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Horizon-free universe
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We have studied a theory of gravity, consistent with all astronomical observations,

which is an extension of general relativity generated by a gravitational field Lagrangian

proportional to R +AR (where R is the scalar curvature and A is a new dimensional

constant). We find cosmological solutions without a particle horizon for any value of A,

compatible with cosmological observations if A is negative and small enough. It is point-

ed out that while alleviating the problem of the large-scale physical uniformity of the

universe, the theory may also alleviate the problem of the development of smaller-scale

structures from an initially isotropic state, and possibly the problem of "hidden mass. "

Two of the most perplexing problems within the
framework of the standard relativistic cosmological
models are the origin of the large-scale homogenei-

ty and isotropy of the universe, and of the small-

scale structures within it. To date, the global
smoothness, which is deduced from an array of ob-

servations from the distribution of galaxies to the
smoothness of the 3-K microwave radiation (at
least at the 0.1% level), has defied all attempts to
be derived as a consequence of the big-bang model.
The cause of this problem is directly connected
with the existence of a particle horizon in the
general-relativistic cosmological models which

prevents communication between distant parts of
the universe.

It is natural, therefore, to look for alternative
theories without a particle horizon or without
singularities. In other branches of physics (such as
fluid mechanics), singularities are often removed

by the introduction of higher-derivative terms
(with suitable scale length). We are thus led to ex-

plore higher-order gravitational theories.
In the last few years a number of articles'

have been published on "'general relativity with

higher derivatives" (GRHD). Field equations of
GRHD, analogous to Einstein's equations of gen-

eral relativity (GR) contain derivatives of higher
order than the second. The equations can be de-

rived by using an extended Lagrangian which con-
tains, in addition to the Hilbert term linear in the
scalar curvature R and generating GR, some addi-
tional invariants, nonlinear in the curvature tensor.
It is most natural to first consider quadratic addi-
tions in the Lagrangian.

The resulting equations will have many "good"
properties of Einstein's equations (except for the
relative mathematical simplicity of GR). For ex-

ample, they contain matter motion equations
Tk.; ——0 where Tk is the matter energy-momentum
density tensor. Also, any vacuum solution of
Einstein's equations is also a GRHD vacuum solu-
tion. Static spherically symmetric solutions, cou-

pling to not too large amounts of matter, differ
considerably from the Schwarzschild field only at
arbitrarily small distances from the center (depend-

ing on the strength of the additional term ).
It is interesting to note that quantum gravity

also leads to theories with higher derivatives (e.g.,
Refs. 1, 6, and 7).

The theory has the correct Newtonian limit.
Furthermore, the classical solar system tests set
only a weak restriction on the magnitude of addi-
tional quadratic terms in the Lagrangian. (One
can see from simple dimensional considerations
that the existence of neutron stars with properties
more or less consistent with predictions of general
relativity further restricts the allowed value of A to

~

A
~

(10'3 cm2. )

In cosmology, investigations in GRHD have
been motivated by hopes to get "bounce models, "
without singularities. These hopes have not been
borne out (see, however, Refs. 2 and 9).

Still, as far as we know no one looked at the
GRHD theories in order to see if they admit solu-
tions without a particle horizon, in advantageous
distinction from GR (see, however, Ref. 1). We
find this is the case. To point out this and some
other advantages of such theories is the main pur-
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pose of this paper.
While flat-space cosmological models with

p =e/3 have mainly been considered, we investi-
gate complementary and more various cases of
nonflat (e.g., closed or open) isotropic world
models with the equation of state p =ye, where p
is the pressure and e is the energy density of the
"ideal fluid, " and y= const, 0(y (—,.

Metrics can be expressed in the general form

0

ds = dt —+a (t) dX +

b—:(aa), x=—[a /(2v 3)]

leads to the equation

g
—1 /3 —4/3 +b

—5/3 —2/3 21
x o' x 0

+ a '(b ' x +2v 3b o.

—Zb /x r '/)=0 (3)

where

b" d2b/——d» 2

X (d 8 +sin Odg )
3[ —3r]

where cr=1, 0, or —1 for the closed, flat, or open
models, respectively.

There are three quadratic scalar invariants that
could lead to corrections to Einstein s equations, if
added in the Lagrangian. These are Qi =R;
Q2=R' R;k, Q3=Rik™R;kt,where R is the scalar
curvature, R;k is the Ricci tensor, and R kI is the
curvature tensor. However, one can show that
identically (e.g., see Ref. 5) 5 f (Qi —4Q2+Q3)
&&

v' —gd x =0. Moreover, for isotropic metrics
(1) there is an identity (e.g. , Ref. 10) Qi/3 —2Q2
+Q3 =o.

