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The mass perturbation and the evolution equation of fermion masses are studied in dif-
ferent gauge models on the basis of the Dyson-Schwinger equation. In theories with
spontaneous symmetry breaking, we recover the results obtained using the renormaliza-
tion-group method for momentum scales well above symmetry breaking and obtain new

results for energies close to, or well below, the symmetry-violating scale, where spontane-
ous symmetry breaking gives an important contribution to the self-mass of a fermion.
We examine the contribution to self-masses in the SU(3))&U(1), gauge theory and in the
SU(3) XSU(2))&U(1) model and discuss the relevance of embedding the standard com-
ponent model in the structure of SU(5). For asymptotically free grand unified models,
the self-masses are individually finite with no constraint on the number of quark or lep-
ton flavors. Within this context we examine the possibility that the proton-neutron mass
difference is determined by the very short distance scale associated with the unified
theory of the strong, weak, and electromagnetic interactions.

I. INTRODUCTION

The description of the fundamental interactions
based on the theory of gauge fields brings a new

perspective to the old unsolved problem of the
self-mass of hadrons. ' Non-Abelian gauge theories
such as quantum chromodynainics (QCD) and
grand unified models which are asymptotically free
can give new and unexpected answers to the typical
questions encountered in the study of the asymp-
totic behavior of quantum electrodynamics. In a
recent paper (hereafter referred to as I) the prob-
lem of the ultraviolet behavior of self-masses was
examined in the context of the Dyson-Schwinger
equation for the self-energy in QCD. An integral
equation for the quark running mass equivalent to
the renormalization-group equation (RGE) was
obtained, and it was shown that the lowest-order
electromagnetic perturbation to the self-energy
leads to a finite mass shift, provided that the num-
ber of quark fiavors is greater than or equal to
eleven. This result contradicts the conclusions of
Weinberg and Collins which are based on the
operator-product expansion (OPE) of the Cotting-
ham formula, ' expressed as the one-photon loop
integrated over the virtual forward Compton am-
plitude T&& of a proton, computed to all orders in
the strong interaction. Since the leading operators
in the short-distance expansion of T„I' are
renormalization-group invariants, one obtains the

usual logarithmically divergent result correspond-
ing to the bare mass in the Lagrangian.

The traditional calculation of self-energies
suffers from two major difficulties: the self-mass
of a fermion and corrections to mass differences
are infinite; and the sign of the lowest-order elec-
tromagnetic contribution to the self-energy tends to
make the u quark heavier than the d quark (proton
heavier than neutron). Regardless of the ultimate
origin of the mass, these problems should be
answered unambiguously in order to compute the
radiative contribution to fermion masses or to
mass differences. If the leading contribution is ab-
sorbed into a Coleman-Glashow tadpole, an arbi-
trary parameter is introduced in order to impose a
cutoff in the photon momentum so that nothing is
gained at a fundamental level. Another approach
to overcoming the divergence is to introduce a
dynamical mass insertion. ' In this case, the form
factor associated with the wave function of the
bound fermion pair leads to an ultraviolet cutoff.
Although this is a very interesting possibility, it
suffers from the inherent problems of the hyper-
color models. In renormalizable gauge theories
with spontaneous symmetry breaking (SSB), there
are certain natural mass relations at the tree level
of symmetry breaking, such as m~ =m, in SU(5).'

For such models the zeroth-order contribution to
some masses, or mass differences, vanishes as a
consequence of the symmetry content of the
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theory, but the sum of higher-order effects from
the unbroken symmetries is finite in each order of
perturbation theory since any counterterms in the
Lagrangian also obey the symmetry relation. "
However, in the standard model of the electroweak
interactions, where the fermions are contained in
complex representations of SU(2) )(U(1), a mechan-
ism of cancellation of electromagnetic divergences

by the weak interactions does not exist for the u-d
mass difference. ' In grand unified models' m„
and md are largely unrelated, unless extra sym-
metries are introduced in a rather arbitrary way.
Even in the SO(10) model, where all the fermions
in a given generation are in the same irreducible
representation, m„and md are generated at the tree
level by different components of the Higgs repre-
sentation.

