""eH. ce.j,

f

aX= g~ „, e„( k}[na„-,(t)e'"' +H. c.].I'27]S C
kL

U= n8, n=@C,

ik —=Q tL(QPqcq ')„EA(r), t)
f

+ —,'[~ A(r„ t), &QP„Q-'},]]q,

ik =g P,(t)Agr, , t)C, .
8t

(19)

(2o)

(21)

A (r, t) —= 0 'A (r, t)Q, OA (r, t) + —
&

(Vp) =Jc 8t

All designations are conventional and the opera-
tors apy ~ and Da» are the operators ap and Aa
for the mode with the momentum k and polariza-
tion g.

In this case, using the results of Sec. II, the
semiclassical representation can easily be deter-
mined.

Proceeding to the interaction representation, we
have

e,
«ev

where Hp is the Hamiltonian of a macroscopic
medium, H~ is the Hamiltonian of the free field,
j numbers the volumes v; with the centers at r;
whose dimensions satisfy the conditions of appli-
cability of the long-wave approximation, A(rq) is
the operator of the transverse vector potential at

P,c& r, -rN 4 jc j

n =g((P„-(P„))n-' X( „t)Bt

+ —,
' 0 ' [6A(r), t), (QPqcq '),] Q) 6 .

(22)
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%e see that the evolution operator Q transforms
the operators of the quantum problem AD(r, t), P&

to the solutions of the self-consistent semiclassi-
cal electrodynamics equations, namely, the
Schrodinger equations (21) and the Maxwell equa-
tions (22}. The operator e describes the evolution
of quantum corrections for semiclassical electro-
dynamics.

As above, it is not difficult to write the field
operator in the Heisenberg representation, using
the solutions of the problem (21) and (22), or to

find the density matrix in the representation (19},
thus showing that the equations of semiclassical
electrodynamics can be used as a calculating ap-
paratus of quantum electrodynamics. But we re-
strict ourselves by studying the physical meaning
of quantum corrections to a semiclassical theory
only.

In the representation defined by Eq. (18), the
quantum average value, according to the density
matrix po ——pT of arbitrary polynomial operator
f(A, x) at the moment of time t, is written as

( f) —TrR (t) f (A xc}
2 6A 2

'
&o I

(~A)'
I o& +, R,(t) = eRe-& =ez, e I o& &ol e1 6'f(A„lx, )

Af

(24)

Here, as in Refs. 1-3, p is the density matrix of
the strong field and T is the density matrix of the
quantum system.

Equation (24) shows in what way the known solu-
tions of the problem of semiclassical electrody-
namics enable one to find the unknown quantum
averages. Besides, using (24), one can find the
applicability limits of semiclassical electrodynam-
ics and can physically interpret the quantum cor-
rections for it. It should be noted that the appli-
cability limits of semiclassical approximation
depend on the value of field amplitudes and on the
explicit form of f [a possibility of neglecting the
term 62f(BA„2 in comparison with f(A„)], and on
the characteristics of the quantum system (the
dependence of f on xc), and also on the contribution
of fluctuations to the process considered [the dif-
ference between Re(t} and R]. Therefore, the ap-
plicability limits of semiclassical approximation
should be determined in any particular cases.

An analysis of the derivation of Eq. (24) which is
analogous to derivations of Eqs. (26) and (59) in Ref.
3 shows that the origin of the second term in the
right-hand part of Eq. (24) is the noncommutativity
of the operators a and at in quantum theory. If f is
the field intensity, this term gives the intensity of
the usual spontaneous radiation. The appearance
of corrections of this kind is obvious and usually

Rz(t) =R (t)T &
R (t) =TrRe (t) .

Now, in the average value, Eq. (24}, the trace
can be written in the explicit form

(25)

is pointed out. As a matter of fact, the expansion
in the brackets in Eq. (24) is the expansion of f
over the powers of liI where I is the field inten-
sity.