Due to these two relations only one invariant is
effectively independent, in the sense that an addi-
tion qi Qi+q2Q2+q3Q3 in the Lagrangian leads to
the same equations as the term AR does, with
A =g I +g2/3+$3 /3. So, A is the only new con-
stant. (In general, nonisotropic case two invariants
are independent, hence one needs to consider addi-
tional terms of the form 3 i Qi+/12Q2. ) The Tp
equation yields

'2
+ (2'a aa +2aa a —a a —3aa' a4

—2a o+o )= 3~i, , (2)

where a for convenience in the further exposition
is defined as a—:—6A, ep is constant; a =da/dt,
and so on. The fact has been used that T .k ——0
leads, as in GR, to the simple dependence of the
energy density on the scale factor a (t) on the
right-hand side of (2), that is, @=3'/a "+r'.

We now investigate the possible asymptotic
behavior of the scale factor a near a =0 and
a =ao.

Using the fact that coefficients of Eq. (2) do not
depend on t, we can lower its order. Substitution
of the variables

b
—1 /3 —4/3 +Bb —5/3 —2/3 0 (3 )

3

where the constant 8 =o. if y ~ —, and 8 =o.
—Ep/a if y= —,. (One can show that this equation

is also applicable to the case o.=O, y= —,. Only

the case 0.=0, y& —, demands special considera-

tion, which we are not going to make here. } Now,
the additional variable substitution x—:a e,
b=a /e~/v / reduces Eq. (3a) to the form

2
U 1 dU
2+

2U dW
u '+ , Bu =—0 (4)

3

not containing w in coefficients, so that the order
can be lowered once more. This leads to an integr-
able equation. Using this procedure, one obtains
an exact solution of (4):

V UdU
W —Wp =+3

4"p (u +4v 3ou +Cv+12B)'

I

U

~

UGU= +3
Up [p( )]I/2

The solution of Eq. (4) is very similar to the
solution corresponding to the case o =0, y= —, (in

our notation) in the GRHD of Fischetti et al. '

The solution family (5) is determined to be two-

parameter with free parameters C and wp. The
limit x~0 corresponds to w~ —ao. The last rela-
tion can be reached in two ways.

Now, a~O corresponds to x~O. In this limit the
fourth term (the first in parentheses) in Eq. (3) is
small in comparison to the second by x ', the
fifth one is small in comparison with the third one
in the same relation, the sixth term relates to the
third one as x'/ r and cannot be neglected only if
r=3

Hence, asymptotically one has the equation
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(1) Take U~ ao, choose the minus sign in in-

tegral (5). Then w ——31nu, U-e "~ . That cor-
responds to b —const, and a —v t T.his is a two-

parameter family of asymptotic solutions.
(2) The integral in (5) diverges at some finite

value v„of v, which value has obviously to be a
root of the polynomial P in the denominator of the
integrand in the solution (5). Moreover, it is a pos-
itive second-order root (otherwise the integral
would converge in the singular point u„): P(U„)=0,
dP(U„)ldv =0. Such roots occur necessarily if
( 3

If y = —,, they occur if A cp & 1 and 0 = 1

if a 'ep & —, and o.= —1; or if cz &0, and 0.=0, in

all cases at a special value of the constant C. The
corresponding behavior of the scale factor a is

a =apt+ (6)

a one-parameter family. We thus obtain solutions

(6) without horizon

To clarify this, let us write down the equation
of light rays, coming into the coordinate origin (ac-
tually, any given point, by virtue of uniformity and
isotropy of space) at the time tp,

,s2= —dt2+a

The solution is g(t) = —J [a (t)] 'dt for the lo-
fp

cation of the point 7, where the light ray departs
at time t. If this integral diverges at t =0, as in
models (6), the X can take arbitrarily large values,
at t being sufficiently close to zero. So, no matter
how early a giUen part of the uniuerse is considered,
it could have exchanged signals with any other part.
There is no particle horizon.

Let us consider now a few other features of
GRHD cosmologies.

Actually, in Ref. 1 for the case 0.=0 and

p =e/3, a similar one-parameter family of solu-
tions without a particle horizon was found, but the
authors do not discuss the solutions from the
present point of view.