In the OPE of the Compton amplitude, the lead-

ing operator Qy ffff is not a flavor singlet, and
unless some very restrictive model is found a can-
cellation of infinities for the dd =1 mass differ-
ences, such as proton-neutron, is not guaranteed.
We consider here another possibility, namely, that
the electromagnetic and weak contributions to the
self-energy of a fermion are individually finite. As
stated above, the lowest-order perturbation of the
Dyson-Schwinger equation for the self-energy in
the combined QED-QCD theory leads to a conver-

21
gent result if nf & —, . How can these conflicting
results be reconciled? Recently, Dine' extended
the results of I to models possessing natural mass
relations and SSB and found that the prescription
described in I agrees with the conventional
methods for models with zeroth-order relations
among fermion masses. In the absence of such
zeroth-order symmetry relations the problem is not
so well understood. Based on renormalization-
group methods, Kiskis and West' have noticed
that the convergent solution found in I forces the
bare parameters in the QCD Lagrangian to have a
dependence on the electric charge. On the other
hand, Craigie, Narison, and Riazuddin' have
shown that the reordering of summation and in-
tegration of the photon loop relative to the gluon
loop plays a crucial role in the electromagnetic
mass-shift calculation. In fact, in the Cottingham
formula, the photon loop integration is done last,
and the quark mass is renormalized only by the
strong interactions with a cancellation of the
QCD effects. If we impose the condition that the
result be independent of the order of integration,
the results of I are found'; namely, a finite mass
perturbation with the arbitrarily large cutoff in the

Weisskopf divergence being replaced by the QCD
scale parameter A, thus ensuring a sign reversal for
p gA.

In any case, the electromagnetic perturbation to
quark running masses found in I leads to a value
of the mass shift that is rather too small to ac-
count for the observed p-n mass difference. In his
work Dine' found that quark masses and natural
mass relations acquire large corrections from
high-energy symmetry-breaking scales. It is thus
of interest to examine the problem of the u-d
quark mass difference in grand unified theories of
the strong, electromagnetic, and weak interactions
since the mass shift can receive important contri-
butions from the very short distance scale of grand
unification. Furthermore, if the theory is embed-
ded in a grand unified group which is asymptoti-
cally free, the constraint on a minimum number of
flavors and the difficulties pointed out in Ref. 15
are no longer present.

In this paper we derive the evolution equation
for fermion masses for different gauge models
from the Dyson equation for the self-energy. In
theories where the symmetry is spontaneously bro-
ken, we find that our results are identical with the
renormalization-group results of Buras, Ellis, Gail-
lard, and Nanopoulos' (BEGN) and Elias, ' for
energies well above the symmetry-violating scale.
To include the effects of symmetry breaking, we

study the lowest-order perturbation of a fermion
running mass by the electroweak interaction and
the baryon- and lepton-number-violating interac-
tions of grand unification which, as found by
Dine, ' is logarithmically sensitive to the
symmetry-violating scale. A closed-form solution
for the mass perturbation is found for the various
models considered. The advantage of the method
of calculation discussed here is that the solution is
not limited to the high-energy range (well above
SSB), and the various components of the
anomalous dimension of the fermion mass operator
are easily identified.

In Sec. II we review briefly the standard ap-
proach for computing mass differences based on
the OPE and outline the main results of Ref. 2.
We consider the electromagnetic contribution of
order a to a QCD quark running mass and write
the SU(3) XU(1)~ evolution equation. The results
of Sec. II can be extended without difficulty to
gauge models where the left- and right-handed
fields are not necessarily in the same representa-
tion. As a specific example we consider in Sec. III
the standard SU(3) ~ SU(2) XU(1} model. The con-
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II. THE SELF-ENERGY IN QCD

We begin our discussion with the study of the
self-energy in the combined QED-QCD theory.
Using the Cottingham formula and the OPE, it is
not difficult to show that the ultraviolet elec-
tromagnetic contribution to a hadronic mass differ-
ence contains the usual QED divergence with all
the effects from the strong interactions cancelling
out. ' The Cottingham formula' gives the
lowest-order electromagnetic contribution to the
hadron mass M,

5M=
e' id'q T,"(q'P q}

(2m. ) q +is
where

(2.1)

tribution to self-masses from the SU(2) sector is
obviously zero in the Landau gauge, since only the
left-handed fermions are coupled to the gauge
fields. At large momentum scales SSB is ignared,
and the BEGN' renormalization-group result
[apart from the SU(2) factor] follows from the
solution of the Dysan equation, written as an evo-
lution equation in terms of the SU(3) and U(1) run-

ning coupling constants. To include the effects of
symmetry breaking, we write the U(1) Lagrangian
in terms of gauge fields of definite mass Ai' and
Z" to obtain the lowest-order perturbation from
the electroweak interaction.

