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We extend a previous variational block-spin analysis of the realization of chiral symme-
try in a strong-coupling lattice gauge theory to models which have been suggested as possi-
bly describing massless composite fermions. In all cases we find massive fermion com-
posites and spontaneous breaking of chiral symmetry. We also discuss the relevance of this
result to the continuum limit.

I. INTRODUCTION

This paper examines the realization of chiral
symmetry in lattice gauge theories at strong cou-
pling. Our purpose is to explore for possible reali-
zations of unbroken chiral symmetry with massless
composite fermions particularly in examples in
which the 't Hooft anomaly conditions' can be sa-
tisfied. It is generally believed that such models
may allow construction of composite fermions
which are candidates for leptons and quarks. In
particular such particles must have the property
that their masses are very small compared to their
inverse radii, and a massless composite is supposed
to be a good starting point for such an object. Un-
fortunately we find a general result that the effec-
tive strong-coupling theory is antiferromagnetic in
character, choosing to realize the chiral symmetry
in the Nambu-Goldstone fashion with massless bo-
sons, which are spin-wave-like excitations, and all
fermions massive. This result is independent of the
gauge group and representation content of the
theory.

This work is an extension of, and follows direct-

ly, an earlier study by Svetitsky, Drell, Quinn, and
Weinstein, henceforth referred to as SDQW, which
performed a variational block-spin calculation for
strong-coupling lattice gauge theories of both the
QCD and the Abelian types. Using the long-range
SLAC gradient to preserve chiral symmetry and
avoid spectrum doubling in the lattice Hamiltonian,
SDQW found in these cases that the chiral symme-

try of the theory was realized in the Nambu-
Goldstone fashion. In the present paper we extend
these results to Hamiltonians with any gauge
groups and with the fermions in more than one rep-
resentation of the gauge group. We also consider
purely left-handed fermions, in which case we find
spontaneous breaking of the lattice rotational sym-
metry as well as of the chiral symmetry.

There has been much discussion in the literature
about lattice fermions and various choices for the
lattice derivative. It has been shown by Nielsen and
Ninomiya and further discussed by Rabin that no
local version of a lattice derivative can simultane-

ously possess chiral symmetry and avoid spectrum
doubling. For this reason we choose a nonlocal for-
mulation. It is of course local in the continuum
limit. This formulation is unpopular for various
reasons. First, it is extremely inconvenient for most
types of calculation (for example, in strong-coupling
perturbation theory it corresponds to an infinite
number of terms in the perturbative Hamiltonian).
Second, it has been specifically criticized on two
grounds, namely, that it fails to have any
anomalies and that it does not correctly reproduce
weak-coupling perturbation theory. Both these crit-
icisms have been refuted. It has recently been
shown by Weinstein by a careful examination of
regulated axial-vector currents for the Schwinger
model that the anomalies do reappear in the contin-
uum limit. This feature can be expected also to be
true for higher-dimensional theories. Furthermore
the work of Rabin has demonstrated that a gauge-
invariant subtraction prescription can be defined,
with which the usual weak-coupling perturbation
theory is reproduced term by term. Hence we feel
that this gradient provides the best candidate for a
chiral-symmetric lattice theory and thus choose to
use it in our analysis.

The derivation of a strong-coupling effective
Hamiltonian is discussed in Sec. II for general
gauge groups and for any number of two- or four-
component fermions in any representations of the
gauge group. In Sec. III we discuss a construction
of the gauge-group-singlet states at a single site in
such theories. Section IV contains a mean-field
analysis of the effective strong-coupling Hamiltoni-
an. In SDQW it was observed that this Hamiltoni-
an is a generalized antiferromagnet and hence that
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one might expect that approximations which give
reasonable results for the multidimensional Heisen-

berg antiferromagnet would also work well here. It
was then shown by Greensite and Primack that an
alternating-site mean-field calculation reproduced
the physical picture given by the more accurate
block-spin procedure of SDQW. Because this cal-
culation is simple and easy to understand we
present here the analysis of the general strong-
coupling effective Hamiltonian by this method. We
stress those features which would survive in a more
general ground-state ansatz, such as that construct-
ed by a block-spin procedure.

