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Many-body forces and the structure of hadrons

Moorad Alexanian
Departamento de Fisica, Centro de Investigacion y de Estudios Avanzados, 07000 Mexico, D.E., Mexico

(Received 16 November 1981; revised manuscript received 1 June 1982)

A collective-mode description of the dynamical forces among constituents of a hadron by
means of distinguishable quasiparticles leads to confinement. Therefore, the confining forces
among (Fermi or Bose) constituents are purely a manifestation of the correlations resulting
from the statistics of the quasiparticles. Nonetheless, the distinguishable quasiparticles behave
in many respects like an ideal Bose (not Fermi) gas.

The proof (or disproof) that quarks are permanent-
ly confined in hadrons remains as one of the out-
standing problems for a non-Abelian gauge theory.
The desire for such a proof is based on the negative
results of recent free-quark searches. ' Of course, the
concept that hadrons are composed of more funda-
mental objects is motivated by the attempt to de-
scribe their structure. One important feature of ha-
drons determined by cross sections is that of hadron
size. Now solutions of the classical Euler-Lagrange
equation for non-Abelian gauge theories give rise to
many types of topological excitations. 2 It is argued
that quark confinement is due to a sort of condensa-
tion of these topological excitations. Unfortunately,
it is not yet clear which one of the already known to-
pological excitations, if any, actually contributes to
the confinement mechanism. It is argued also that
quark confinement is a consequence of an exponen-
tial hadronic spectrum which results in a higher-order
phase transition for hadronic matter. The latter con-
fining mechanism occurs in our conception of a parti-
cle.4

In a model proposed some years ago, ' an ideal gas
of distinguishable quasiparticles constitutes a particle
and confinement or localization follows from the
strictly classical statistics of the quasiparticles. Thus
the dynamical forces confining or localizing the con-
stituents of a hadron are described by collective
modes, viz. , noninteracting distinguishable quasiparti-
cles, which possess the statistics which gives rise to
the Gibbs paradox in statistical mechanics. 4 Now in-

terparticle forces may be viewed as arising wholly
from the statistics of noninteracting elementary exci-
tations, which behave as quasiparticles moving in the
volume occupied by the body and having definite en-
ergies and momenta. For instance, in an ideal gas of
elementary excitations with Fermi (Bose) statistics
where the antisymmetrical (symmetrical) nature of
the states leads to an effective "repulsion" ("attrac-
tion") between the particles. Of course, in our case,
the remarkable feature is that the dynamical forces
among constituents of a hadron, giving rise to con-
finement or localization, can be described purely by

the correlations associated with the statistics of the
collective modes of a hadron.

In what follows, we shall find the forces between
the confined constituents inside a hadron —either
Fermi or Bose constituents —by introducing an expli-
cit duality transformation. ' Thus, the confined dis-
tinguishable quasiparticles are identified with topolog-
ical excitations which in turn describe the confine-
ment of local excitations, viz. , the Fermi or Bose
constituents of a hadron. We also find that dynami-
cal variables of distinguishable quasiparticles are re-
lated actually to boson dynamical variables and thus
provide a field-theoretic foundation to the quantiza-
tion of our topological excitations.

Consider an ideal gas of distinguishable quasiparti-
cles with masses given by the single-particle hadron-
mass spectrum p(m). The ith type of quasiparticle
have mass m, momenta p, energies

(p) (c2p2+ m2c4) li2

and their number is not conserved. Thus, the grand
canonical partition function with chemical potential
p, l =0 is given by 4

Z = g 1 —Xexp[ —E;(p)/kT]g;(p)
l

t

where g;(p) is the density of levels in the neighbor-
hood of any point p. The volume Vo of the assem-
bly and the lowest mass mo of the system determine
the maximum temperature To which the system can
attain and so T ~ To with