The effects of the interaction of the baryon- and
lepton-number-violating currents with the su-

perheavy gauge bosons characteristic of grand uni-

fied theories are examined in Sec. IV. The calcula-
tions are carried out explicitly in the simplest
theory of grand unification based on SU(5). 'o At
momentum scales well above Mz we find evolution
equations for the masses of the electron, u- and d
quark equivalent to the RGE, ' and obtain an ex-
pression for the self-energy of the quarks which is

valid above and below M~. We give an estimate of
the radiative contribution to the light-quark-mass
ratio md/m„renormalized relative to the QCD
scale A. At low energies, the self-energy is largely
dominated by the contribution from spontaneous
symmetry breaking at the grand unification scale.
A discussion of the results is presented in Sec. V.

of momentum p. We expand the product of
currents in (2.2) inta a complete set of operators 8'
for q &&p and p q,

00

5M= I, 2 gC;(q )(p
~
d'q„~p},

4m.M p' q

(2.3)

where C;(q ) is the Wilson coefficient which satis-
fies the RGE. The scalar operators of lowest
dimensionality (leading operators) are Q~ mf ffQf
and G&„G'I'", where Qf and mf are quark charge
and mass, P is the matter field, and G„'„ is the
gauge field tensor. These operators have no
anomalous dimension. The corresponding coeffi-
cient C; behaves as a constant for large q and the
self-energy diverges logarithmically. ""The
gluon contribution G is a flavor singlet and can-
cels when computing mass differences. The
higher-order operators have anomalous dimensions,
but are suppressed by inverse powers of q . Thus,
the large-q contribution to mass differences is
computed in this framework as if quarks were
decoupled from the strong interactions.

Let us remark that for EI =2 mass differences
such as m + —m+ or m&++m& —2m 0, there is

a neat cancellation for large q of the radiative
contribution due to the flavor-dependent divergent
terms arising from the leading operator Q mglit in
the OPE, and the mass shift is computed success-
fully in terms of a dispersion integral over low-

lying resonances. ' For LU =1 mass differences

such as m& —m„ the large-q cancellation is absent.
This is the origin of the subtraction term in the
dispersion integral in the Cottingham formula,
which has made impossible any progress along this
line. ' It can also be noted that quark masses at the
tree level of symmetry breaking do not contribute
to the b,I =2 mass differences, which contain the
same average number of quarks.

Let us consider the ultraviolet behavior of the
self-energy in the context of the Dyson-Schwinger
equation and examine the lowest-order electromag-
netic perturbation to a quark mass in QCD. We
write a renormalized Dyson equation in terms of
the running coupling constant g (p } and the run-

ning mass m (p } which is defined as the pole in

T„„=I d xe'~ "(p
~
j„(x)J„(0)'~ p) (2.2)

is the virtual Compton amplitude for the scattering
of a photon of momentum q of a hadronic target FIG. 1. Dyson equation for the self-energy in QCD.
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where y= 3'/po. To order a, the electromagnet-
ic perturbation 5m (p ) to the QCD running mass
m (p ) has the following form for large p (Fig.
2):

00

5m(p )= Q» a f 2 m(q )
4~ ~ p2 q2

d 2

CF f, 2 ai(q )5m(q ) .
4m p2 q2

(2.9)

FIG. 2. Dyson equation for calculating the lowest-
order electromagnetic perturbation to a quark mass in
QCD.

2

m(p2)= CF f, ai(q )m(q ), (2.4)

provided that in the limit as p —+ 0o, m (p ) van-
ishes. C~ is the quadratic Casimir operator of the
fermion representation and ai is the @CD running
coupling constant for large q,

a3(q ) = 4m

Poin(q /A )
(2.5)

2
with Po ——11 Tn/ a—nd where A sets the scale of
the strong interactions. We can express (2.4) as an
evolution equation,

dm (p) dp

m(p) /
p

where

(2.6)

the renormalized off-shell fermion propagator.
The resulting integral for the running mass, after
Wick rotation, is expected to be convergent in the
deep Euclidean region, at least for asymptotically
free theories. In the leading-logarithm approxima-
tion for g,

' the contribution from the region of in-

tegration q »p and p q, for large p, in the Lan-
dau gauge is given by the homogeneous equation
(Fig. 1)

We can write Eq. (2.9) in operator notation as
follows:

5m =E+A5m . (2.10)

5m(p )= — aQ» m(p )ln +Cm(p ) .