In Sec. VA we discuss the question of the
relevance of our results to the continuum limit,
which corresponds to weak rather than strong cou-
pling. We discuss two possibilities, neither of
which suggests that these are theories of massless
composite fermions. One possibility is that there is
a unique phase for all g, in which case our strong-
coupling result of spontaneously broken chiral sym-
metry applies also to the continuum. The other
possibility is that there is a phase transition at some
finite g and a weak-coupling phase with manifest
chiral symmetry. However there is no indication
that such a weak-coupling phase would be a confin-
ing phase with small-radius composite particles. In
Sec. VB we discuss the effect on our results of the
addition of an explicit chiral-symmetry-breaking
term. We examine the effect of a quark mass term,
and also of the chiral-symmetry-breaking terms that
appear in a Wilson gradient. Finally, to complete
our discussion, we show that our results will also
apply for a theory using the Kogut-Susskind lattice
gradient, ' which splits a four-component fermion
onto two sites and interprets the doubling as multi-
ple flavors. We note one peculiar exception suggest-
ed by Banks and Kaplonovsky, "who use a variant

of a Kogut-Susskind gradient which is only possible
for groups with real representations, such as O(n),
and with a single flavor of fermion. This formula-
tion of the gradient does not allow the construction
of a local gauge-group-singlet bilinear operator and
thus evades our general result. These theories
would give massive baryons when treated using any
of the standard lattice gradients. In Sec. VC we
briefly discuss the extension of this work to theories
with nonsimple gauge groups. Section V D contains
a summary of our conclusions.

In an appendix we discuss explicitly some models
which have appeared in the literature as possible ex-
amples of preon-type theories.

II. EFFECTIVE HAMILTONIAN
FOR STRONG COUPLING

First we consider the problem of a simple gauge
group, say SU(N), with fermions (preons) assigned
to some set of representations R of dimension dz.
We denote the number of flavors in representation
R by fR. The four-component fermion fields
pg'( j ) thus carry site labels j denoting location on
a three-dimensional (spatial) lattice, color labels a
which run from 1 to dz, and flavor labels a which
run from 1 to fR. We use the usual Wilson nota-
tion for the gauge field operators: Up ( j,JM )

denotes the operator which acts on the link from j
to j +p and transforms as the representation R at
the site j and the conjugate representation R at site

j +p. The conjugate representation R is denoted

by the lowered gauge label P and the obvious con-
traction of R and R to a color-singlet object is to be
assumed when color labels are suppressed.

We use the long-range form of the lattice gra-
dient operator, which for an infinite-volume lattice
1s

~ t

( 1) P

Jp —Jp
(2.1)

in order to explicitly maintain chiral symmetry without the fermion 'doubling" problem. The Hamiltonian in
A =0 gaugeis thus

T

8=—
~ g g E + 2 g g Tr(U U U tU )+H.c.

links g plaquettes R

R a=1 j,f, p
(2.2)

where the lattice spacing a is the only dimensionful quantity and a& is the Dirac matrix yoy&. This Hamil-
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tonian has an explicit chiral symmetry:

S,h;»I ——g [SU(fx )„sh, SSU(fg )],r, 8 U(1)„««&,g 8 U(1)axis~, g 1 . (2.3)

It is also useful to remark that all the terms of H
except the fermion terms corresponding to even lat-
tice separation have an even larger symmetry

I

One can readily verify that all the Qa and QR com-
mute with all odd-l terms in H. However only
those generators

S„„=II [SU(4f'„)3U(I ), 1 (2.4) M ~ yp(1+y5) Xr, yp(1+y5) &&I (2.8)

QR(J) bR( 3 )bR( J ) dR( 3 )dR( J )

=fg ( j )1(g ( j ) 2 ' dg, —

Qx=+Qz( j»
1

and the generators of the SU(4') are

Q~( j ) =A( j )M'A( j ),

(2.6)

(2.7)
Qx=+Q~(j»

J

where the M" are the usual (4' X4f~) traceless
Hermitian unitary matrix representations of
SU(4f~). In our notation these can be constructed

(up to a normalization factor) from the tensor prod-
ucts of the 4X4 Dirac matrices with the SU(fq)
flavor symmetry generators, which we denote by r.

(S„„stands for nearest-neighbor symmetry). Clear-

ly if we drop all terms except the I= 1 term, (2.2) re-

tains only the nearest-neighbor form of the deriva-

tive and suffers the usual additional degeneracies in
the fermion spectrum —which we here identify as a
property of the spurious S„„symmetry of that term.

The generators of the S„„can most readily be
identified by introducing redefined fermion fields

6 (j )=~."~;rz'A(j»
(2.5)

d
aa
R — ~ taa

where b and d are two-component spinors. The
U(l) charge is then

which are the generators of S,h;„~ commute also
with the even-I terms.

