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Comment on the Green's function for the anharmonic oscillators
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Application of the analytic theory of continued fractions to anharmonic oscillators of the type
ax2+bx4+cx6 by Singh et al. is shown to give an unphysical result for negative coupling, b ( 0.
For b & 0, their construction of the Green's function G (E) is rigorously proved and extended
to the b ~0 cases.

Q„(x) =x"e "~@(x)

y(x) = Xa„x'", v =0, 1
n 0

f (x) = nx4+ b—x2,1

40.
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where the a„satisfy recurrence relations of the type

n+1

Qnmam = Ean
m n-1

(see Ref. I for further details). The authors of Ref.
1 succeeded in finding an explicit (n x n-determi-
nantal) form of the Taylor coefficients a„. Requiring
termination of the infinite series in Eq. (2), they also
obtained an important class of exactly polynomial
bound-state solutions P(x) for some particular values
of a, b, and c in Eq. (1). These results were success-
fully generalized recently. '

Our present aim is to make a few comments con-
cerning the second half of Ref. 1 —construction of
the physical Green's function G(E) for Eq. (1).

(i) The Hill-determinant method is not fully appli-
cable to Eq. (1) in the formulation of Ref. 1: Indeed,
the incorrect initial methodical statements' are the
following:

(a) "The necessary and sufficient condition that
nontrivial a„'s (for n = 0, 1, . . .) exist which solve
Eq. (3) is that the . . . infinite determinant
det(Q —E) vanish. "

(b) "The difference equation [Eq. (3)] is an
equivalent description of the original differential
equation (1) for the eigenvalue problem. "

Proof Ad (a) Whenever .X = ~, we may choose
the value of a0 as an arbitrary normalization. Then,

Let us consider the Schrodinger equation

d2
y(x)+ V(x)y(x) =Ey(x)

dx

V(x) = ax'+ bx'+ cx', c = n' & 0 .

In accord with Singh et al. , ' we may write its general
solutions Pp(x), Qt(x) in the standard power-series
form

80+A0T) =0
Ct/Ti+Bi+3 tT2=0,
C2/ T2+ 82+ 3 2T3 = 0 (4)

where (a) the first row is omitted, (b) the contin-
ued-fraction approximants T„,n = N —1,
N —2, . . . , 2, 1 to the quantities T„are defined by
the initialization Tn= Tjp =0 at some Ar » 1, and
(c) the first row is "self-consistently" included again
in the limit N

the recursive treatment of Eq. (3) gives the explicit
determinantal formulas for any a„[at= —apQ pp/Qpt,
a2 ap( QppQ11 QlpQpl)/Qpl Qt2, etc.] as given by
Eq. (11) in Ref. 1. In general, these a„'s are
nonzero irrespective of the value of E. Even for
N (~, we must guarantee that aN+~ = 0 and
a~~2=0. The first condition coincides indeed with
the Hill-determinant specification of energies while
the second one [Qn+t~ = 0, cf. Eq. (18) in Ref. 1]
fixes one of the couplings as a function of N.

Ad (b) For N =~ and E not lying in the spectrum
of Eq. (1) we still have' a„+t/a„—0 (1/Jn ), n » 1
since @(x) is convergent for any x (though not in the
norm). Nevertheless, the recurrently defined vector
(ap, at, . . . ) remains normalizable (Xa„'&~) and
must therefore be admitted as a valid solution to the
eigenvalue problem Eq. (3) in principle. Q.E.D.

We may summarize as follows:
Ad (a) Instead of the "nontrivial" a„'s in (a), we

have to speak about their N-dependent "approxi-
mants" a„(X), and to replace the "infinite Hill
determinant" in Eq. (9) of Ref. 1 by its ¹hminor
with the W-dependent zeros E (N), b/ (~.

Ad (b) When W = ~ in Eq. (2), it is necessary to
deliver the missing proof of coincidence of the physi-
cal eigenvalues of Eq. (1) with the intuitively chosen
"approximants" E(W) in the limit X ~ (see
below).

