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A Friedmann-Robertson-Walker (FRW) model is studied in the new scalar-tensor theory of
gravitation proposed by Schmidt et al. There is an assumption of a particular functional relation-

ship between the cosmological expansion factor of the FRW model and the scalar field. Exact
solutions are given, and it is observed that at least in one case k =—1 it is possible to obtain a

model with oscillation between finite limits.

I. INTRODUCTION

In the theory presented by Schmidt et al. ' the ef-
fective gravitational constant is given by the inverse
of y,rr= y —(p/12) $ . In order that the effective
gravitational constant decrease with an increase of the
scalar field Q, y, rr has to increase and therefore p has
to be negative. Again it is reasonable to assume that

P increases when matter density p increases, so that
as the collapse proceeds density increases (which is
shown later), and correspondingly the scalar field @
increases. This was mainly the idea of Schmidt et al.
to prevent the collapse of sufficiently massive dense
objects. But their theory was not adequate for this
purpose because, even on varying the coupling con-
stant between scalar and gravitational fields over the
entire allowed range, one can vary the effective gravi-
tational constant only within narrow bands.

The present theory may be applied to the case of a
Friedmann-Robertson-Walker cosmology. In fact,
we have done so and have studied the flat k =0 case,
that is, for zero spatial curvature. It is well known
that in Einstein's theory as long as (p+ p) )0, one
cannot get a minimum of the proper volume of the

universe so that it is not possible to avoid collapse to
a point singularity. By introducing a creation field' in
the field equations by the introduction of negative
pressure4 one can avoid such a singularity. The devi-
ation from Einstein's theory such as Einstein-Cartan'
theory, where the spin and torsion have been includ-
ed in the field equations, can also formally avoid the
appearance of a point singularity.

Here we also intend to examine whether in the
theory proposed by Schmidt et al. one can avoid the
problem of a singularity. With the flat open model
(k =0) there is only one case where the universe os-
cillates between a finite upper limit and the lower
limit of a point singularity itself. In no case, howev-
er, can the singularity be avoided. On the other
hand, for nonzero values of k (for example, k = + I)
there are cases where it appears that oscillations are
possible between finite limits.

II. FR% MODEL

According to the new scalar-tensor theory proposed
by Schmidt et al. the field equations are

r

y — P' (&„„——,
'
g„„&)= —

—, T,.——, i4, ,4,.——,g„,(4,.d' —
p, 'P')) + l(P'),.—g„.(g')', .), (2.1)

1

C1$+ p2++R / =0 .
6

Here p, is the mass of the scalar field, p is an arbi-

(2.2)

and the wave equation for the massive scalar field $
is given by
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trary coupling constant, y = c~/16m G is half of the in-
verse gravitational constant. The effective inverse
gravitational coupling in this theory becomes

'yeff 'y
12

3747



3748 COMMENTS

and the effective mass of the scalar field now is
' 1/2

jeff= iJ +

We consider the cosmological model with
Robertson-Walker metric

It is clear from (3.2) that, since (p+p) & 0, the den-
sity p increases when the scale factor R decreases
and, further, it is reasonable to expect that the scalar
field $ increases when p increases. Thus the scalar
field is expected to increase with the decrease in the
volume of the universe. We assume therefore a rela-
tion

ds =—dt +R (t) +r dQ
dr2

1 —kr
(2.3) 4=%OR (3.3)

where k =—1, 0, +1. The matter content is as-
sumed to be a perfect fluid with energy-momentum
tensor

with n & 0 and $0 being a constant. Substituting the
relation (3.3) into the wave equation (2.7) we obtain
an equation

T„„=(p+p) v„v„+pg„„, (2.4)
with

aRR +bR +cR2+d=0, (3.4)

where p and p are the mean cosmic mass density and
pressure, respectively, and v„ is the four-velocity
satisfying v„v"= —1. We choose a comoving coordi-
nate system v„=5„. The nonvanishing components
of the field equations (2.1) for the metric (2.3) and
matter constant (2.4) are

1

$2 (k+2RR +R )
12 —aR +bu+cR2+d =0, (3.6)

a=n+P, b=n'+2n+P, c=—
iM, ', d=kP.

