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We consider the proposal that supersymmetry is broken at a scale 4 midway between the
Planck scale M and the usual weak scale. We show how a phenomenological explicitly
softly broken supersymmetric theory can emerge below scale u. The characteristic scale for
the explicit supersymmetry breaking is of order au?/M. Identifying this with the weak

scale ~250 GeV gives .~ 10'2 GeV.

I. SUPERSYMMETRY AND
THE GAUGE HIERARCHY PROBLEM

The present theory of elementary particles,
SU(3) X SU(2) X U(1), contains some 13 independent
field multiplets and about 20 free dimensionless
parameters. It is widely believed that this theory is
at most a low-energy remnant of a more symmetri-
cal theory which is manifest at some very high en-
ergy, possibly the Planck scale M. Perhaps the
most surprising feature of such a theory is the very
existence of a low-energy world characterized by
masses some 17 orders of magnitude smaller than
M.}

In general such large ratios of scales are not
stable. Parameters may be adjusted to obtain these
ratios in the classical Lagrangian, but in general ra-
diative corrections will upset the delicate adjust-
ments, leading to an order-by-order readjustment of
fundamental parameters to many decimal places.

The only known remedy for this unnatural situa-
tion is to have a symmetry which can prevent radia-
tive corrections from spoiling the hierarchy. This
can occur if a symmetry prevents some mass term
from occurring. For example, chiral and gauge
symmetries can prevent fermion and gauge boson
masses. If such symmetries are violated by very
small dimensionless parameters, the resulting
masses will remain small. This idea leads to a fun-
damental requirement of naturalness: For every
quantity which almost vanishes, a symmetry should
exist which, if unbroken, would require that quanti-
ty to exactly vanish. The nonvanishing is caused by
small dimensionless parameters which break the
symmetry. Although this mechanism does not ex-
plain the smallness of such quantities it does pro-
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vide a framework in which the smallness is stable
against radiative corrections.

In the current “standard” theory the masses of
quarks, leptons, and gauge bosons are all propor-
tional to a single mass parameter ~ 10> GeV, which
can be identified with the quadratic (mass) terms in
the scalar Higgs potential. Unfortunately the
theory contains no symmetry which potentially
could keep this scale zero. This fact manifests itself
in quadratically divergent radiative corrections to
the mass of the Higgs field.?

Two ways out have been proposed, both of which
require new physics in the TeV region. In one
scheme the Higgs scalars are replaced by dynami-
cally bound composites.>® The other scheme intro-
duces supersymmetry (SS) in order to control the
Higgs mass parameter.> Indeed, SS® is the only
known symmetry which can keep a scalar mass zero
in the presence of interactions. Roughly speaking,
supersymmetry introduces partners which cancel
quadratic divergences in the Higgs mass. Typically
the radiative corrections to the Higgs (mass)? will be
~a times the typical splitting within a supermul-
tiplet. For example, the graph shown in Fig. 1 will
be canceled by a second graph in which the fer-
mionic partners of H and W circulate in the loop.
The cancellation is exact in the limit in which the
fermions are equal in mass to their bosonic
partners. More generally,

SmH2~aAm2, (1.1)

where Am? is of order of the supersplitting.
Evidently if the theory is to be free of unnatural

adjustments we would want 8my? to be no bigger in

order of magnitude than mp? itself. This requires
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H H H

FIG. 1. Renormalization of the Higgs boson mass.

Ams—‘71_a—><100 GeV ~ a few TeV . (1.2)
The obvious conclusion is that the scale of SS
breaking ought to be of the same general order of
magnitude as the weak scale.

In this paper we will argue that the scale for
spontaneous breaking of SS can be many orders of
magnitude higher than the weak scale if the SS-
breaking mechanism is in some sense distant from
the ordinary degrees of freedom. Indeed we shall
show that the fundamental spontaneous SS-
breaking scale can be as large as ~10'2 GeV
without inducing a corresponding splitting among
the superpartners responsible for keeping my?
small.