To derive a strong-coupling effective Hamiltoni-
an from H we follow the procedure of SDQW.
States containing any nonvanishing color flux have
energies of order g, and hence at large g these
have very high energy. The prescription is thus to
separate H into the leading term Ho plus a correc-
tion V, where

Hp ——gg E, V=H Hp— (2.9)

and to perform degenerate perturbation theory in
the sector of flux-free states. In this sector the
non-Abelian equivalent of Gauss's law, which must
be imposed as a superselection rule in this gauge, re-
quires that the fermion state at every site is a
gauge-group singlet. %e will describe the construc-
tion and classification of such states in the follow-
ing section. Here it is sufficient to note that there
are many of them, and that they fall into multiplets
of S„„.

Since every term in V contains flux-creating
operators acting on such a state, it takes the system
out of the sector of flux-free states. V may act any
number of times again before returning the system
to the fiux-free sector. Since intermediate states
containing flux give energy denominators of order

g, perturbation theory becomes a power series ex-
pansion in 1/g for the effective Hamiltonian in the
flux-free sector. The leading term is of order 1/g
and arises when the fermion term of V acts twice,
exciting flux and then annihilating it on any given

segment of the lattice.

This gives

where

'2
(l

2 X X (('Ra( J )+pWR ( J +I@)PRp( 3 +IIJ )&pt('R ( J )
2

+0
g col g

(2.10)

U&( U„") =%+5~5&+ nonsinglet pieces

and g col is the energy denominator from Hp corresponding to a string of length l in representation R-R.
When fermions are assigned to representations R which are self-conjugate or to any two representations R and
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R' such that R XR' contains a singlet, then there are additional terms in H, tt at order I/g . However, (2.10)
is completely general when all representations R can be formed from products of less than X fundamental rep-
resentations; we deal with the exceptional cases in Sec. II C.

By performing a Fierz transformation and using the definitions (2.6) and (2.7), we can rewrite (2.10) in a
more compact form:

Qtt( j )Qtt( j +ltj )+~'g (ri"")"'Q~(j )Qtt( j +lp)
k

l3
(2.11)

where

a~M a~ ——g" M (g" =+1) (2.12)

and x is a normalization factor for the charges Qz
in terms of the Dirac matrices. The ri"" for the
various M are shown in Table I. The importance
of S„„becomes quite obvious in this strong-
coupling H, ff. Because the interactions fall off rap-
idly, as (1), the odd-neighbor terms, which in-

clude l= 1, provide the dominant part of H, tt. The
smaller even-neighbor terms provide the symmetry
breaking perturbations. The odd-I terms are of the

OHIl

~'QQN j )Q5 j+(2n+1)l")

+Qg( j )Qg( j +(2n+1)p}

and hence are antiferromagnetic in character, tend-

ing to antialign SU(4' ) XU(1) spins on sites
separated by odd numbers of lattice spacings. The
even-l terms tend to reinforce this pattern by lower-

ing the energy for spins separated by even distances,
provided those spins are aligned in those SU(4')
directions which corresponds to all g" = —1. How-
ever, they give additional energy for spins aligned in
those SU(4fR) directions for which rt& is positive
as well as in the U(1) direction. These remarks and
the conclusion that fermions are massive in order

The preceding discussion can easily be repeated
for the case in which g is a two-component spinor,
say purely left-handed. The changes are simply
that the Dirac matrices a& are replaced by spin ma-
trices 0.

&
and the charges become

QR( 3 ) QR( j )A( j ) 2fR-
Q„'( j ) =xP,'(a Xr)'gs

so that the symmetry S„„is

S„=g [SU(2' ) X Ug ( I)] .
R

(2.13)

(2.14)

The theory is again antiferromagnetic in character,
leading to massive fermions. The case when the
same number f~ of flavors of left-handed spinors is
placed in both the representation R and the repre-
sentation R is entirely equivalent to the four-
component theory with SU(4f~ ) XU(1) symmetry.

C. Theories with color-singlet diquarks

If the fermions of the lattice theory belong to two
representations R and R' such that R &(R' contains
the singlet representation, then the terms of order
1/g in H,tt include additional terms of the form

1/g will be made more explicit in the detailed
analysis of Sec. IV.

B. Two-component preons

~Heft g g 3
' %Ra( 3 )+pPR' ( j +1P)PR'a( 3 )+pVR ( j +lP)c-cpg'a- -I' CRj,l,p,

+H.c. (2.15)

where

R'
Up

~U„=c c~„~RRI+nonsinglet pieces

TABLE I. Values of g& for various SU(4'�) matrices

y X&.

and c~ (c&„)are contractions of R with R ' (R with
R') to a SU(N) singlet.