(2.11)

We set C equal to zero since this term has no
dependence on n and should be absorbed in the de-
finition of m (p ) which is a free parameter in the
standard model. This choice for the constant C

This type of equation has been extensively used
in the study of feedback mechanisms. ' E: is the
driving term which contains the contribution from
the emission and reabsorption of virtual photons
[Fig. 2(a)]. The integral operator A describes the
mechanism of "feedback" by the strong interac-
tions: the modifications in the strong forces due to
electromagnetism, which are proportional to 5m it-
self. In our calculation this term corresponds to
the modification of the QCD vertex function and

propagators [Figs. 2(b) and 2(c)], and is determined
for large p to lowest order in the electromagnetic
interaction. In the usual approach"' the integral
operator A is zero.

If y& 1 (n/ & 11}the driving term in the integral
equation (2.9) is convergent and the solution is

y/= —3g Cp/8m (2.7)

is the anomalous dimension of the fermion mass
operator. This expression is identical with the re-
sult obtained by the renormalization-group equa-
tion. Integration of (2.6) gives the well-known re-
sult

aq(p')
m(p )=m(M }

ai(M )
]

(2.8) FIG. 3. Dyson equation for computing the evolution
equations of quark running masses in SU(3}„~„)&U(1}
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has been questioned in Refs. 14 and 15. An alter-
native method of solution would be to include ap-
propriate boundary conditions for the fermion
masses at some grand unified scale and evolve the
masses to lower energies using the renormaliza-
tion-group equations. However, in the present pa-
per we are mainly concerned with the radiative
contribution from SSB which has not been includ-

ed in the usual ROE approach.
The SU(3) XU(1), evolution equation for the

running mass is obtained from the integral equa-
tion corresponding to the diagrams illustrated in

Fig. 3,

2 3
m(p )= J, [Q» a(q )+Cza3(q )]m(q ),

3

10

4

9
1

15

1

9
1

30

C(2)

g(3)

C(5)

4
3
12

5

4
3
9
5

TABLE I. Values of the Casimir operator Cy" for
LR

various gauge models relevant to the calculation of self-

energies well above the spontaneous symmetry-breaking
scale.

(2.12)

yy= 3e» lgn. —3g C~lgn. —, (2.14)

to first order in a and a&. Integration of Eq. (2.6)

corresponding to yy given by (2.14) yields

m(p )=m(M )
a(M )

9Q 2

4KI a3(p ~
)

a3(M )

(2.15)

III. ELECTROWEAK CONTRIBUTIONS
TO FERMION MASSES

In this section we extend the results of Sec. II to
groups having complex fermion representations.
As a specific example, we consider the standard
@CD-electroweak theory based on the group
SU(3) XSU(2) XU(1). At sufficiently high momen-

tum scales where the effects of spontaneous sym-

metry breaking can be ignored, the fermion mass
dimension yj of a fermion f corresponding to the

gauge group 6;, has the form

yj = —3g; Cy' /82 (3.1)

where a(q ) is the running coupling constant of
@ED,

a(p')
, &y=+Qn'.

1 K (P)l„q2 2

f 3~ 2

(2.13)

Equation (2.12) can be expressed as an evolution

equation of the form (2.6) with

to second order in g. Cf' is a Casimir operator

which corresponds to a loop diagram with a mass

insertion in the fermion propagator, attached to a
left-handed fermion at one end, and to a right-
handed one at the other end, in order to change
helicity. (In @CD C~

' ——CF ———,.) We calculate

Cf"„ for a given flavor, as a sum over all the con-

tributions to the self-energy due to the interaction
of the fermion fields with the gauge bosons of G;.
The values of this operator are listed in Table I for
the various models considered in this paper. To il-

lustrate the method discussed here we derive first
the SU(3) XSU(2) XU(1) evolution equation for the
fermion masses well above SSB, and later deter-

mine how the expression (3.1) is modified in the

presence of symmetry breaking. As mentioned in

Sec. I, the SU(2) sector does not contribute to the
self-mass (in the Landau gauge) since only the
left-handed fields are coupled to the gauge bosons.

