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It is shown that a unique Hamiltonian description of the geodesics in spaces of con-
stant curvature leads, necessarily, to spins that are direct products of Dirac spin with gen-

erators of SU(3) or higher SU groups.

Since its introduction twenty years ago, unitary
spin has stood as a system of cogent yet ad hoc
internal degrees of freedom. But the query—where
may it come from? — has, so far as can be seen,
received no clear answer. The issue here is not
whether unitary spin may be fitted into place as
observation seems to require, but whether, from
some underlying consideration, it must necessarily
enter into the description of particles. In the
present note it will be shown that unitary spin is
not optional, but rather compulsory when quantum
theory is consistently built, on a Hamiltonian base,
within that simplest extension of flat Minkowski
space, the space-time of constant curvature (de
Sitter space). This space has in recent times been
otherwise remarked as a background space for su-
persymmetry,' and for its possible bearing on
quark confinement.? The de Sitter space in essen-
tial respects may be considered to be prototypical
of other curved spaces (see concluding remark
below).

While spinors in curved space have been exten-
sively discussed,’ the outcome has been largely
unremarkable in that Dirac spinors alone appear to
be sufficient. These treatments have relied on for-
mal devices that produce formally covariant spinor
wave equations, as from factorizations like
[7*(x)V,+m]p=0 of Klein-Gordon equations
(VEV, + m?) =0 (with V,, being covariant deriva-
tive), without, however, addressing the more primi-
tive question of how to fix the identity of those
coordinates, of a particle going along a geodesic,
which are to be used in a Hamiltonian treatment
with canonical commutation rules. In the present
discussion this question is placed in the fore-
ground, where a unique answer is set forth telling,
upon analysis, that Dirac spinors are not adequate
after all, but must be fused with unitary spinors.
Only first quantization need be studied initially in
order to set the character of the Hilbert space for
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the later development of the full second-quantized
field theory.

Since principles of general covariance prescribe
that arbitrary coordinate transformations are to be
allowed at the outset, the coordinates themselves
apparently become immediately ambiguous. In the
case of constant curvature, however, the ambiguity
is clearly resolvable upon viewing the space from a
simpler geometric standpoint than the usual
differential-geometric one, namely the standpoint
of projective geometry, as has been elaborated in
an earlier discussion* (hereafter called ITI). Very
briefly, the point is that the projective transforma-
tions x; =A;(x)/A(x) (with A; and A inhomogene-
ous linear functions of Cartesian space coordinates
X1{,X2,X3=T and time x,=1) send uniform
straight-line motion into uniform straight-line
motion (owing to the common denominator A),
thereby defining a set of extended inertial frames,
and having, as such, a distinguished role akin to
the ordinary inertial frames linked by linear
transformations. When the projective group is
now specialized to recover the Poincaré group as a
limiting case for A(x)— 1, this specialized projec-
tive group (containing a fundamental length scale
a) comes to be isomorphic to the de Sitter group
[of which only O(3,2) is here considered]. The
characteristic differential invariant of the special-
ized projective group describes a space of constant
curvature 1/a?, and yet the geodesics are, globally,
the straight lines d*t/dt?>=0. In thus rewriting
curvature as projection, the gain is that the simple
setting, of distinguished coordinates of (extended)
inertial frames with free-particle geodesics, is held
central; and, just as in flat space, this clearly obvi-
ates any consideration of general covariance with
its coordinate ambiguities.

We may now take it as a fundamental physical
hypothesis, buttressed by all experience, that the
coordinates of a free particle, seen as such in a
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family of equivalent inertial frames, are the dis-
tinctive ones for stating commutation rules of usu-
al type and proceeding to quantum theory along
Hamiltonian lines. There is, now, no problem in
going to more useful coordinates, e.g., 7(1),p(T,?)
used in III, rephrasing the geodesics as harmonic-
oscillator motions and giving a purely discrete
spectrum to energy squared or, further, to the con-
venient coordinates R(5), which bring a Hamil-
tonian with square

H>=P* 4 T*+ 14+k%(1+R?)
=H’+«’H,*,

as derived in IIT and here written with

fi=c —=a =1 with P being 5 (I + RR)-P,+H.c.
and f’} being the canonical mate —iVy to R, while
Lis RxP and «? is m?— 1.

It may readily be seen, first, that here no Dirac
factorization of H? is possible (except for k=0).
For going to even the one-dimensional case (when
the terms L? and 1 in H 12 are both to be dropped),
H? is simply P?+«*1+X?), and taking H as
F(X)P +G(X) (nothing else will do if H is to be a
constant of motion) requires

F?=1, FG +GF=iFF',
G*—iFG'=xk*1+X?)

to be identically satisfied in the coordinate x [here
F’ means (14 X2)dF /dx and similarly for G'].
Multiplying the second, right and left, by F tells
FF'=F'F while the first says FF'+F'F=0, so that
FF'=0=F'F, i.e., F'=0 and FG +GF =0. Then,
in the third again multiplying right and left by F
brings FG'=G'F, but (FG +GF) =FG'+G'F =0,
so that G'F =0=FG"' or G'=0. In short, G is re-
quired to be constant, and the third above cannot
be satisfied unless k=0. The situation in the gen-
eral case is somewhat similar, again admitting only
k=0 with H then being only H, =& P + V'L + o,
as shown in III, where ¥ is Dirac & or — o and @
is —iys or —I, respectively. Thus, while H,? and
H,? are separately Dirac linearizable (the latter,
e.g., as Hy=B+ A-R with fbeing a or ifa, or in
still other ways), the pieces H, and H, cannot be
conjoined to produce one overall linear Hamiltoni-
an: H; and H, are “incompatible” as regards
linearization in total.