The role of these additional terms is to provide a
kinetic energy for the gauge-group singlet diquark
states which exist in such a theory. By arguments
parallel to those for composites with odd numbers

yp X&

ypyg X&

y5 X&
IX~

yt X&

yoy; X&

yp XI
yoys X~

y5XI

y;XI
yoy; XI

—1

—1

+1
+1

—(25', —17

25„;—1
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of fermions these diquark states are also massive in

order I/g and their existence does not alter our
previous discussion.

In a theory with two left-handed quarks in repre-
sentations R and R, after having included all such
terms, one can make a redefinition of the R antipar-
ticles as the right-handed part of a four component
spinor in representation R. Then one recovers the
form of a four-component theory in representation
R. (Note that the single-site state ~X) annihilated

by all l()x and /It, is thus reidentified correctly as
the state with the maximum possible number of dt' s

acting on it.)

III. GAUGE-GROUP SINGLET STATES
AT A SINGLE SITE

Because the strong-coupling Hef~ is so simply ex-
pressed in terms of the local S„„charges it is con-
venient to classify the gauge-group singlet states at
a single site under this symmetry. The prescription
for doing this is straightforward, though in general
the group theory can become quite tedious:

(I) Denote by ~0) the state annihilated by all b's

and d's.
(2) Construct the state ~X) with the minimum

value of all (Qz ):

and

four-component spinors: (Qit) '"=—2ditfit, ~X)= g d; '~0)
a, a,i

two-component spinors: (Qit) '"= dqfR, —~X)= ~0) .

(3.l)

This state is readily classified as a singlet under all

SU(nfl )'s where n =2 or 4 for two- or four-
component spinors:

(3.2)

l

the states with maximal SU(nfl) representations,
and all (Qit ) =0, can be constructed from the state
7 as follows:

~M)= g[Bt(R)] ' ~X)

(3) Construct all possible gauge-group singlet
operators which can be made from products of the
pit's or from some fit's and some pit 's. Those with

odd numbers of fermion fields are the operators
identified as the creation operators for composite
fermions when counting states in the theory for the
't Hooft anomaly cancellation. This will be true
here, once the vacuum sector has been correctly
identified. We remark that there will always be a
set of composite operators of the type

(3.5)

The representation of the SU(nfl) symmetry is
then of the form

n

2
fIt dimension=D—it . (3.6)

R
BA (R ) (4R )antisymmetrized

gauge-group indices

(3.3)
We will call these states the maximal states; this
representation contains the largest SU(4fit) weight
of any single-site color-singlet state in such a
theory. We will show that the ground state of the

strong-coupling effective Hamiltonian always lies in

the sector of states for which every site of the lattice
is in a maximal state.

As a simple example of this general discussion
consider the usual QCD theory. The gauge group is

SU(3) and there are f flavors of quarks in the fun-

damental representation. The state 7 is thus

~

X ) = P d;
'

~
0) =

~

I; 6f„) . (3.7)—

(4+nf~ I)'—
dimension =

(3.4)

In general there may be many other gauge-group
singlet operators.

(4) All possible gauge-group singlet states can be
constructed by acting on the state ~X) with prod-
ucts of the various singlet operators. In particular

n, a, &

The color-singlet operators are the generators Qit

Since the fermion field is in the fundamental repre-
sentation of the SU(nfR) symmetry, this operator
must belong to the representation of the SU(nfrt )

symmetry given by



3694 QUINN, DRELL, AND GUPTA

and QR and

Btahe aPy~at~ thy tc (3.8)

The Bt belong to the totally symmetrized 3-index

SU(4fR ) representation, and the generators of
course belong to the adjoint representation.

The maximal states are given by

(B') '" ~X&= 6fR' (3.9)

All possible gauge-group singlet states can be ob-
tained by

(Bt) ~M& or (B) (M& (3.10)

and these are states with quantum numbers

Q =+3m and SU(4f) representations given by

and that they are antialigning in character. The
even-neighbor terms then either reinforce or com-

pete with this antialignment depending on whether
the sign g~ is negative or positive. Thus the Ham-
iltonian is a generalized antiferromagnet and we can
expect to learn much about its physics by using
methods which are known to work well for the
Heisenberg antiferromagnet. Based on the work of
SDQW and the subsequent simplified (but cruder)
analysis of Greensite and Primack we argue that
we can find the correct ground-state sector using an
alternating-site mean-field ansatz. The realization
of chiral symmetry and the existence of masses for
composite fermions will depend only on very gen-
eral properties of this ground state which, we will

argue, would be retained even in a more sophisticat-
ed analysis. We will point out at various stages how
results of a more general variational treatment
would differ from the mean-field results.