The relevant contributions to the Dyson equation

for the running mass are obtained from the U(1)
interaction Lagrangian, '

(4ii„y„g„+gLyquL 2dgyqdR+ —Lyp L
gi

60
—6&R yil ea —3eL ypeL —3&L yp&L )II

(3.2)

with pL z ———,(1+yq)g. For large p we obtain the

following integral equation for the u and d quark
running masses (Fig. 4):

00

m„d(p )= I, [CI„"di ai(q )+CFa3(q )]m„d(q ), (3.3)
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U, d U)d
e- ~ e- e

FIG. 5. Dyson equation for calculating the running

mass of the electron in SU(2) XU(1).

U)d U, d

FIG. 4. Dyson equation for calculating the evolution

equations of quark running masses in SU(3) XSU(2)

XU(1).

where a~(q ) is the U(1) running coupling constant

ye =—3gt'C,'," /8n

Direct integration of (3.6) gives

(3.8)

a~(q2}=
a, (p')

off
ai(p )ln(q /p, )

6m.

(3.4)
m„(p )=m„(M )

ai(M ) a3(M )

(3.9)

The corresponding equation for the electron
(Fig. 5) is given by

00

m&(p') =m, (M')
ai(M') a,(M'}

with

dmf (p }

mf(p) f
p

( ) (3.6)

(3.5)

~e can express Eqs. (33) and (3.5) in the form
of an evolution equation,

and

( 2)
—27 /20m/

m, (p ) =m, (M2)
a,(M')

(3.10)

(3.11)

and

ya, d= 3g& C(s—,d) „/8+—3g3 CF/8m

(3.7)

which are identical with the BEGN results of Ref.
17 except for the SU(2} factor in that reference.
To include the effects of symmetry breaking, we

write the U(1) Lagrangian in terms of mass eigen-

states Az and Z&.

P~=gsin8u( —ey&e+ 3uy&u , dy&d)—A —+ [ —,very„vL, —, e~y„ez+ , g~y—„u~——,d y—d

+sin 8&(ey„e —,uy„u—+ —,dy„d)]Z (3.12)

The corresponding integral equations for the interaction Lagrangian (3.12) for large p in the 't Hooft-

Landau gauge are given by

m„(p )= Q„, a(q )m„(q )+ ( —, sin 8~——, ) I, as(q )m„(q )
3 2

~ dq 2 2 3 4 . p 1 ~ dq

+ CF, 2 a3(q )m„(q ),
77 p (3.13)
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md(p )= Qd f, a(q )md(q )+ ( —,
'

sin 8~ ——,') f" as(q )md(q )

and

+ CF, &
a~(q )md(q ),3 ~ 6'

4m p' q

3 2

m, (p ) = f, a(q )m, (q )+ sin 8s ——, f, q as (q )m, (q ),

(3.14)

(3.15)

where

tan8~ ——g' jg, e =g sin8+ .

From the above equations we derive the anomalous dimension yf in the presence of SSB. In the
SU(3) X SU(2))&U(1) model it has the form

(3.16)

2

y„(p)= — „e„'—,( —', sin'8s, ——,
' )g', P

sm' " sm' ' ' p'+~z'
3 2 3 & . 2 & i2

yd(p) =— ed —
2

( —, sin 8w —
6

)g'
gH g~' ' ' p'+~z'

3 2, CFS~
Sm

(3.17)

(3.18)

and

2

y, (p)= — e — (sin 8~——, )gs~' SH ' p'+I ' (3.19)

For momentum scales well above symmetry breaking, p ))~z, we recover Eqs. (3.3) and (3.5) which

reproduce the BEGN results, provided that we set as ———,a, . The common factor —, has its origin in the

hypercharge generator, which is normalized to v'3/Sy in the U(1) current in (3.2). We solve Eqs. (3.13) and

0.14) to lowest order in a and a .. Since the SU(3) color sector of the theory couples identically to the dif-

ferent quarks, the radiative contribution to the u-d mass shift is determined to lowest order in the elec-

troweak interaction from the mass perturbation, 5m (p ), to the SU(3) ru»ing mass component which we

henceforth will label m'(p2). We write the corresponding equations as foHows:

2 00

3+ CF

5md(p )= Qd a
4m

3
CF

00f q a~(q )5m„(q ),
p q

2 00

2 2 md(q )+ (9 sin 8W —6)ag 2 2 2md(q )
Qq 2 3 & . 2 i dq , 2

p 4g 9 g p2 q 2+M 2

00f a&(q )5md(q ) .
p q

(3.20)

