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New two-soliton solution to the Einstein equations
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Using the inverse scattering method a new two-soliton solution to the Einstein equations for an

axially symmetric space-time is obtained.

One of the most appealing methods used to solve
the Einstein equations for stationary axially sym-
metric space-times is the inverse scattering method. '
The actual application of this method requires the ex-
plicit integration of an overdetermined system of
linear partial differential equations. To find integrals
that can be expressed in closed form for the above-
mentioned system of equations is not an easy task.
Thus few new exact solutions to the Einstein equa-
tions have been obtained using the inverse scattering
methods, ' ' although some very interesting proper-
ties of known solutions have been discovered, e.g. ,
the interpretation of the Tomimatsu-Sato solution as
the "superposition" of n Kerr solutions. 4 The rela-
tion between the inverse scattering method with oth-
er solution-generating techniques, e.g. , Backlund
transformations, has been studied in some detail. ' '

The purpose of this paper is to exhibit a new two-
soliton solution to the Einstein equations using the
Belinsky-Zakharov solution-generating technique,
i.e., the inverse scattering method. '

The stationary axially symmetric metric can be
written as

dsz =g dxo dxb+f(dr2+ dz2)

Soliton solutions to (3) are obtained solving the
"Schrodinger" equations
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for the wave function Qo. This wave function is a
2 &2 complex matrix function of r, z, and the spec-
tral parameter X. Uo and Vo are obtained replacing g
in (6) by a known solution to (3), go. The solution
go is called the "seed" or "background" solution.
The knowledge of Po allows us to find the new solu-
tion g to Eq. (3), given by
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where the indices a and b take the values 0 and 1.
g,b and fare functions of z and r only, and (/, S)—= (x',x'). Also,

detg =—r2,

where g is the 2 x 2 matrix associated to g,b.
The Einstein equations for the metric (1) can be

written as'
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where the subscripts r and z denote partial differen-
tiation. The condition of integrability of f, i.e. ,

f =f„, is exactly Eq. (3), thus any solution to (3)
will give us an f that can be obtained as a simple
quadrature of (4) and (S).

g""= rg/( —detg)' ', (18)

that satisfies the condition (2) and is also a solution

where the summation convention on the indices a
and b has been adopted. The indices k and I run
from 1 to n, n being the number of solitons. mob
and nk are sets of arbitrary constants. The matrix as-
sociated with (11) is symmetric and is a solution to
(3), but, in general, it will not satisfy the condition
(2). To remedy this problem we can define a new
matrix,
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to (3). The determinant of (11) can be explicitly
computed to give

detg„=( —1)"r2"g(p, ') detgp
l1

(19)

A solution to Eqs. (24)—(26) is

detpp ———r2+ 32+2hz

From Eqs. (7), (8), (21), and (23) we find that
(Iflp) 11 is determined by

(27)

We shall take as our seed solution the solution to
the vacuum Einstein equations,

ds =(gp),bdx'dx +fp(dr +dz )

(gp) op
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where a, b, and c are constants. It is a matter of sim-
ple computation to show that (20) satisfies Eqs.
(3)-(s).

The function Qp associated with the particular "po-
tential" gp given by (21) can be found in the follow-
ing way. First, we notice that pp must satisfy the ini-
tial condition
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Also, from (27) we find that (lftp)22 is determined by
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A direct computation shows that
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This condition is a consequence of Eqs. (7) and (8).
Since the seed solution (21) is diagonal, i.e., (gp) 12

=(gp)21 =0, one may assume that Qp is also a diago-
nal matrix. With this assumption, Eqs. (7), (8),
(23), and (2) yield

is a solution to (28)—(30). Thus
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The two-soliton solution to Eq. (3) associated with
the particular solution (21) is obtained letting k and l
take the values1and 2 in (11)—(17), and from the
Pp given by (32) and (33). Thus
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J.et us first consider the general case, i.e., all m0,
"' ~0. In this case we can cast the different functions appearing
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in (35) as
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where the new constants Ak, Sk, 8, and e are related
to the old constants by
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The functions yk and x are related to r and z by

yk= bin(2~kpk/r)+a(z+ pk)

+c( ,'r' z+') ——2c(z+ —,
'

p,„)' (48)

x =—in(4nlu2pl p2/r ) +a[z+ —(pl+ p2)]
b 2 1

2 2

+c[ ,'r' z' 4(P,1—'+P—,2) ——z(P,1+P,2)] . (49)

The physical gis obtained from (34) as follows:

g'"=(plp2/r')(g() —g) (50)

To complete the integration of (3)—(5) we need to
compute f; this can be done using the method of
Ref. 1. We find
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where fp and ~ are given by (22) and (36), respec-
tively, and E is an arbitrary constant.

Some interesting particular cases of (34) are ob-
tained, making the following restrictions on the con-
stants m "'. m ' = m =0 m ' = m =0 m ('
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cases, we get
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where ~1 and e2 are constants that can take the values
+1. The form of the relations (52) —(54) suggests
how to construct a diagonal 2n-soliton solution' out
of any diagonal seed solution go.

In order to give a physical interpretation to the
solution obtained we shall first study the seed solu-
tion (fp, go). This solution has an essential singular-

ity at r =0, and at r ~ the physical components of
the Riemann-Christoffel tensor go to zero. By physi-
cal components we mean the components projected
along the vierbeins associated with (20)—(22). One
can prove the previous statements by computing the
curvature tensor and noticing that when r

fp ~ faster thananypower of r, as long as c&0
and zremains finite. Thus the solution (fp, gp)
represents a wire located on the z axis. In the same
way, one can prove that the solutions (52) —(54) also
describe a wire, but with different density distribu-
tions. We note that the asymptotically flat character
of the solution at r ~ is maintained after the
"dressing" of the solution with two solitons.

The general case given by (50)—(51) might be in-

terpreted as a rotating wire. The singular character of
the solution at r =0 is apparent, but that this solution
is asymptotically flat when r 0o needs to be proved.
Cosgrove' proved the following theorem: It is always

possible to choose constants mob in such a way that
if we start with an asymptotically flat seed solution,
after the dressing of this solution we end up with

another asymptotically flat solution. Unhappily, the
concept of asymptotical flatness used to show the
theorem cannot be used in the present case.

The functions p, 1 and p, 2 can be either real or com-
plex conjugated. In this last case it is always possible
to choose constants mob in such a way that the final

solution is real. ' Letting p,1=p.2, b =1, and
a =c =0 in (34) and (35), we find that (34) and

(51) reduces to the Kerr-NUT (Newman-Unti-
Tamburino) solution. This can be proved directly us-

ing the transformations of coordinates given in Ref.
1, or by noticing that the particular choices b =1 and
a = c =0 reduce the seed solution to the Minkowski
metric in cylindrical coordinates, and that the Kerr-
NUT solution is obtained' dressing this metric with

two complex conjugated "poles" p, and p.'.
Finally, we want to add that the solution (34) is

closely related to a two-soliton solution for self-dual
SU(2) gauge fields on Euclidean space. This relation
was studied in Ref. 9.
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