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A local SU(2) gauge theory with one multiplet of scalars in the adjoint representation is con-
sidered. In the limit of infinite gauge coupling constant (g =~), Yang-Mills fields become aux-

iliary and the action possesses a larger invariance than the usual gauge invariance; hence, the
system develops a richer structure of constraints. The constraint analysis is carried out, the
Faddeev-Popov-Senjanovic determinant is evaluated, and all the functional integrals in the gen-

erating functional 8'f J] over all canonical momenta, as well as over the gauge fields A„' and

two of three components of the scalar field P„are evaluated, yielding the extremely curious

result that, in this limit {g=~), the original theory is equivalent to a one-component self-

interacting real scalar theory. This is an exact nonperturbative result. Some possible implica-

tions of this result are discussed.

The study of the gauge theories, broken or unbro-
ken, have always been very difficult, if not outright
impossible, in the strong-gauge-coupling limit. Most
of the advances in this area were achieved by the
methods of lattice gauge theories and Monte Carlo
calculations, since the standard perturbative calcula-
tions become completely unreliable as the gauge cou-
pling constant becomes strong.

In this paper, I would like to present a calculation
in which I study the behavior of a local SU(2) gauge
theory in the limit of infinite coupling constant. The
treatment of the problem here is fundamentally dif-

ferent from the lattice calculations in two respects:
(i) The theory is studied in the limit of strictly infin-

ite gauge coupling constant, namely, g = ~. For
large, but finite values of the gauge coupling constant

g, we have nothing to say. (ii) The method used
here is not a lattice calculation. It is based on the
manipulation of the functional integrals using the ex-
tra symmetries the theory possesses in this limit of
infinite coupling constant. The correct handling of
these extra symmetries enables us to perform most
of the functional integrations exactly. At the end,
the original theory is reduced to the relatively trivial

theory of a one-component self-interacting real scalar
field, and all references to Yang-Mills' fields disap-

pear completely.
The example I present is an SU(2) gauge theory

with a single scalar multiplet P„a= I, 2, 3 in the ad-

joint representation. The Lagrangian is

, F'„„F.'"+
—,
' (u„y).(»y). v(y), —

(I)
where

(~ ~g) ~
= g„@~+f~~ggA ~

v(y) = —,
' m'y. @.+—(y.y.)',

and f,~ are the totally antisymmetric SU(2) structure
constants.

Now take the g = ~ limit and drop the pure Yang-
Mills part:

z—= lim z"'=
2 (u~y). (u~y). —v(y) . (2)

This is the Lagrangian we work with in the rest of
this paper. In general, however, one cannot arbitrari-

ly drop some of the terms in a renormalizable
Lagrangian and maintain renormalizability, unless of
course the new Lagrangian possesses a larger sym-

metry than the original one due to nonappearance of
the terms dropped. The Lagrangian 2"' is known to
be renormalizable; however, the renormalizability of
2 is suspect at this point, because the kinetic term for
the Yang-Mills fields is dropped by taking the
infinite-gauge-coupling limit. Fortunately this actual-

ly increases the symmetry. Now, the Lagrangian is

not only invariant under the ordinary local gauge
transformations, but also under the following new
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(E,', Hq) = f~i @b(g) g)~——= pp~ =0 (5)

exotic transformation:

A'(x) ~A "(x)—=A'(x) +A (x P(x))P'(x) (3)

where A~(x, $(x)) are arbitrary functions of space-
time and/or the scalar fields P, (x).

Three points must be emphasized here. The first
one is that the Lagrangian 2" is not invariant under
the transformation given by Eq. (3), but 2 is. There-
fore we expect the theory with the Lagrangian 2 still
to be renormalizable since there is this new invari-
ance corresponding to dropping the kinetic term.
The second point is that the invariance expressed by
Eq. (3) is peculiar to the adjoint representation. If
the scalar multiplet transformed by a different (say
fundamental) representation of the gauge group we
~ould not have this new invariance. The final point I
make note of is that nowhere in this discussion is it
essential that the gauge group in question be SU(2).
All of the arguments above are equally valid for any
semisimple compact Lie group. The group SU(2) is
chosen to keep the calculations as simple as possible.

Taking the Lagrangian density Z as our starting
point we first compute the canonical momenta. The
momenta canonical to the gauge fields A„' vanish:
E+= BL, /B(BOA&) 0. These are the primary con-
straints. 4 The momenta canonical to the scalar fields
are g, = BZ/B(Bpljl ) = (X) oP), . The canonical Ham-
iltonian density 3C, is then computed to be

3'c= 2 ha(u fat toAA' ——,(&A)u(&'4)o—+ I'(4) ~

and the primary Hamiltonian density is obtained by
adjoining the primary constraints: ~ =X, +E„'E,I'.
The primary constraints generate the secondary con-
straints X, and i(i,'.