In an alternating-site mean-field approach one
makes an ansatz for a trial state of the form

~ ((,(j)& g ~
po(j) &

6fR+m . (3.1 1)

sites

J&+i&+Jg

sites

i„+i&+J
odd

(4.1)

The generators simply transform any state to anoth-
er state within the same representation, or annihi-
late it.

We present some further explicit examples in the
Appendix.

8' = (P
~

H
~ P & /volume .

Let us denote, for any single-site operator X,

(4.2)

Thus one divides the lattice into two sublattices and
assumes all sites of a sublattice are in the same
state. The states P, and Po are then chosen so as to
minimize the energy density

IV. MEAN-FIELD ANALYSIS OF H, ff

The essential physics of H, rr is contained in the
observation that the odd-neighbor terms dominate

I

(y, (x ~y, &=(x&, ,

(y. ~x ~y, &=(x&, .

Then the energy density in this state is

(4.3)

&QR &, &QR &.+X'g &QR &. &QR &.
i ~o k (21 —1)

r

+ g ((Q, &.'+&QR&. ')3+x'g~ "(&Q,'&.'+&Q,"&).') (4.4)

It is immediately clear that the contribution of the
odd-distance terms is minimized by choosing

(QR& (QR&o and (QR& (QR&,

I

and then choosing states that maximize

g (QR &,'+X'g & QR &,
'

R k
(4.6)

(4 5) In fact this set of states is highly degenerate, be-
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cause of the large SU(4'� ) multiplets that exist as
single-site states. The mean-field approximation
may in fact give some spurious degeneracy for the
odd-neighbor terms because states with different
values of (Qa ) may give the same result for (4.6).
In a more general ground state the energy will

depend on the quadratic Casimir ( g Qz Qii ) rath-

er than the maximum eigenvalue g& (Qa ) . Since

the quadratic Casimir is larger than the maximum
weight squared this will mean that the degeneracy
of (4.6) is lifted and the lowest-lying states will oc-
cur for Qa ——0 and large maximum weight represen-
tations on every site. The block-spin calculations of
SDQW bear out this statement.

Even in the mean-field approximations, when the
effect of the even-separation terms is included,
much of the possible degeneracy of (4.6) is lifted.
Clearly from (4.4) one sees that these states for
which the maximal contribution to (4.6) comes
from terms (Qa ) with k's such that all i)"" are
negative are lowered in energy relative to the others
that are degenerate with them as far as the odd-

neighbor terms are concerned. Any state with an
expectation value for any of these operators with

g„~———1 is rotated to another such state by S,b;„~.
Clearly any ground state of this type breaks the
chiral symmetry of the theory.

In our mean-field calculation we notice that the
states that develop an expectation value for
M"=yo, that is for the operator

f(j)g(j)=(—1)" ' 'l( (j)yop(j),
(4.7)

M"=(o'; Xr), o'; XI (4.8)

are among the degenerate set of possible ground
states. Any infinitesimal mass term added to the
Hamiltonian will select this chiral symmetry break-

ing state as the state about which the mass acts as a
perturbation. The axial SU(fa ) X U(1) charges gen-

erate spin-wave-like excitations about this mean-
field state, which are massless in the limit of fer-
mion mass going to zero, since as stated above these
charges rotate this state into some other direction
which also has g& = —1.

The above discussion is completely general and
does not change for any choice of fermion represen-
tation content and gauge group for four-component
fermions. The same analysis can be applied to the
two-component fermion theories with very similar
results, except that in this case there are no opera-
tors which have all g" negative. Instead the opera-
tors

have the property that

i)" =(25;„—1),
whereas the operators

M~=1X~

(4.9)

(4.10)

have all g" positive. The net effect of i)"~ of the
form (4.9) is to lower the energy density of those
states for which a"il acquires a vacuum expectation
value for some fixed direction g. This spontaneous-

ly breaks both the chiral symmetry and the lattice
rotation invariance. In effect these models are too
much like a true antiferromagnet in this strong-
coupling limit.