1

4m VpkTp 2 2 mpc

where E2(x) is the modified Bessei function of the
second kind with subscript 2. Our model gives rise4
to p(m) —g(m) exp(mc'/kTp) as m oo with

g(m) =O(e ') as m ~ with p )0. However, if
the asymptotic bootstrap condition of Hagedorn6 is
required, then p(m) —m 'i'exp(mc'/kTp) as
m ~. Experimentally it seems that kTO= 160 MeV
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and so by (2) the constituents of a hadron are con-
fined in a volume Vo with radius -1.6 F. Note that
the requirement that hadrons have a finite size im-

plies both a maximum temperature and an exponen-
tially rising hadron mass spectrum. Note also that
the divergence in the partition function (1) as T To,
which gives rise to the confining mechanism, occurs
because the number of quasiparticles or topological
excitations of at least one given kind can be arbitrari-
ly large. It is interesting that other types of topologi-
cal excitations which also produce confinement of
elementary excitations have this feature in com-
mon. " In our case, the hadron constituents or 1oca1

excitations are confined because the gauge field or to-
pological excitation is confined.

In order to determine the confining interactions
between the constituents, we have to analyze the ef-
fect of the statistics of the quasiparticles as contained
in (1). Now (1) can be written as

OO

Z=g X exp(p, ,/kT)
i N,. 0

x exp[ —Et(p)/kT] dp

'
Ni

(3)

where the chemical potentials p, ; are to be equated to
zero since the numbers of quasiparticles are not con-
served. The general form of the grand canonical par-
tition function' for different types of particles is

OO OO N1ig1/kT N2P2//kT
8 ~ ~ ~

3(N +N +. . . )N1-ON2-0 Q
1 2 N [N 1. . .

f
XJtd r

& d r&+„+.. . J~~ dp, . dp~+„+. . .

N1+N2+ ~ ~ ~

x exp — $ E;(p)/kT exp[ u~, +—~ +. . . ( r ~, . . . , r ~,+~ ~. . . )/kT]
i 1

(4)
where u~, ~~,+...( r ~, . . . , r &,+&,+... ) is the interaction potential of Nt particles of mass m ~, etc. , and it includes

the single-particle outside potential. [Note that for an ideal gas of distinguishable quasiparticles u~ +~ +. . . —=0,
1 2

the factors N&! N2! ~ do not appear in the denominator of (4), and so (4) reduces to (3).] We can identify (3)
and (4) for all values of the chemical potentials p, , provided

Q
( Jty d r ~

. Jt d r ~exp[ —u~( r ~, . . . , r ~)/kT]
0

(5)

with N =N1+N2+ . It is important to remark
that the particles newly introduced by (4) as con-
stituents of the hadron, with interparticle interactions
given by (5), possess the same masses as the quasi-
particles but are actua11y either fermions or bosons
but obey approximate Boltzmann statistics since
kT & 140 MeV.

It is evident that one need not assume, as done in
Ref. 4, that the quasiparticle mass spectrum p(m) be
identical to that of observed physical particles for a11

values of m in order to obtain the above results and
those that follow. One may assume, instead, that the
low-mass Fermi or Bose constituents are quarks and
gluons and the resulting higher-mass states —recall
that p(m) must grow exponentially as m ~~—
represent hadronic bound states of such objects.
Thus our model is quite consistent with quarks as
Fermi constituents of a hadron confined by the
dynamical attractions provided by the many-body po-
tentials satisfying (5).

The identification of (3) and (4) represents a duali-

ty transformation, albeit not self-dual. It maps a
theory with zero coupling constant, an ideal gas of

quasiparticles or topological excitations, into another
theory with nonzero coupling constants, a theory of
quarks interacting with gluons, say. It is important to
emphasize that our confining mechanism by means
of distinguishable quasiparticles implies that the
quasiparticle mass spectrum must grow exponentially
as the mass increases. Our model does not fix any
specific relationship between the quasiparticle masses
and that of observed elementary particles.