(ii) The algebraic manipulations of Ref. 1 only dis-
guise the inapplicable Hill-determinant philosophy:
Eq. (3) with T„=a„/a„ t, n =1, 2, . . . is rewritten in
the form'
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In this setting, the "self-consistent eigenvalues"
E = E0, i.e., the zeros of the auxiliary continued frac-
tion

are not derived from the Schrodinger boundary con-
dition

(y(x)) & ~
but from the purely formal requirement (b). As a
consequence, it is possible to prove the following:

(iii) For b & 0, the Green's function of Singh
et al. ' defined as G(E) = To i (E) is unphysical:

(a) From the asymptotic form of Eq. (4)

(6)

TN
A 1+0—1

b/2—a+ nT„~~ n

we find out that the repeated action of mapping
T„(+j' T„("i leads in general to the accumulation of
the values T„' ', N &) n )& 1 near the N-

independent fixed points,
r r r y/2

T„( ) =Z„1+0—,Z„=—— sgnb+0—N 1 0, 1

n
' "

n

(g)
The proof follows from the geometrical interpretation
of Eq. (7) as given in Fig. 1.

(b) The above asymptotic estimate of T„and of
a„=a„~T„' ' =a„2T„' ~'T„"'= . . enables us to
decompose

(9)
y, t, (x) = a„x'"=0(e' '"'), x » 1

n odd even

which follows from the Stirling formula. As a conse-
quence, the quantity sgnT„(, n )& 1, determines
the relative sign of the two growing exponents rtr,

and (b, . The asymptotic cancellation of @, with $,
(i.e., Z„& 0) is the necessary condition for the nor-
malizability of rir(x) —this completes the proof.

Due to the rather exceptional character of the
x ~ boundary condition Eq. (6), a part of the con-
struction of Singh et al. is correct:

(iv) For b & 0, the poles of G (E) = Ta("' (E) coin-
cide with the anharmonic binding energies: We may

verify the algebraic identity
n

T„=T„i"'+aog
(

)' (10)
J~$ TJ-$ AJ—] ag —]

which is valid for any parameter E and values
I/Tt( tl pe0, j=1,2, . . . , n At E=E.O, the differ-
ence T„T„' [i.e., its I/To —(E) factor] changes
sign. Since T„/T„' ' —I +const x (E —Eo) —@,/@,

FIG. l. The mapping p= T„+n) p'= T„n with the fixed
point p =Z„.

for x » 1, the dominant part of @,+P, also vanishes
for x && 1. This represents the missing mathemati-
cal foundation of the construction of Singh et al.
Comparison with (iii) clarifies also the puzzling
discontinuity' of Ta( i (E) at b =0.

(v) We have seen that the physical fixed point

T (a/n ) &i2+ 0 (1/n)

of the mappings T„~T„+t, n && 1 in Eq. (4) is
determined uniquely by the cancellation requirement.
For b ( 0, it is stable if and only if the direction of
the recurrences in Eq. (4) is reverted, Tt T2T3, Tt = —Ba/Ao. In full analogy with the
construction of Singh et al. , the b & 0 oscillator may
therefore be assigned the Green's function

GE= N't'T „(E)
in the limit N ~. In this formulation, only the
initialization and termination roles of the first and
Nth (N ~) row of Eq. (4) are interchanged.

(vi) The most difficult b = 0 case is characterized
by the oscillatory divergence' of the recurrences Eq.
(4) in both directions —the mappings T„~T„+t have
no fixed points in the leading order. Hence, the
necessary physical cancellation in Eq. (9) [or boun-
dary conditions in infinity, Eq. (6)] and the corre-
sponding smooth n dependence of T„must be en-
forced by the "artificial" asymptotic requirement Eq.
(11) compatible with the continuity of both the
b 0-+ limits of the physical G(E) and incompatible
with the b =0 conjecture of Ref. 1. We omit the fur-
ther details here.
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