Once we have found a choice for ~P, ) and ~$0)
which minimizes the mean-field energy density we
can then ask what the lowest-lying fermion excita-
tion of that state may be. We can add a composite
fermion by acting on any site of the lattice with one
of the composite operators 8 described in the pre-
vious section, and then calculate the energy gap
from the mean-field state to the fermionic state.
The preceding discussion found a minimum energy
when both ~P, ) and ~$0) lie in the representation
sector with (Qa ) =0 and a large SU(4'�) corre-
sponding to the maximum value of gz ~ (Qa )

~

.
Any baryon-creating operator acting on such a state
takes the system to a state with (Qa )+0. Hence

by definition of the maximal state, it will in general
also be true that, for at least some k,

(4.11)

(Since the flavor groups are of the SU(nf) type
there are no accidental degeneracies of maximum
weights in different representations. ) It is therefore
clear that for any such state the energy gap from
the mean-field state is positive and of order 1/g .
This result is not changed by the kinetic-energy
terms that move fermions made of three or more
preons from one lattice site to another. Such terms
in Hd~ involve at least two energy denominators
with states of nonvanishing flux and hence are to
leading order o: 1/g . They can therefore be
neglected to the order of the present calculation,
—1/g2; thus to the accuracy of the present calcula-
tion we cannot alter the result by making a zero-
momentum superposition of local baryon states.

Note that our result depends only on the fact that
the ground state lies in the sector for which every
site is occupied by a maximal state and any
baryon-number nonzero state has at least one site
occupied by a nonmaximal state. Hence the con-
clusion that all baryons have masses at order 1/g is
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much more general than the mean-field calculation
described above, as has been shown in some special
cases by the variational block-spin approach of
SDQW.

For a purely left-handed theory it may not at
first seem that the choice (2.12) for the definition of
the U(1) charge is natural. However, the mean-field
analysis justifies this definition by finding the
ground state in the sector (QR(j)) =0 for all j.
This choice corresponds to the same number of oc-
cupied states as the filled Fermi sea of a free-field
theory. (QR) thus provides a measure of devia-
tions in quark number from the vacuum value,
which is the only physically meaningful definition
of quark number. As in the four-component case,
all states with a nonvanishing value of (QR) are
higher in energy than the ground state by an
amount of order 1/g .

We stress the fact that the conclusion that all fer-
mions are massive is not just a peculiarity of the
mean-field approximation. We have presented the
mean-field discussions because it is very straightfor-
ward and easily understood. However the analysis
of SDQW shows that adding refinements such as
spin-wave corrections to a mean-field, or a more
general variational ground-state, ansatz will not
alter the conclusion that all fermions acquire a mass
at order 1/g, and that there are massless-
Goldstone-boson excitations of a spin-wave nature.
This conclusion requires only that the ground state
lie in the sector of states where every site is occu-
pied by a state of the type which we have called
maximal, that the average interaction energy be-
tween any pair of sites in this ground state is nega-
tive, and that the fermion-creating operators are not
SU(nfR) singlets. For a Harniltonian of the type
(2.11) this will always be so. [We have also ex-

plored more general Hamiltonians by arbitrarily
changing the strength of the parameter x in (2.11).
For sufficiently small x the ground state lies in the
sector with maximal ~QR ~

and SU(nf) singlet at
every site. The opposite QR of the even and odd
sublattices means that such a ground state still has
net fermion number zero. Any states of nonzero
fermion number are massive and are parity doubled
in this situation also. ]

V. DISCUSSION

A. Continuum limit

The results of a strong-coupling lattice theory are
of course always subject to the criticism that we do
not know how to take a continuum limit. However,

in this case we are studying a question which in any
one phase of the theory should have a unique
answer —i.e., the question of the realization of the
chiral symmetry. Our results suggest two choices
for the continuum limit: either the chiral symmetry
is realized in the Nambu-Goldstone fashion, with
massive composite ferrnions, or there is a phase
transition at some finite coupling.

If there is a phase transition at finite coupling,
then the desirable property of asymptotic freedom
and confinement in a single phase of the theory is
lost. In the strong-coupling phase we have massive

composite fermions with no possibility of using
asymptotic freedom to probe their structure in
high-q experiments. In the weak-coupling phase
we may have asymptotic freedom, but no argument
whatever for confinement with very small compo-
sites in such a phase. Neither phase is an attractive
model for the physics of composite quarks and lep-
tons.