The possibility of supersymmetry breaking at an
intermediate scale was raised by Witten’ and
Banks.® Recent models by Dine and Fischler,” Di-
mopoulos and Raby,!° and Barbieri, Ferrara, and
Nanopoulos'! are also of this type. Many of the
features we discuss are also evident in the M >>pu
limits of the models of Alvarez-Gaume, Claudson,
and Wise!? and Dine and Fischler.!®

In Sec. II, we describe a toy model in which SS is
broken by the O’Raifeartaigh mechanism!* at an in-
termediate mass scale u. The SS breaking, however,
is not directly coupled to the ordinary light world.
Instead it is coupled to a world of superheavy su-
permultiplets of mass M >>u. These in turn couple
to the light world. This produces an indirect cou-
pling mediated by superheavy intermediate states.

The resulting theory at energies less than p looks
like an explicitly softly broken SS characterized by a
scale a(u?/M). In particular, if a particle such as
the Higgs scalar is protected from mass counter-
terms by SS, then its mass will be no bigger than
a(u?/M). One of the central points of this paper is
to determine the stability of such a two-stage
hierarchy against radiative corrections.

In Sec. III, we introduce light gauge fields into
the model and discuss new features such as gauge-
fermion mass generation. Section IV is devoted to
the physics of the Goldstone multiplet. Section V
analyzes an example of Witten’s inverted hierar-
chy,'> showing how it fits into our general frame-

work. In Sec. VI, we discuss our conclusions and
speculate about the influence of gravity on this class
of theories.

In Appendix A, we show that the one-loop
gauge-fermion mass vanishes in a class of theories.
In Appendix B, we discuss some features of theories
in which the supersymmetry breaking at scale p is
due to the Fayet-Iliopoulos!® mechanism rather
than the O’Raifeartaigh mechanism.

II. ATOY MODEL

Our simplest example involves Afour chiral super-
fields.” Two of them, B and C, are heavy with
mass ~M:

B=B +i30+066Fy ,
C=C +ithc0 +66F .

A superfield X describes the Goldstone fermion
and its scalar partner

X=X +ih0 +066Fy (2.2)

(2.1)

Supersymmetry is broken by Fy getting a vacuum
expectation value (VEV) of order u’.

The ordinary light world is replaced by a single
superfield L:

L=L +iy.6+66F; . (2.3)
The superpotential is

w(B,C,X,L)=gX +MB*+M'BC

o
g

+gB*+gB’L +gBL*+gL* . (2.4)

For simplicity, all dimensionless coupling constants

are called g. We assume g is small enough to do
perturbation theory and that M >>pu.

The potential (2.4) leads to spontaneous breaking

of SS. Recall that the equations of motion for F;

are!”

oW;

Fi=——x , (2.5)
9% |g-¢
which gives
—Fy=gB>—u?, (2.6)
—Ft=M'B . 2.7

Evidently these cannot both be zero so supersym-
metry is broken.
The absolute minimum of the potential
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V=3 FF,
i
occurs at
B=C=L=0, (2.8)

4

while X is undetermined. We can “always set the
VEYV of X to zero by adjusting M. We assume that
when this is done M 0.

The SS-breaking VEV is (Fy), which according
to (2.6) is

Fy=p*. (2.9)

Taking p to be as large as 10'> GeV might seem
to undermine the original intent of the SS, namely,
to keep the radiative corrections to the quadratic
light scalar effective potential of order 100 GeV or
less. Normally we would assume these would be of
order g3u®/4m® For example, consider the ordi-
nary Feynman graph in Fig. 2, where the cross indi-
cates the insertion gB%u? which appears in the La-
grangian from the term FyFy. On dimensional
grounds it is of order g3u®/4m2 Note that even
though SS breaking is only coupled to L through in-
termediate superheavy fields it can potentially split
L masses by ~pu?.

However, by combining SS combinations of ordi-
nary Feynman graphs one finds the order-u? contri-
butions cancel to all orders in g. For example, the
graph shown in Fig. 3 is part of the same super-
graph as Fig. 2. It exactly cancels Fig. 2. This can-
cellation is very general and can be expressed as a
theorem.

Consider the quadratic contribution to the effec-
tive potential V(L) which arises when SS is broken
at scale u. It can be written as a series in powers of
/M2

2
V2(L)=L2ﬂ2 co(g)-}-cl(g)-]l‘:;—z
ut
+c,(g) e +- . (2.10)
B B
L L

FIG. 2. Graph contributing to the mass of the L
scalar. The X represents the order-u? splitting of the B
multiplet.
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FIG. 3. Another graph contribution to the mass of the
L scalar.