An evident fluctuation structure of the Hamilto-
nian in the Schrddinger equation (23) shows that
the appearance in Eq. (24) of the time-dependent
density matrix Re(t) is a consequence of the de-
pendence of solution of the Maxwell equation (21)—
A~on the current J„, but not on the corresponding
operator of the quantum system. The corrections
of this kind have been discussed previously, ' but
here we obtain these corrections from the quantum
theory together with the appropriate mathematical
procedure for their estimation.

To obtain a clearer physical interpretation of
these corrections and to point out a possible way
to take them into account, consider the time de-
pendence of the density matrix Re(t) in more de-
tail. Assuming that the medium, interacting with
the classical field X„, is the dissipative subsys-
tem, one can show that for calculating the aver-
ages it is sufficient to limit oneself to the density
matrix of the form

6 x
(y&, = fo '(ao, t ( ,&7(Xo„f,x, ) ,' , o'o, "',*' (ol(o)')'lo&+ "-)-, R'(a ~) (o (R'(t)lo. &. (oo')=.

As in Refs. 1-3, it is easy to obtain the equation for R (a, t) being the distribution function of the field am-
plitudes:

(( PJ ( t) P ' ( ))) 6A
+ Pf ( t)

5A
R ( )d

(ry~ )

e„(k)
6

e ' ' +H.c. ,
2vac '" - 6

6A rq, t
~

kL "
Ra&-, ),

(26)
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Here some terms, small in the case of a strong
field, are omitted.

As previously, the equation for the distribution
function R (a, t) is the non-Markovian Fokker-
Planck equation. The presence of a friction coef-
ficient in it shows a possibility of making more
precise the nonlinear Maxwell equations (22). This
possibility was discussed previously' 3 and here
we do not dwell on it.

Now we see that the use of the semiclassical
theory equations instead of equations of quantum
theory will be possible when the correlators
((P,c(a, t); P;z (a, 7')))„and ((P,c(a, t); 5P;c(a, r)/
5A(r„v.)))„are negligible. In this case the quan-
turn noise influence on the statistical properties
of a strong field can be neglected. Equation (26)
gives us the possibility of improving the semi-
classical approximation and to take into account
the change of statistical properties of a strong
field interacting with a quantum medium, using
the known solutions of an appropriate semiclassi-
cal problem.

IV. SOME REMARKS ON THE SEMICLASSICAL
THEORIES AND COMPARISON OF THE EVOLUTION

OPERATOR REPRESENTATIONS

It is well known that semiclassical theories are
inconsistent and include heuristic elements. From
our point of view all the semiclassical theories
are certain approximations of quantum theory of
interacting subsystems and the main problem is to
construct a convenient method for the transition

U= GQ= CQ= C,QQ, = QB. (27)

In the first case U= GQ and the operators G and Q

obey the following equations:

from quantum problems to semiclassical ones.
We hope that the previous analysis completes the
formulation of such a method, which can be called
the semiclassical representation method. This
method allows one not only to move to the semi-
classical theory but also to use the semiclassical
theory equations as a calculational apparatus of
quantum theory.

Using this method, one can find the quantum
meaning of consequences emanating from the
presence of heuristic elements in semiclassical
theories, and the way in which these consequences
can be eliminated. It is clear that the heuristic
elements lead to the change-of-motion equations of
a field or of a medium only. As is seen from the
analysis of the semiclassical representation given
in Sec. II, this change leads to the redetermination
of the semiclassical evolution operator Q, Eq.
(15). It can ea,sily be seen from Eq. (10) that a
new operator 8 will describe the time evolution of
the quantum corrections to a chosen variant of the
semiclassical theory. So the semiclassical re-
presentation method allows one to eliminate the
influence of all the heuristic elements of the semi-
classical theory.

Now we shall discuss briefly different semi-
classical representations of the evolution operator
and compare them with each other.

The results of Befs. 2 and 3 and the preceding
analysis allow the following relationships for the
evolution operator U to be written:

zh —= [H,(x)+ H»(a„(t), aHt(t), x)] G, G(t, ) = 1,
Bt

(26)

sQ BH„(a,(t), at(t)lx ) () sH(~, (»t), a, (t)lx ) t() ( ) (29)st sa, (t) sat(f)

Here the operators az, at+, and x~= xc are given by Eqs. (13) and (14). From the above equations it can
easily be seen that G is the semiclassical evolution operator for the quantum system only, and for de-
scribing the semiclassical evolution of the field it is necessary to take into account, partially, the action
of the operator Q on the field operators.