(E.',H, ) =f.~~.~, = X. =o-, - (4)

where we use Dirac's symbol for weak equality, 4 and

H~ —=f d'x3Cv. These secondary constraints generate
no further constraints. The details of this calculation
are too lengthy to be presented here and will be pub-
lished elsewhere. ' The secondary constraints given
by Eqs. (4) and (5) are not completely independent,
however. ' In the case of SU(2), the 12 secondary
constraints given above have only 8 independent
ones. For example, Xt and iii( can be solved in terms
of the remaining 8. Therefore the total number of
constraints is 20 for SU(2). Trivially, the primary
constraints E, are first class. Other first-class com-
binations of the constraints can be found, such as
(SiE'), —X„g,E,', g,E,', (X);P), E, (5);g),E,', and

g, Q,'. Of these, only 5 are independent, bringing the
total number of first-class constraints to 8. (There-
fore, there are 12 second-class constraints. )

The reader will remember that the original gauge
theory with the Lagrangian 2 "' before we took the

g ~ limit and dropped the kinetic term has exactly
6 constraints: Eo =0, and (S;E'),—X, =0; all 6 of
them are first class. These are, in fact, the infini-

tesimal generators of gauge transformations. For the
Lagrangian 2, however, we have many more con-
straints: 12 second-class ones, but more importantly,
2 extra first-class constraints. These 2 new first class-
constraints are the generators of the exotic invariance the

Lagrangian Z possesses given by Eq. (3).
As usual, each first-class constraint requires a

gauge-fixing constraint to be introduced for it, in this
case, a total of 8. The gauge-fixing constraints must
be introduced such that the determinant of the ma-
trix of all Poisson brackets must be nonzero. It is
also convenient, though in this case not really neces-
sary, ' to choose the gauge-fixing constraints to have
vanishing Poisson brackets with each other. Then,
the generating functional 8'can be written

W-„g (dA„'] (dp. )(Ed'] (dg. )B(E„') B(x )28( X)3&(y')2&(y,')
a, i, p,

8 1

&& g B(f,) (detM)'/'exp i J d x(A'E,"+P,g, —g)
s 1

(6)

where (t, . . . , $s are the 8 gauge-fixing constraints,
and M is the 28 x 28 matrix' of the Poisson brackets
of all the constraints and the gauge-fixing conditions.
The rest of the calculation involves three steps: (i)
Choose g, so that detM %0, and (g„( ) =0; (ii)

evaluate the Faddeev-Popov-Senjanovic" deter-
minant M; (iii) perform the functional integrations
wherever possible.

We will choose to work in the axial gauge defined

by q&A,'=0, where q„= (0, q&) is a constant spacelike
vector. " This could be achieved by a gauge transfor-
mation A„' A„"such that q;A,'=0.' In this case,
however, we can do more than just going to the axial

gauge. Remembering the new invariance of the ac-
tion expressed by Eq. (3), we can make a transforma-
tion A;"~Ai'"=Ai" +A;Q„and choose A; such that

A, = —a A /(a g), where a ~ @ is short. for cx, @,
and ni, (x, $) are arbitrary functions of space-time
and/or scalar fields. Then A~" satisfies o.,A "=0,
as well as q;A"=0. We call this gauge the doubly ax-
ial gauge. It appears that we have specified six
gauge-fixing conditions by O.,Ai'=0 and qiA,' =0, but

only five of these are independent: If we denote
v, =—qiA,', then clearly o.,v, =0 on account of
o.,A,' =0, thus proving that one of the v, can be
solved in terms of others, and n, .
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To fix the gauge completely, then, we need three
more constraints and a convenient choice is A, =0,
exactly as in the case of the quantization of the origi-
nal Lagrangian 2 ' ." Therefore, our gauge-fixing
constraints are g, =A, , (j+3 Aj'n —jbj and

f7 rjjA f

hajj

jt jA ]. Clearly, we have {f„f ) =0 for

s,s =1, . . . , 8.
The second step in our calculations involves the

evaluation of the Faddeev-Popov-Senjanovic deter-
minant: (detM)' 2. At first, the evaluation of this
28 & 28 determinant might appear to be an insur-
mountable task, but it is quite straightforward,
though admittedly it requires lengthy manipulations.
To keep this paper as concise as possible, the calcula-
tion of the determinant will only be sketched here,
and the details will be published elsewhere. 7

We first note that the matrix M factors in two

blocks, the smaller block generated by E, , and A, .
The contribution of this block to the determinant is
field independent; therefore, we can drop it. The
remaining 22 x 22 determinant can be calculated in a
number of ways. The easiest one is to exponentiate
the matrix by Grassmann variables. Calling this
22 & 22 matrix M, we can write

detM = J dcj'dct dc22dc22 exp( c'M—c)

where c~, . . . , c22, c~', . . . , c22 are anticommuting
Grassmann variables. The rest of the calculation
proceeds by doing the integrations over the
Grassmann variables be making use of the observa-
tion that the 9 x 9 submatrix {E,', p j) is invertible and
in block-diagonal form, where pjj = p, ', and pj =$2j,
p] = jljf At. the end, we obtain the result