The theorem asserts that

To see this we work in a supersymmetric formalism
in which SS breaking is represented by a “spurion”
line in a supergraph. The spurion is Fy which has
VEV u?. For example, Fig. 4 shows the supergraph
containing Figs. 2 and 3.

Calculating this graph is equivalent to computing
the correction to the term

(ELX)p 2.12)

in the effective action. When Xis given its VEV
((X)=(Fx )60 =1206) Eq. (2.12) becomes u’LL.

Although dimensional analysis and symmetry
considerations allow a log-divergent (LLX) F coun-
terterm, it vanishes to all orders by the Grisaru-
Rocek-Siegel (GRS) theorem which says that “F
terms” are not induced by loop diagrams.!®

The possibility remains that a “D term” might
give rise to a splitting of the L supermultiplet. For
example, consider the operator

(E*2X)p . (2.13)
Giving X its VEV produces the effective term
pX D)y . 2.14)

‘We shall discuss this operator later. For now we
note that it does not contain anything quadrative in

Fx

>
@®>

N A
C — C

B
FIG. 4. Supergraph containing Figs. 2 and 3.
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the scalar components of L.
Another operator of interest is

(LLX*)p , (2.15)
yielding the effective operator
pHED)g . (2.16)

Curiously this operator is supersymmetric and al-
though it can produce boson masses it does so in a
supersymmetric manner. We shall return to it later.

The next class of operators contain X quadrati-
cally. Consider

(L*EX*R)p , (2.17)
which gives
pME*E) =p*L*L . (2.18)

A contributing supergraph is shown in Fig. 5. By
dimensional analysis it is of order (g*/4m2)(1/M?)
[with the exception of Eq. (5.13) all coefficients are
estimates]. Thus the induced scalar mass squared is

4 4

EoL (2.19)
47 M
The operator L*L induced by (2.15) splits the L bo-
sons from their fermionic partners but leaves the
scalar and pseudoscalar degenerate.

Similarly, the graph in Fig. 6 g/i\\j\ei rise to the
mass term L2 from the operator (LLXX*),. This
operator gives equal and opposite contributions to
the scalar and pseudoscalar (mass)®. The magnitude
is again given by (2.19).

Fermion masses can also be generated. Consider
the operator

(LLX*), , (2.20)

which is produced by Fig. 7 with the coefficient
(g3/47m*)(1/M). When X is set equal to 1260, we
obtain the effective operator

g AA
27—21;7@ )F 2.21)
A A
X X
VaS A
B B
C ~ ¢
B

FIG. 5. Supergraph inducing (L*LX*X),.

x>
x>

@®>
>

l")
>

A
B
FIG. 6. Supergraph inducing (ELX*X))p.

which is supersymmetric. It produces both fermion
and boson masses. Supersymmetry-violating fer-
mion masses are suppressed by additional powers of
p*/M?. (See, however, Sec. III for gauge-fermion
masses.)

Soft-supersymmetry-violating interactions cubic
in boson fields can also occur. The operator

(L*LX*), (2.22)
(see Fig. 8) yields the breaking

32
& P oy 3
) M(L ‘L)p , (2.23)

which contains

3.2
& P oy
417_2 ML FL . (2.24)

Using the equation of motion for F; this be-
comes the sum of two supersymmetry-violating
terms,

aL®*+bL?,

. s L (2.25)
PR A SR S IV -4

47* M’ 4t M

Note that so far all the induced dimensional con-
straints have a common scale proportional to u2/M.
This circumstance, if general, ensures the stability
of the hierarchy. However the present model does

@®>
>

>
[

A

B
FIG. 7. Supergraph inducing (ELX*),.
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)
X

C C

A

B
FIG. 8. Supergraph inducing (L*£.£*)),.

have an effect which ruins this stability. Consider
Fig. 9, this graph induces wave-function mixing of
the Goldstone-fermion multiplet X with L through
the supersymmetric operator

(LX*), . (2.26)

With coefficient g2/4?, it gives an effective opera-
tor
2
£_pF, (2.27)
4
This is a supersymmetric operator but it causes a
shift of L by ~(gu?/4m?)!/?, giving it a mass
~(g%u?/47Y)'2, It evidently destroys the two-
stage hierarchy. If other light fields couple to L
they too would get masses of order u from (2.27)
even if they are forbidden to directly mix with X.
A similar, SS-violating, effect is produced by the
graph in Fig. 10, which gives

& _(LX%%), . (2.28)
ArM b
The low-energy effective operator is
34
4rt M 2.29)

This explicitly breaks low-energy SS by an
amount >>(u?/M)?. This effect will introduce SS
violating throughout the low-energy sector. (It is of

el
B
€ <
N
B

FIG. 9. Supergraph inducing (£X*)p.