(3.21)

The solution to the above equations is given by

2

5m„(p )= — Q„aml(p )ln
2 2

( —, sin 8+ ——, )asm„'(p )ln
3 4 . 2 1, 2 P+~Z

9 3 g Q
A

(3.22)

2 2 2

5md(p )= — Qd amd(p )ln — ( —, sin 8s ——)a md(p )ln2 3 2 s 2 P 3 2 s 2

4m. 4m A
(3.23)



3708 GUY F. dc TERAMOND 26

At low energies p «Mz (sin 8~-0.2) we ob-

tain

2

5m„(p )= a)m„'(p )In
3, Mz

20m. A
(3.24)

2Mz
5md(p )= a)md(p )ln

40m. A
(3.25)

The embedding of the standard SU(3) &(SU(2)
&(U(1) component model in the structure of a
larger underlying group has important conse-

This result exhibits an important feature, since the
sign of the self-energy is opposite to that obtained
in Eq. (2.11). This example shows that the sign of
the radiative contribution to a fermion mass de-

pends on the group content of the theory. To en-

sure the ultraviolet convergence of the self-energy
integrals, the number of flavors have again to be

21 33
restricted by the condition —, (nf (

IV. MASS PERTURBATION IN SU(5)

quences for the fermion mass spectrum. The ap-
pearance of additional gauge-boson degrees of free-
dom, associated with the new symmetry generators,
is expected to give a significant radiative contribu-
tion to the self-energy of a fermion due to SSB at
the grand unification scale. In this section we give
our results for the SU(5) model of Georgi and
Glashow, ' but the method can be easily general-
ized to other models.

We first derive the evolution equation for fer-
mion masses. In the energy region p g~M~, the
effects of symmetry breaking can be ignored, and
the different interactions, which behave very much
alike, can be regrouped into a single expression for
the running mass, in order to build the SU(5)
anomalous dimension of the fermion mass opera-
tor. To include the effects of symmetry breaking
at the grand unified mass Mx we next study the
lowest-order mass perturbation, 5m (p ), in the
SU(5) running coupling constant az.

We write the SU(5) interaction Lagrangian in
terms of a single coupling constant g5 as follows':

8 3 V
&5=g5+(uy" , A'u+—dy, I' —,A,'d)A~+g5+ (u d)Ly" , r'

d
—+.(v e )Ly& —,r'

i=1 i=1 L e L

+ (4uR3 uR+uLy uL 2dR Y dR +dL Y dL 6e R 3 eR 3e L Y eL 3 vyLvL)~v6o

+ ~ (eabdu dL Y ubL +day e )X/l+H c + (eabdu dLy dbL uaL Y eL +daR Y vR )~p+H c

(4.1)

The first three terms in (4.1) are the conventional SU(3), SU(2), and U(1) interactions above Mz, and the
last two describe the interaction of the lepton- and baryon-number-violating currents with the superheavy X

4 1and Y'bosons which carry color, charge, and flavor quantum numbers (Qx ———,, Qr ———,). To determine
which diagrams in the above Lagrangian give a nonvanishing contribution to the Dyson equation for the
self-mass, we expand the complete fermion propagator,

0 T g(x)P(x')exp i fW(x)dx
4

0 =f p, e 'R'" "'IiS(p)+iS(p)[ —iX(p)]iS(p)+ .
j

(2m )
(4.2)

(4.3)

(4 4)

in terms of a5. As noted previously, the only nonvanishing contributions to the self-energy X(p) from the
SU(3) )& SU(2) )& U(1) sector of the theory are due to the color and the U(1) interactions. As regards the in-
teraction with the X and F bosons, it follows from the particular form of the SU(5) Lagrangian (4.1), that
the only nonvanishing products of field operators are the following (recall that 1it,L y&1(tbL ———g bRYI'g,'R):

fd y f d z(o
~
TI u(x)[u,R(y)]a[udR(y)]p[u bL(z)]~[uaL(z)]s u(x') J ~

0),
fd'y fd'z(O

~
TId(x)[dbR(y) J.[eR+(y)]~[e L+(z)],.[d.L(z)] s d(x ) J (O),
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-I=
u U

(a)
d=e=d d

(a)
d

U U U

(b)

-d'
d

(c)
d

FIG. 6. Dyson equation for computing the u-quark
running mass in SU(5). The superheavy gauge bosons of
grand unification are denoted by X, the gauge bosons of
U(1) by 8, and g denotes the gauge bosons of the SU(3)
sector.