(detM)' '=njjtjj (n ~ jtj)2(jtj ~ jtj)' „' d0'd0 doj'dojexp i „jf'x(Q'8'0+co'8'Oj)

Notice that the ghost contribution over the anticommuting ghost fields O', 0, co', and eo decouples from the
fields and momenta of the Lagrangian 2. This is a nice property of the doubly axial gauge. Therefore, we can
write

(detM)'~'-n, y, '(n y)'(y y)' .

Some of the functional integrations in Eq. (6) can be performed trivially now, using the 5 functions. These are
the integrations oyer A, and E~ For con.venience, choose q'=(1, 0, 0) and a, =(n, 0, 0). Then, using the 8
functions 5(n A') 8(qjAJz) 5(7i&AJ3), we can do the integrations over the fields A,', A j', and A j at once. To do
the rest of the integration over the remaining gauge fields, we use the constraints jlj,:

3

Q 5( jjj])5(g]) =5(f2.b&.8'Pb) 5(f3,b$, 8'$b) 8'"(—QC+Gt)
i 1

where

(A2 A3 A2 '43 ) and (f2ab4jj5 4b f3jjbpjj8 jIjb f2jjbjtjjj8 jtjb f3jjbjljjj'9 jtjb)

and

Q 0 jti'+43' 42jt3-
Q 0 Q

with Q=
4, 4, 42+4, 28(x-x)

We then obtain

~-&l gd@,d$, 5(X2)5(X3)5(f2gbpg8 Qb)8(f3NbpN8 fb) [n $j'(@ Q)'l —,(detQ) 'exp i J d'x L,jj
a CX j j

where

ff III $ 2 $ f +
2 (Bjt)(j8j@),—V(qh) + —,S Q 'S (Ref. 16)

and

detQ = jtjj (jtj '4)
and

e'Q-'e=-(8, @) (8'y)+ (y 8,@)(y 5'@) .

The integrations over g2 and g3 can now be performed using the 8 functions 5(X2) and 8(X3), producing an extra
factor of @j 2. Finally, the Gaussian integration over the momentum g3 can be done, giving us another factor of
gj(@ @) ' ', and we obtain

li'- „t II d&.5(f2.be.&'Sb»(f3:e.&'eb) ~j(S e)'"exp j d'» ' —l (@)
(@ 8,~)(jt a~at)
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Finally, observe that

B(f2ab@oB 'tttb)S(f 3abt13aB Ab)dtlt2d43

= S(t)'u) S(i)'v) du dv,
where u =ln($2/pt), and v =1n(@3/$t), and the in-

tegrations over u and v can be performed yielding"
t

W —&I [dtIt] exP i
&

d x [ 2 ( t)„y) (t)~tt ) —V(@)]
t

(&)
where Q = & 3$t, which is the generating functional
for a single-component self-interacting real scalar
field, the result I promised before. $, of course, now
is an SU(2) (color) singlet, since all reference to any
group or gauge has completely disappeared.

I would like to conclude by making several com-
ments on this result. First of all, it can be proven
rigorously that when g =~ the theory becomes al-
most trivial; for large but finite values of g such is
not the case in general. Therefore, we conclude that
there has to be a phase transition at some value of g,
perhaps at g = ~, perhaps at a finite but a very large
value.

Secondly, notice that the above treatment of the
problem does not depend on whether or not the
theory is broken, as long as we start from the
Lagrangian g, not "'. However, the connection

between 2 and " becomes less physical if m' (0,
and thus the theory is spontaneously broken. To see
that this is so, the reader has to remember that the
SU(2) gauge theory with one multiplet of scalar fields
in the adjoint representation has an asymptotically
free gauge coupling constant g. ' '9 Therefore, we

expect the theory with 2 "' to have a large gauge
coupling constant at low energy scales, g = ~ reached
at q2=0. This all hangs together very well if the
theory is not broken spontaneously. However, if the
theory is broken, the gauge coupling constant will not
grow indefinitely as q' ~0. In other words, the
Lagrangian 2 ' will never have g = ~ for any q
and, therefore, it would not make sense to say that
is the limit of Z ' as g ~. For a broken asymp-
totically free theory, g is never infinite.

Finally, I emphasize that the above result is not a
peculiarity of the group SU(2). The same treatment
can be applied to any semisimple compact Lie
group. This kind of an extra invariance in the limit

of g ~ appears only for the adjoint representation
of scalars and not for other representations, and not
for models containing fermions.
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