A similar situation occurs in the case U= CQ when the equations for C and Q are similar to Eqs. (28) and
(29) with other definitions of a„, &„, and x~ only. The case of U= C,QQ, is somewhat different from that
mentioned above. These operators obey the following equations:

fh '= [H,(x)+H„(a,(t), ~~(t), x)]C, , C,(t,)= 1, (30)

sQ BH»(a, (t), aot(t) ix„)
( )

BH»(a„(t), a~(t) ix, )

1 () sH»(~, (t), a, (t)lx, } 1 t() sH„(a, (t), a, (t) Ix,} (31)
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BQ, BH„(at, if ~x,) BH„(dt, if~x, )

812( t ~ 0) 12( P D) Q" 1C 1~~1(t}C Q QBa~ Ba~

ft—= Q 'C, 'a, (t)C oQ, x, =C, 'xC, , x, = Q 'x,Q.

(32)

One can see that in this case the operator C,Q
changes both the medium operators and the field
operators. However, as we have shown previous-
ly,"in this case the description of a medium be-
havior in a classical field is inconsistent. This
can easily be seen f rom the fact that due to Eq. (65) in
Ref. 3 C, dependsontheoperators a, (r) anda, (r),
where 7 is any time, and that there is no such
operator Q(t) which would convert all a, (7) and

a, (T) to the solutions of corresponding Hamil-
tonian equations simultaneously.

Only the representation U=Qe solves the prob-
lem of transition from quantum theory to semi-
classical theory in the most convenient and mathe-
matically complete way, since the semiclassical
evolution operator 0 transforms both the medium
operators x and the field operators a, (t) and aot(t)
to the solutions of a corresponding semiclassical
problem.

It should be noted that all the representations
lead finally to similar results, because they are
the representations of the quantum evolution oper-
ator U. So the choice of one of them for the solu-
tion of a particular problem will depend on speci-
fic conditions of the problem. This choice is
similar to that of a convenient variant of the semi-
classical theory for the particular problem.

It should be noted that the possibility of writing
Eqs. (27) for the quantum evolution operator U

illustrates the above remarks on the heuristic
elements in semiclassical theories and their elimi-
nation.

V. CONCLUSIONS

Thus we have shown that the semiclassical evo-
lution operator can be constructed in a quantum
theory which converts the classical field operators
and the medium operators into the solutions of the

I

semiclassical theory equations. The existence of
this operator allows one to introduce the semi-
classical representation into quantum theory, to
obtain a simple method for proceeding to the semi-
classical theory and to take into account quantum
corrections to it.

This method, which we call the semiclassical
representation method, allows one to find the
quantum meanings of consequences ef heuristic
elements in the semiclassical theory. The appli-
cation of the semiclassical representation method
has been illustrated by its use in nonrelativistic
quantum electrodynamics. In this case the method
gives the possibility of using, for the calculations
in nonrelativistic quantum electrodynamics, the
nonlinear Maxwell equations (21) and (22) and the
Fokker-Planck equation (26}. It should be men-
tioned that the use of the fluctuation-dissipation
theorems, both linear' and nonlinear, "enables
one, in many cases, to rewrite the nonlinear cor-
relations in Eq. (26) in terms of corresponding non-
linear susceptibilities of the medium. In this case,
for calculating the quantum averages using the
formula (24} it is sufficient to know the suscep-
tibilities of a medium and the solutions of corre-
sponding nonlinear Mmcwell equations (22), and to
solve the Fokker-Planck equation (26). It is clear
that the above-suggested procedure is simpler
than the quantum-electrodynamical calculations in
the case of interaction of the strong field with the
macroscopic medium. It should be noted that the
Fokker-Planck equation (26) gives us a real and
correct foundation, from the standpoint of quantum
theory, for studying the statistical phenomena in
nonlinear optics.
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