FIG. 7. Dyson equation for the d-quark running
mass in SU(5).

and

fd y fd z&o ~?'Ie+(x)[em(y)] [dbms(y)lp[ZaL, (z)ly[el+. (z)]se +(x')I
I
O) . (4.5)

The relevant self-energy diagrams for the u, d, and e in SU(5) are indicated in Figs. 6—8. The corre-

sponding Dyson equations for large p in the 't Hooft-Landau gauge are given by

2 00

ms(p )= f, as(q )m„(q )+f Cu +CF as(q )mu(q )
4~ u' q +M~ P2 q2 LR

(4.6)

00 00

md(p )= —, , as(q )m +(q )+, Cq +CF a, (q )md(q )
2 3 ~

" dq 2 2 "dq (&)

u' q +My e p2 q2 LR

2 2

m, +(p )= —,f, 2 &as(q )m~(q )+f, C'+'as(q )m +(q ) (4.8)

Note that the first term in Eq. (4.8) is a factor
of 3 greater than the first term in Eq. (4.7) whereas

Eq. (4.6) is a factor 2 greater. These factors have
their origin in the different intermediate states.
For example, the factor 3 in Eq. (4.8) corresponds
to the three color states of the quark propagator
[Fig. 8(a)]. The occurrence of the factor 2 in Eq.
(4.6) can be explained as follows. Suppose that the
initial u quark in Fig. 6(a) is in a red state

~

R ).
It then follows from color conservation that the
only possible color states of the intermediate X bo-
son and u' antiquark,

~
X,u'), are the

~

Y,B) and
the

~
B,Y) states, thus yielding the factor 2.

We can write the above equations in a form
equivalent to the RGE (Ref. 18) above the grand
unification mass (GUM) if we set md ——m, . At
first sight this is surprising since we are not invok-

ing a particular Higgs-boson structure, but it is

e+ ~ e+ e+ e+

e+
(b)

e+

FIG. 8. Dyson equation for the electron running

mass in SU(5).

compatible with the model since the left- or right-
handed components of d and e stand on equal foot-
ing in the SU(5) multiplets. As a result, the
anomalous dimension of d and e are degenerate in

SU(5).' For p p&Mx
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CO

mj (p') = Cg" I, , a,(q')mg(q'),
4~ LR p2 q2

(4.9)
where

(5) 1 4 12C„=1+—+ —,=—,
1S 3 S

1 1 4 9

U U

3 3 9
C

Alternatively, we can write Eq. (4.9) as an evolu-

tion equation, u 0 0

dmf (p ) ( s ) dp
=yy (p)

mI(p) ~ p

with

(4.10) FIG. 9. Relevant diagrams for the Dyson equations
to compute the lowest-order mass perturbation in aGUM
to the u quark in SU(5).

y(5)(p} 3g C y8+ (4.11)

This expression is valid for p »Mx . The
correct expression for the anomalous dimension

yI
' above Mx including the effects of SSB at the

grand unification scale is derived from Eqs.
(4.6)—(4.8) and is given by

y(5)( ) g
2 C(i) +C +p2y(p2+M 2)

(4.12)

,gs' Cd,",+CF+ p'~(p'+M—x')

(4.13)

and

Finally, we evaluate the radiative contribution to
the u-d quark mass difference from SSB at the
grand unification scale. To lowest order in a& it is
determined by the contributions of the U(1) and
the lepton- and baryon-number-violating interac-
tions to the mass perturbation, 5m(p ), of the
SU(3) running mass component, m'(p ). The
dominant contribution to the mass shift comes
from the M~ scale where m~ ——m, and the running
fine structure constants a&, a2, a3 of the group
SU(3) XSU(2) XU(1}approach a common value, al-

though the contributions from the different sub-

groups differ according to the particular weight
factor of the Casimir operator C". For SU(2),
C' ' vanishes in the Landau gauge, whereas the
contribution from U(1) is rather small (see Table
I}.i3 We obtain the following Dyson equation for
5m (p ) (Figs. 9 and 10):

m (p }=~&GUM 2 2 2mu(q
p2 q 2+M 2

2

CFI, q a(q )5m„(q ),4a p' q2

X

d d

d

FIG. 10. Dyson equation for the lowest-order pertur-
bation in a«M to the d-quark mass in SU(5).