N
X
a
B
8
7N
C
8
X

FIG. 10. Supergraph inducing (EX*X)p.

course possible that this is the true scale of super-
symmetry violation in the real world.)

In realistic theories we can easily avoid this prob-
lem by not having neutral chiral fields which couple
directly to the light sector. For example, the light
sector might consist of the minimal supersymmetric
extension of quarks, leptons, Higgs bosons, and
SU(3) X SU(2) X U(1) gauge bosons. All light chiral
multiplets are non-neutral under
SU@B)XSU(@2)XU(1) and cannot mix with the
Goldstone-fermion fields, or participate in the
graph of Fig. 10.

Thus far we have not considered graphs with
internal L lines. Consider for example Fig. 11.
Power counting reveals that the only significant
contribution to this graph occurs when the internal
lines carry /2 of order M2, When the momentum of
an L line is of order M it is appropriate to treat it as
part of the heavy sector which is integrated out.
Thus Fig. 11 is essentially identical to Fig. 5 in its
effects. R

Sometimes loop integrations involving L lines
will diverge logarithmically when M — oo. In this
case significant contributions come both from
1?~M? and 1> <<M?. For example, see Fig. 12.
Power counting shows that the left loop is of order

X X
8 8
C C
A
C

FIG. 11. Supergraph with a light internal line.
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A A
L X
A A
L B
A ~ A
L B B
A A
L B
~ A
L X

FIG. 12. Two-loop supergraph with light internal
lines.

4
I 4171 (2.30)
for all 12 << M2,

A convenient way to separate the low-energy and
high-energy contributions is to subtract out the
value of the right loop at zero external momentum.
This is shown schematically in Fig. 13. The first
pieces now behave like

d‘l
I 2.31)
and contribute only for /~M. This can be con-
sidered as part of the integration of the large mass
degrees of freedom. The second part involves only
light lines and is logarithmically divergent. It is

L B
L B B =
L B
L B L
L B B — L
L B L
L
+ L
L

FIG. 13. Decomposition of graph of Fig. 12 into a
high-energy piece and a low-energy piece. The solid cir-
cle represents the value of the right, heavy, loop at zero
external momentum.

just the contribution in the effective light theory of
a previously computed SS-breaking operator. This
procedure can be generalized. The resulting loga-
rithms can be treated by the usual renormalization-
group method.

Power counting shows that the effective low-
energy theory has no quadratic divergences. All of
the effective supersymmetry-breaking operators we
have found are on Girardello and Grisaru’s list of
soft breakings.!” The only logarithmic divergences
of the low-energy theory are supersymmetric wave-
function renormalization and renormalization of
the effective supersymmetry-violating interactions.

The models we have thus far considered have no
particles with mass ~p. Generalizations can con-
tain intermediate mass particles. In particular, in
Witten’s inverted hierarchy scheme!® particles of
mass ~u couple directly to the light and heavy sec-
tors but not to the supersymmetry breaking. These
particles do not affect the above analysis. To see
this, first consider graphs with internal intermediate
mass lines involving only L lines externally. These
graphs are supersymmetric and by the GRS
theorem only renormalize the wave functions of the
low-mass fields.

Graphs which couple to external Fy are small as
before. For example, consider the graph in Fig. 14
involving intermediate mass particles I. This makes
a _mass renormalization for L from the operator
(X*XL*L)p. This graph can be analyzed by the
same method as Fig. 12. Its coefficient is of order

g6

MZ
— S In|Z=—
(472’ M* "

12
Apart from the logarithm this has the same order
of magnitude as other two-loop diagrams involving
only heavy lines. The logarithms can again be
summed with the renormalization group.