Note, by the way, that Fischetti et al. ' construct
their theory from quantum gravity as a theory
with boundary conditions (rather than with initial
ones) and point out that it does not manage to
select single solutions by plausible boundary condi-
tions; they impose the condition of Friedmannian
behavior as a —+ ao, but still have a set of solutions:
a one-parameter family with a -v t and the solu-
tion corresponding to the asymptote a -t as t~O.
So, the addition of the boundary condition that the
particle horizon is absent as t~O, together with
the condition of Friedmannian behavior as t~ oo,

selects a single solution.
Now, we list the results of our investigation of

the asymptotic behavior of the solutions of Eq. (3)
as t~(x).

We sought growing asymptotes of the form

b -bpx'(Inx)"

with bp & 0 and v&0, or v=O and p & 0. Early
research' in the case 0.=0, p =e/3 revealed singu-
larities of non-Einstein types, with unlimited grow-
ing four-curvature R due to runaway expansion of
models as t~ oo.

We have found that such asymptotes are present
for 0. &0, but they are absent for cz & 0: in the last
case the open model is only Friedmannian growing;
and there are no monotonically growing asymp-
totes (7) at all in the closed models.

Note that, as Ref. 10 pointed out, the case a & 0
is only possible" from the very beginning, if one
demands minimal action rather than simply sta-
tionary action (although the demand of stationary
action is sufficient to derive the field equations' ).

It is interesting to note that there are no instabil-
ities in the future, as t~ ao, with respect to isotro-
pic small perturbations (of the kind that Horowitz

and Wald had pointed out for other models) in

our models with a & 0: the equation of perturba-
tions can be easily shown to have the form
D"+Ex D =0, with constant E & 0, and the
general solution as x~ OD is D =C

&
cos( ~Kx 'r

)

+C2sin(v'Kx' ). This means a damping of the
form 6a /a cc t ~ cos(cot +P) in the original vari-
ables a and t (with some frequency co and phase P).
We did not study nonisotropic perturbations in de-

tail, but there are some arguments, too long to be
presented here, that they do not cause any trouble.

We would like to point out some additional re-

sults for isotropic cosmology.
If o. & 0, there is a steady-state closed model,

with "world radius"

ap ——[a(1—3y)/(1+3y)]'~, y( —, ,

where the parameter ep is given by

ep ——[6/(1 —3y)]ap'+ r .

However, this is linearly unstable with respect to
small perturbations.

A very interesting open problem is if there are
oscillating solutions for closed models in GRHD
with cz & 0 without any singularity, with Friedman-
nian behavior except within a small region of
bounce from contraction to expansion, where the
behavior is determined by the quadratic term in
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the Lagrangian. Related negative results for the
flat models hardly mean anything for the nonfiat
ones: Their behavior can differ significantly, as
our study indicates for open models at the late
stages of expansion in distinction from that of flat
models (see also Ref. 9).

Finally, there are some heuristic indications that
if we trace back in time modern density perturba-
tions 5plp and metric perturbations 5gk, we have
in our models 5p/p~0, 5gk~0. This is in favor-
able distinction to the perturbation behavior in the
standard GR Friedmann models, where 6p/p~O,
but 5gk ~const@0.

One can see this as follows (after Ref. 12): The
well-known Jeans result is that 5p/p-exp(cot) for
perturbations on a stationary background. But in
nonstationary models of GR, pQconst. The natur-
al generalization is 5plp-exp[ f t0(t)dt], with

varying co(t)=[4rrGp(t)]' . In the GR Friedmann
models, p-t, ra-t ', so f rodt-Int and

5plp-exp( f radt)-t' (with some r ~0). A

power law is a consequence of the logarithmic
behavior of f rodt, which is in turn due to the t
behavior of p. But in our models by contrast,
p-t 3"+r', and therefore ro-v p-t r, so

comdt-t ' ~ =—t, with some q & —, )0
Therefore, 5plp-exp( f radt) -exp[ —(to/t)t],
where to is a constant.

So, in horizon-free models the perturbations
5p/p tend to zero much more powerfully as t~0
Since all unperturbed quantities show only power-

like behavior, all coefficients in the perturbation

equations are powerlike, while on the right-hand

side we have 5p exponential in t. Therefore, the

5gk should exhibit exponential behavior,

5gI, -(t/to)"exp[ (to/t—)~]

and gk —+0 as t~O for any n, .
Hence in horizon-free models the modern galaxy

size structures might develop in an initially isotro-

pic world. It is remarkable that while alleviating

the problem of the large-scale homogeneity of the

universe, this theory also alleviates the problem of
the development of small-scale structure from an

initially isotropic state.
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t -a' c '), so that now there is one graviton for
10—100 3-K photons, then a graviton mass of the or-

der of 10—100 eV will account for the "hidden mass"
of the clusters of galaxies. Those values of the mass
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where the possible role of massive gravitons in ori-
ginating galactic structure.
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