(3.5)

To solve the differential equation (3.4) we define a
new function f(R) such that R =f(R) and call
f'= u, then (3.4) becomes
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The wave equation (2.2) with (2.3) reduces to
~ ~ ~ 2

R k R R$+3—Q+' —p,2+ p +—+ — '$ =0 . (2.7)
R R' R R

III. SOLUTION FOR FR% MODEL

The number of independent equations above are
three, namely, (2.5), (2.6), and (2.7), whereas the
number of unknown functions of time are R, P, p,
and p. We have therefore the freedom to assume
one appropriate relation between them. Before
making this assumption we observe that the field
equations (2.1) satisfy the motion equation

u =R = ci ——R —2d lnR,
'2 c

a
for b =0 or n =—1 —(I —p') 't' .

(3.9)

We observe that a (0 since n & 0 and p (0 by fhe
arguments of Schmidt et al. Now we analyze the
properties of the solutions (3.7) to (3.9).

We consider first k =0 and, consequently, d =0.
Here the universe is spatially flat.

Case (i) —b/a &. 1. This means b &0 since
a & 0, hence —c/( a + b) & 0. We define
—c/(a + b) = v'. There may be two situations:

If ct & 0, putting ci =p~ we have from (3.7)

R =p'R "'+~'R'
There is neither a maximum nor a minimum of R for
its finite values.

If ct & 0, putting ct =—p2, we have from (3.7)

p2R —25/0 + ~2R 2

for —W —1, b WO;b
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Substituting (2.3) into (3.1) one gets

(3.1)

(3.2)

We have R =0 at R =0 and subsequently, for an ex-
ploding model, R =0 again for R = Ro where v Ao
=p Ro ~/'. It can be shown that R & 0 at R =Ro,
which corresponds to the maximum of R. On the
other hand, R =0 at R =0. So we get only a point
of inflection at R =0 and there is no further bounce



26 COMMENTS 3749

from this point for a collapsing model.
Case (ii) 0. & —b/a & 1. Since a & 0, in this case

we have b &0 and —b & a. Hence c/(a+b) &0
and we define c/(a + b) = v . Therefore again there
are two situations. For c~ & 0 we define c~ =p and
we have from (3.7)

R-2b/a —
R 2

In the same way as in case (i) one can show that
here also there is an upper limit for R also and no lower
finite limit, and so the singularity inevitably occurs.

—2If ct & 0, we define ct =—p and from (3.7) we get

R —2b/0 R 2

This is not an allowed case since the right-hand side
is a negative quantity.

Case (iii) —b/a. & 0. Since a & 0, we have in this
case b & 0 and hence c/(a + b) =v". Now assuming

c~ & 0, we write c~ =p'2. We have therefore, from
(3.7),

=p+2R

Here R =0 at R = Ro, which satisfies the relation

++2R -2b]a &+2R 2

So there is an upper bound for the model with an ini-
tial explosion at R =0, where R approaches infinite
magnitude. The behavior is similar to that of a dust
Friedmann universe with k =+1.

The situation c~ & 0 is not allowed for the same
reason as in case (ii).

The other solutions given in (3.8) and (3.9) may
be examined in a similar way. One should, however,
carefully note that the models k =+1 or —1 may be
particularly interesting for the oscillatory characters of
some of them.

We study a particularly simple example. We put
—2b/a =1 and consider first the model with negative
spatial curvature (k = —1). The constant d then
turns out to be positive. Further, b is positive and
we define m'= d/band v2= c/(a +b) If w. e now
choose ct & 0 and write p'= ct, Eq. (3.7) leads to

R =p2R —v2R2 —m2

Here R =0 corresponds to an equation which has two
real roots given by

[p +(p —4m v )' ]
1

2'U

provided p2 )2mv. The model oscillates between
these two limits. c~ (0 is not an allowed case.

We next consider the model with k =+1. It is not
difficult to analyze the behavior of the models with

c~ & 0 or c~ & 0 in a similar fashion. In both cases it
is observed that the model may start from the initial
singularity R =0, expand, and finally contract again
after reaching an upper limit, which is the turning
point for the model. There is, however, no case of
oscillation between finite limits in this case.

In all the above cases we have not given exact ex-
pressions for the matter density and pressure. How-

ever, it is not difficult to see that one can restrict p
and p to positive values only by putting restrictions
on the constant parameters like n, P, and p, .
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