Another mass term of order u that might be

(2.32)

A A
L X
A A
I B
A A A
I B B
A A
I B
A A
L X

FIG. 14. Supergraph with intermediate mass lines
which are designated I.
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present (and generally is in inverted hierarchy
models) is the mixing between the heavy and light
fields ,uBL Figure 15 gives rise to the supersym-
metric mass term (u2/M)(LL)p. This is an F term
but is not forbidden by the GRS theorem because it
is a tree-level graph. Figure 16 induces
g(,uz/Mz)(LLX )r which leads to the mass term

g(u*/M?)L? This is the same mass term induced
at one loop in Fig. 6, but the coefficient here is
larger unless the mixing is small.

The mass term ,uBL could have been absorbed by
a small redefinition of B and L. Then Fig. 16 ap-
pears explicitly in the Lagrangian as a small
[0(u?/M?)] Yukawa coupling between the light
fields and the Goldstone-fermion field.

III. EXAMPLES WITH GAUGE FIELDS

A simple model involving light gauge fields uti-
lizes heavy adjoint fields B,C, and a singlet
Goldstone-fermion field X. The light flelds are the
gauge field ¥ and some matter multiplets L in the
fundamental and K in the antifundamental. The
superpotential is

A ay 2 A\ AN
Tr |gX Bz—f—;— +MB*+ M'CB
+gB* | +gKBL . (3.1)

In addition, the action involves the usual gauge
couplings to the gauge bosons and fermions. The
gauge coupling is denoted e. Our goal is a low-
energy theory containing the superfields V L and
K. As before there will be soft explicit violations of
supersymmetry. Much of the discussion is the same
as in Sec. IL.

In particular, the scalar masses LL, LL*, and the
interaction LF* are induced with the same order of
magnitude. The dangerous terms linear in L are
now excluded by the unbroken gauge symmetry. If
there were no direct couplings KBL (as may be the
case in left-right asymmetrical theories) scalar
masses would still be generated by two-loop graphs
such as Fig. 17. The resulting order of magnitude

> < —> o<
N Pad A
L 8 L
FIG. 15. Supergraph inducing ( (EL)p
cle is the mass term yBL

r. The small cir-

A
X

>
w>

A e
L L
FIG. 16. Supergraph inducing (LLX).

of their masses is

2 2
L8 (3.2)
M 472
In this diagram the significant contribution occurs
when all lines have momenta ~M. Accordingly, it
is treated as part of the high-energy integration.

A phenomenologically important question is the
gauge-fermion mass. Since this necessarily breaks
SS, it must proceed via heavy intermediaries as in
Fig. 18. The resulting operator is

2 (RDPDDP), , (3.3)
47°M
where the D’s inside parentheses denote covariant
derivatives.!”

Giving X its VEV yields

e’g pls

a2 Mkk (3.4)
Here A=gauge-fermion field. However, careful in-
spection shows that the actual coefficient of this
graph is zero. In Appendix A we have proved that
the one-loop contribution to gauge-fermion masses
vanishes identically in a class of theories of this
type. This is not so in theories with superheavy
vectors—see Sec. V. Two-loop diagrams give
gauge-fermion masses of order

g’ u?
—s £ (3.5)
(472? M

FIG. 17. Supergraph inducing (£*£X*£), via gauge
lines.
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@>
>

N N
\ A Vv
B
FIG. 18. Supergraph inducing (W
shown to vanish in Appendix A.

a

W,X)r. This is

Finally, if the low-energy gauge group contains
U(1), then the Fayet-Iliopoulos D term Vj can be
induced. It is not produced directly as a counter-
term in the supersymmetric Lagrangian. However
the operator

(DWW, X*X)) (3.6)

is not excluded by any general theorem. Giving X
its VEV yields

(V)p (3.7

with coefficient ~(eg?/4m?)(u*/M?).

To summarize, we get the same general pattern
here as in Sec. II. Integrating out the heavy fields
and replacing X with its VEV leads to a variety of
supersymmetric and nonsupersymmetric effective
interactions. The coefficient of the effective in-
teraction is always u2/M to a power, times coupling
constants (except for the case of the light singlet
matter field).

IV. THE GOLDSTONE-FERMION SECTOR

The operators which induce supersymmetry
breaking in the low-energy theory also determine
the couplings of the Goldstone-fermion. As an ex-
ample, consider the operator

4 D, AN A
S RRLD), 4.1)

which was produced by Fig. 5. The term propor-
tional to FyxFy gave a mass splitting
dm?~g*u*/4w*M?. The term proportional to
Fxiy is

4.2 A 2
4fr2M2'/’X¢LL*~ :; Yy L* . (4.2)

This is just what the Ward identities of broken su-
persymmetry require. The coupling of the

Goldstone-fermion ¥y is proportional to the effec-
tive supersymmetry violation Am?, and inversely
proportional to the supersymmetry-breaking VEV
F X =H2.