To meet this difficulty while staying within the
structural framework of H?, it is evidently neces-
sary to relax the presumption that the wave equa-
tion P,2=H™} (with P,=id/d7) is to be obtained

in the usual way from iteration of some supposed
P_y=H?1. It is not necessary, after all, that
IP,2y=IH?) (I being a unit matrix) result from
iterating a supposed linear wave equation. It is
enough to require only the relaxed linearization
'P.=27 such that upon iteration

P, %=T2H?y with I'? a common (constant) ma-
trix multiplier of both sides; but it is essential then
that T be singular, as otherwise P.yy=T"19
must fail, as above demonstrated. It is clear that,
in order to keep a grip on Dirac spins in a basic
way, they must enter intact as sub-blocks in a
larger matrix. The relaxed linearization is then
conducted, minimally, by taking I'=1 X N, (direct
product of 4 X4 I with singular N,), and by taking
# as Hy XN+kH, XN, with N;,N, now so
selected as to avoid the incompatibility of H,,H,
by themselves. In short the linearization

IXN0PT¢=(H1 XN, +KH2 XN2)¢

is to be invoked. The iteration producing
2P, 2y=T"2H?) now requires

(N;,No)=0, N;*=N,’50,
NINZ =0=N2N1

(i =1,2), where the last of this triplet is what cir-
cumvents the H,H, incompatibility.

The N matrices are easily found. Clearly
N;3=0, while N;? is nonzero, i.e., the N; are nilpo-
tent of index 3. As follows from their Jordan
canonical forms, all such matrices may be written
as SuS ~!, where u is in the present case at least
4X4 of form (dots meaning 0)

(no 3 X3 matrix will do). We may therefore take
N, to be SuS~!, leaving S unspecified, and place
N,=TuT~}, or more simply SvS ~!, finding
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with e arbitrary and fg=1. The general N is
then also quickly found, but is suffices to take
No=(N{+N,)/V2.

The appearance of singular non-Hermitian ele-
ments is a little disconcerting at first glance. This
is answered by requiring S to be unitary and
Su=n, and Sv=n, to be Hermitian, while intro-
ducing the harmless unitary transform
@=IXS"1 of . Simply typical S,n;,n, (using
the simplified v above) are

ny=

bringing the final spinor wave equation in Hermi-
tian operators [ng=(n; + n,)/v2]

IXnoP.o=(H Xn+ckHyXn,)p .
Here probability conservation comes to be ex-

pressed by the familiar dpy/d1 + V- T0=O in the
7,p coordinates mentioned earlier, where

po=¢'{IXno’}@ ,

Jo=g{[@(1—p))"2+ VX pTXnon1}@ -
It may be noted also that indexing ¢ first accord-
ing to the rows of the n matrices as, say
PasPbPerPa (With @, idle owing to the null first
rows), the component ¢, has simultaneously to
satisfy ip, =H @, and igp, =kH,p, (with ¢, being
further fitted with ordinary spinor indices). This

excludes stationary ¢, as examination of H; shows,
while it is demanded from ¢, as either
exp(—iH7')0, or exp(—ikH,7')0, that
H,6,=kH,0,, placing the mass parameter « in the
position of eigenparameter rather than a simple as-
signable numeric (here 7’ is 7V'2 and ¢’ is d¢p/d7').
Considering all the alternate permissible forms for
H; and n;, the final spinors ¢ make up a rather
high spin-tower with a large number of com-
ponents.

Above, one recognizes in the marked 33 sub-
blocks of n; and n, the elements A; and A4 of the
conventional set of generators of SU(3) (other
members of the set may occur under other choices
of v and ), so that it is four-dimensional represen-
tations of SU(3) that are compounded with Dirac
spin. It may be shown as well that a family of
higher SU generators results from higher-
dimensional nilpotent N{,N,,N, but nothing
lower than SU(3) is possible.

This concludes the demonstration that within a
Hamiltonian framework, spin in curved space-time
has naturally and necessarily to be a fusion of
Dirac spin and unitary spin, minimally SU(3).

As regards the situation in more generally (e.g.,
gravitationally) curved spaces, one notices that the
usual elemental flatness and accompanying local
Poincaré covariance may be significantly enlarged®
to better-fitting local contact or osculating spaces
of constant curvature, where then the projective or
de Sitter covariance holds, the local recognition of
curvature then implying Dirac X unitary spin lo-
cally and eventually globally.
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