We have certainly not solved for u~( r ~, . . . , r ~)
with the aid of (5). However, (5) does exclude a
single-particle potential or mean field for the confin-
ing many-body potentials. Suppose

N

u~( r ), . . ., r g) = Xu ( r;)
i 1

then (5) gives
N

N)!N2! = J d r exp[ —u( r )/kT]
y Vo

and since the right-hand side depends on N1, N2, . . . ,
etc. , only through N =N1+N2+. ~ while the left-
hand side has explicit N1, N2, . . . dependence; hence,
a mean-field potential cannot satisfy (5). Notice that
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a trivial solution to (5) is a many-body force such
that it vanishes outside the confining volume Vo and
is given by the constant

—un(r ~, . . . , rn)/kT=lnNt!+1nNp!+ (6)

inside Vo, where N =N~+Nq+ . Notice that (6)
does not represent a temperature-dependent potential
since kT = 160 MeV. Also, two constituents of the
same mass in the presence of a third constituent of a
different mass does not give rise to a three-constit-
uent interaction, the two-body potentia1 is u~ = —110
MeV. However, if all three constituents are identi-
cal, then an attractive three-body interaction with un-
iform strength —290 MeV exists inside the confining
volume Vo. It is interesting that a purely repulsive
potential, viz. , un( r ~, . . . , r n) & 0 for r; inside

Vo, can never be a solution of (5); attractive interac-

tions are needed. Some of these results are reminis-
cent of the bag model of hadrons.

Our distinguishable quasiparticles or topological ex-
citations are solutions of the classical Klein-Gordon
equation. We want to quantize our classical solu-
tions; however, it is clear that the usual quantization
of the Klein-Gordon equation will not do. (The pro-
cess of second quantization is intimately based on the
notion of identical particles being indistinguishable
and either bosons or fermions. ) That is to say, our
quasiparticles are distinguishable and, thus, not obvi-
ously amenable to the methods of quantum field
theory. However, we shall now show that the
dynamical variables of distinguishable quasiparticles
are related actually to boson dynamical variables.

The probability of finding n;(p) quasiparticles of
the ith type with momentum p and so on is given by

n,.(p)
( ) [—E( )/k7'] X ( )

n;(p)!
t

From (7) we obtain the mean occupation number

g;(p) exp[ —E;(P)/kT]
n, p = n; p P = ,

1 —gg;(p) exp[ —E;( p)/kT)
p

where the sums are over all sets n;(p). Similarly for the pair correlation function

(7)

(8)

n, (p)nj(p ) = $n;(p)n;(p )P =(1+5;,)n;(p)n, (p )+5;,5,n;(p)

Notice that there is no correlation between quasiparti-
cles with different masses. However, the correlation
between quasiparticles of the same mass and momen-
tum is just as in an ideal Bose gas since

n&(p)nj(p') IBE=n;(p)n~(p )

+5J5,n;(p) [1+n;(p)] . (10)

Consequently, even though the single-particle distri-
bution (8) is of the Maxwell-Boltzmann type,
nevertheless, the two-particle distribution (9) resem-
bles that of an ideal Bose gas. Notice, in particular,
that for quasiparticles of the same mass but different
momenta, we have that the probability of two quasi-
particles being in the same mass state is greater than
with Bose statistics. Thus the attraction between con-
stituents is enhanced sufficiently to give confinement.
The close analogy to the Bose statistics can be seen
further by studying the fluctuations in the total
number of quasiparticles of a given type. From (7)
one has for the probability P (N) of finding N quasi-
particles that

P(N) = X P&(N&)Pg(Ng). . .
N)N

where the probability P;(N;) of finding Ã, quasiparti-

cles of the ith type is given by the geometric distribu-
tion

N;
P, (N, ) = (12)

!+N;, 1+N;

with N, = Xn, (p). From (12) one has that

ÃNJ = NNJ+5JN;(1+N;)

Consequently, from (11) and (12) we have that the
total number of quasiparticles of the ith type
behaves, vis-a-vis other type of quasiparticles, exactly
as an ideal Bose gas. More precisely, the set of
operators N; = g-n;(p) is completely equivalent to
the set of occupation number operators n ( p ) of an
assembly of bosons with no interaction between
them. Notice that the mass of the quasiparticle is
identified with the momentum of the boson. This
equivalence may be rather important for obtaining a
quantum field theory whose description of the struc-
ture of hadrons will result in the model postulated in
Ref. 4. However, we have found no indication of
this equivalence in current field-theoretic efforts with
non-Abelian gauge theories.

Part of this work was carried out at Montana State
University where the author spent his sabbatical year.
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