This argument applies as well to the theories with
purely left-handed fermions. Here, unfortunately,
we find no phase which could possibly be interest-

ing for real-world physics. As in the above discus-
sion if there is phase transition at finite coupling we
have lost either asymptotic freedom or confinement,
or both. On the other hand, if there is no phase
transition, then the strong-coupling results indicate
spontaneous breaking of Lorentz invariance, which
is also not a satisfactory model for the physical
world. We also find our results are in direct con-
tradiction to the picture derived using the most at-
tractive channel (MAC) tumbling scenario. '~ (See
examples in the Appendix).

Hence, these strong-coupling results suggest that
models for composite quarks and leptons based on
gauge theories which confine preons are not realis-
tic, independent of whether 't Hooft's anomaly con-
ditions can be satisified.

B. Chiral-symmetry-breaking terms

The effect of adding a small preon mass term can
readily be included in this analysis. The situation is
just like that of adding a weak alternating applied
field to a Heisenberg antiferromagnet. The set of
degenerate mean-field states is split by a contribu-
tion proportional to m in the energy density. The
lowest mean-field state in the presence of a mass is
the state for which

J

=—g( —1)'" " 'A( j ))'o4( j )E
3 (5.1)
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takes its maximally negative value, where N is the
total number of lattice sites. Only on this state can
the effect of adding a small quark mass be treated
as a perturbation, and it is a perturbation which
does not alter the ground state.

The situation is slightly more complicated when a
more realistic ground state is considered, such as
that constructed by a block-spin procedure. In such

a state the mass term is a perturbation which modi-
fies the ground state' until at sufficiently large mass
the state becomes the mean-field state with max-
imum negative (P~gq ).

It is interesting in this context to examine the
Wilson gradient, which corresponds to keeping only
the l= 1 terms of the Hamiltonian (2.11) and adding
chiral-symmetry-breaking terms of the form

r

~W g 4R( 5 )j OCR( j +P) A'( j—)) OAR( 5 P)+ 4R( 5 )70 PR( 5 )
K

(5.2)

where K is the Wilson hopping parameter. A
strong-coupling analysis of this Hamiltonian is be-

ing pursued by Di'Lieto. ' However, for our pur-
pose it is convenient to note that for sufficiently
small E the mean-field ground state of this theory
will correspond to the mean-field ground state of
the long-range H in the presence of a mass term,
and the analysis presented above will apply. That is
to say, the result that all baryons are massive will be
reproduced for the Wilson gradient with sufficiently
small E. It is also obvious that a Kogut-Susskind
formulation, which has only nearest-neighbor terms
in the gradient, will also give all massive baryons as
a result of this strong-coupling analysis.

There exists in the literature one counterexample
to our general result, presented by Banks and Ka-
plunovsky" and analyzed by them in terms of the
strong-coupling effective Hamiltonian. The pecu-
liarity of this example depends on having a gauge
group with real representations, such as O(2n +1).
The fermions are introduced as a single flavor of
single-component Clifford variables in some repre-
sentation R on each site, with nearest-neighbor

gauge couplings. The eightfold degeneracy of this
fermion is interpreted, Kogut-Susskind fashion, as
two flavors of a two-component complex fermion
field. This construction is crucial to their con-
clusion and its difference from our results. There is
no gauge-group singlet local fermion bilinear opera-
tor in Banks and Kaplunovsky, and hence there is
no term of order 1jg in H, rr. The gauge-group
representation can be chosen such that the leading
term in 1/g expansion is the kinetic-energy term
for a fermionic composite of order 1/g". Banks and
Kaplunovsky then show that the strong-coupling
effective Hamiltonian for this theory looks like
massless composite fermions with weak four-
fermion interactions.

It is important for their result that they choose to
put only a single flavor of a single-component fer-

I

mion on each site, a formulation which can only be
used for gauge groups such as O(E) with real fer-
mion representations. The same theory treated with
any of the standard gradient formulations, with two
component fermions on a site, will have local gauge
singlet fermion bilinear operators and will be in-
cluded in our general result. Furthermore even in
their formulation, following the usual
Nambu —Jona-Lasinio argument one would expect
a phase transition at some finite g, as the multifer-
mion coupling terms become important, to a
chiral-symmetry-breaking theory. Although Banks
and Kaplunovsky suggest that this may not occur,
we do not find their arguments convincing. ' Even
using their peculiar one-component-per-site formu-
lation, one loses the massless baryon results if addi-
tional fermion flavors are introduced.