(4.15)

2=35md(p }— +GUM 2 2 md(q )p'q +M

+ CF, ag(q )5md(q ),
4m p' q2

(4.16)

with a, =a3, for p &Mx and a, =a& for

p & M& . Here we have factored out the X-uu'
and the I-de+ vertex functions from the driving
terms in the integral equations, and replaced them
by the SU(5) coupling constant at the SSB scale,
aoUM ——a,(MX ), since the most important contri-2

bution to the integrals appearing above comes from
the neighborhood of Mz . Note that since
a5(q )m (q ) decreases faster than a logarithm
without restriction on a minimum number of fla-
vors, the driving terms are well defined at infinity.
The solution to Eqs. (4.15) and (4.16) is given by
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p +My2 2

5m„(p )=— aoUMm„'(p )ln

(4.17)

2= 3 p +My2 2

5md(P } aGUMmd(P8a A

(4.18)

up to corrections of the order of ln in(Mx /A )

from the momentum dependence of the SU(5} run-

ning coupling constant in the driving terms iri Eqs.
(4.15) and (4.16). If we identify the strong com-
ponents of the mass by

m (p2}=m'(pz)+5m(p ),
we find the following ratio for p «Mx

(4.19)

md /mg

md /m„'

Mx
1 (3/4n—)aGUMln.

A

Mx
1 —(3/8ir)aoUMln

A

=1.35+0.05 . (4.20)

md/m„=1. 35 . (4.21)

This result is to be compared with the current
mass ratio ' 1.5&md/m„&2. If we set md ——7
MeV we obtain m„=5.2 MeV. Spontaneous sym-
metry breaking at the grand unification scale gives
an important contribution to the u-d mass differ-
ence.

V. SUMMARY AND CONCLUSIONS

Note that also that m„(Mx )+md(Mx ).
The above result is valid for values of A between

0.2 and 0.5 GeV, M~ ——10' to 10' GeV, and

aoUM ——0.0244. If we further assume that the a-
and d-quark masses are degenerate in the absence
of the electroweak and the baryon-number violat-

ing interactions (this would be the case if the u-d

mass difference had its origin entirely in radiative
corrections) we obtain the following ratio of light
quark masses (m„' =md):

Our main results are the following.
(1}The Dyson-Schwinger equations yield ultra-

violet convergent self-masses if the theory is em-

bedded in an asymptotically free grand unified

group.
(2) We have shown how to include symmetry-

breaking effects in such models. Spontaneous sym-
metry breaking at the grand unification scale gives
an important contribution to fermion masses.

(3) The sign of the self-energy depends on the
structure of the underlying gauge group.

To make further progress the zeroth-order rela-
tion between fermion masses (in particular for the
u and d masses) should be better understood. Fi-
nally, it would be of interest to extend the calcula-
tions presented in this paper to larger groups, such
as E6, containing light and superheavy fermions in
the same representation, and to asymptotically free
family groups, such as SU(7) or SU(9), in order to
calculate the radiative contribution to fermion
inasses and mass relations among the different
families of fermion generations.

Note added in proof: It is worth stressing that
the solution for the self-energy given by Eq. (2.11)
with the constant C equal to zero is not equivalent
to the solution required by the boundary conditions
imposed by the renormalization-group equations,
which evolve the running masses from one energy
scale to another. To compare with the RGE, the
QCD running mass [Eq. (2.8}]is subtracted from
Eq. (2.15). Expanding the resulting expression to
first order in a gives for C

MC(M )= aQ ln
4~ p2

p =A, for 5m(M )=0,
if the boundary conditions are specified at p =M .
The solution with C =0 is equivalent to setting the
QCD parameter A as the natural scale of the prob-
lem. On the other hand, if we take M as the ultra-
violet scale, M~ Oo, we recover the usual OPE-
Cottingham result.

A numerical analysis of coupled equations of the
type of Eqs. (4.6}—(4.8} with RGE boundary con-
ditions and natural mass relations for various
grand unified models is now in progress.

We have studied the radiative contributions to
self-energies and fermion mass differences for vari-
ous gauge models in the framework of renormal-
ized Dyson-Schwinger equations which are
equivalent to the renormalization-group equations.
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