C. Nonsimple gauge groups

Finally we can also analyze a theory which has
an additional gauge symmetry under which the
composite fermions are nonsinglet. For example,
consider a theory of the type discussed by Harari
and Seiberg, ' the rishon theory. This theory has a
gauge group SU, (3)XSU~(3) (color with coupling

g, and hypercolor with coupling gs) and contains
fermions (T and V) which belong to the (3,3) and

(3,3) representation, respectively. The models we
have analyzed above correspond to setting the cou-
pling g, to zero and analyzing the theory for strong
g&. In this limit we find the spectrum of states con-
sists of a set of massive states with quantum num-

bers of the usual quarks and leptons.
The locally hypercolor-singlet fermion bilinear

operators that appear in H,~f in the rishon model
are not all color-singlet quantities. One can intro-
duce nonzero g, effects in the effective Hamiltoni-
an; this adds a term g, E, that is of zero order in
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a/gs, and color-flux creating operators between
the color-nonsinglet local fermion bilinear opera-
tors. For small g, it is readily seen that although
this somewhat alters the ground state its effect is
not strong enough to render massless the quark and

lepton composites which were all massive at g, =0.
Harari and Seiberg speculate that the finite g,
theory will indeed differ dramatically from the

g, =0 theory, but we see no indication for this in
the large-g~ treatment.

TABLE II. Dimopoulos-Raby-Susskind example; G= SU(5).

Representations

Xi

(2-component fermions)

ijk

S = SU(2) x U(l) x SU(2) x U(1)nn 5 X

0& = 1; -5; 1; -5&

Maximal Representation ~M) = X X ~0) = 5/2; 0; 5; 0)t &0

Color Singlet Composite Operators (other than Q's)

&XXXXX s~AXXX

A%X X
I

fermions bosons

B
In a tumbling scenario the massless composite is created by

a linear combination of these three operators.
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D. Reprise

The results of this paper can be stated in a very
general fashion. Spontaneously broken chiral sym-

metry is a general property of all strong-coupling
lattice gauge theories with two- or four-component

fermions. The strong-coupling effective Hamiltoni-
an in the flux-free sector, (2.11), is precisely the lat-
tice version of the physics problem first discussed

by Nambu and Jona-Lasinio —an effective four-
fermion interaction in the presence of a momentum
cutoff. (Their problem of removing a cutoff is our

TABLE III. Preskill example; G=SU(N).

Representations

N

Number of
Components

Xij N(N —1) /2

N(N + 1) /2

S = SU(16) x U(1) x SU(2) x U(l) x lSU(2) x U(1)
X

Isa

,

0) =, 1; -8N; 1; -N(N-1) /2; 1; -N(N+ 1) /2)

( 2)BN ( (')N(N —1)/2 ( (')N(N+ 1)/2 N)

N

8; 0;
N(N- 1)

2

0;
N(N+ 1)

2

0

Color Singlet Composite Operators (other than Q's)

~ ~

0, (( X.
t N(N - 1)/2

X

ij kR
X k q) X)t

fermions
bosons or fermions

depending on N
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question of taking the continuum limit. ) Our re-

sults for this theory are nothing new or surprising.
We discuss two choices: phase transition or no
phase transition. Neither of these produces a con-
tinuum theory with all the generally desirable
features for a theory of the structure of massless
quarks and leptons in terms of confined massless

preons, with asymptotic freedom allowing perturba-
tive preon-parton results at extremely large Q .

Note added in proof. The fact that the kinetic en-

ergy term for the composite fermions is suppressed

by I/g, compared to the terms we study, is the
essential feature of our result. Modification of II
by the addition of irrelevant operators which do not
change this propery can change the result from
chiral symmetry breaking to massive, but parity-
doubled fermions —as we saw by varying the
parameter x of Eq. (2.11). However, as long as the
kinetic term is suppressed relative to the various po-
tential terms, as is generally true for strong-
coupling theories, we know of no way to obtain
massless fermion composites.
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APPENDIX: SPECIFIC EXAMPLES

In this appendix we will present results for some
models that have been proposed in the literature as
examples which may have light (massless in the
chiral limit) composite fermions. The first example
of such a model was presented by Dimopoulos,
Raby, and Susskind. ' Their analysis was based on
the complementarity of the Higgs and confining
phases for theories with fundamental representation
scalars and the MAC hypothesis of dynamical
breaking of gauge symmetry. Our results for their
model disagree both with the MAC picture and
with the conclusion of light composite fermions.
These results are given in Table II.

Subsequent examples have attempted to present
realistic sets of quarks and leptons and are much
more complicated. Table III describes an example
proposed by Preskill. '
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