It is interesting to consider also operators con-
taining only X. The diagrams in Fig. 19 give rise to
the operators

g2 ALD
4—2‘(X*X)D , (4.3a)
T

g3 DL AN
perplt e COF (4.3b)
T

g4 AL DL DD
g ORER), (4.30)
T

g4 D, AAD
o XXER), (4.3d)
T

Inserting the VEV of Fy, (4.3a) becomes simply
g*u*/4m?. 1t is a correction to the vacuum energy.
The method used in this paper is easily applied to
the calculation of the vacuum energy (effective po-
tential) in these models. This will be published
separately.?’

At Fy=p?, (X*XX)p, becomes u*X. It represents
a shift of the scalar component of X. In the state
which minimizes the effective potential, the coeffi-
cient of this operator must vanish.

__ At the tree level the Goldstone-fermion superfield

X is massless. The Goldstone-fermion itself
remains massless (ignoring gravity). The operators
(4.3¢) and (4.3d) give rise to

>

~
B

X X

(a)

~
B
X X

x>

X
(b)
B
(c) (d)

FIG. 19. Supergraphs inducing operators involving X
only. (a) The operator (X*X)p. (b) The operator
(X*X%)p. () The operator (X**28% )p. (d) The opera-
tor (X*££X),.

x>
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4 4
£ B xxx (4.4)
47? M?
and
4 4
£ K 2
o= MZX , (4.5)

which are masses for the X scalars. They are of the
same order as the masses in the low-energy sector.

In all examples so far, the Goldstone-fermion was
part of a chiral superfield X In Appendix B we
briefly consider models in which SS is broken by a
D term, so that the Goldstone fermion is part of a
gauge multiplet.'®

V. THE INVERTED HIERARCHY

Witten’s inverted hierarchy model'® provides us
with an especially interesting example, in which the
superheavy scale M is spontaneously induced by ra-
diative effects. The particular example is due to
Ginsparg?! and consists of an SU(2) gauge theory
with gauge superfield V, (a =1,2,3) coupled to ad-
joint chiral fields Y, and B,, and a singlet Z; the su-
perpotential for the chiral fields is

AuB-Y+gZB-B—gZu? (5.1)

with 2g >A. The gauge interactions of the chiral
fields are contained in the gauge-invariant kinetic
energy

(B*e'B + ?"‘e”’?f’—}-f:*e”?fﬁ—f*f)p ,  (5.2)
where ¥ is a matrix in the appropriate representa-

tion.
The full scalar potential is minimized at

2 12
(B3)=p l_s.g—z )
(B12)=0, (5.3)
’ 2 |2
<Y3)=—T 1——2? (z),
(Y12)=0.

The expectation value of Z is undetermined at tree
level. Following Witten, we assume that quantum
corrections produce a minimum at a value (Z)

such that
|

3669

In({Z)/u)~1/g2,

which for small couplings makes (Z ) many orders
of magnitude larger than u. The nonvanishing aux-
iliary fields are

2)\'2
<F,>=f—‘2——,
L (5.4)
A
— 2 AN
<Fy3>~——[l,)\, l—zgz

The supersymmetry is broken at order u.

One linear combination of Z and Y; has a van-
ishing expectation value for/poth scalar and auxili-
ary components—we call it U:

U=7Y,cos0—Zsind , (5.5)
where
cosf =A(4g2—A2)~1/2, (5.6)
The other linear combination
= 1A’3 sind +Z cosf (5.7
has
407 172
(T)=(2) %—1 l =M,
(5.8)
172
T H“ 482 =J -

The expectation value of Y; breaks the gauge
symmetry to U(1) at the large scale M. To see the
spectrum it is convenient to use a unitary gauge

?,=7,=0 (5.9)
and to shift away the scalar field expectation values
=7-M, |
C,=B,—55,(B;) .

(5.10)

The superpotential becomes
g cos0XC - é—)?f +gM cosoC - C
+Au cos0UC; —gsin00UC-C .  (5.11)

This has the same general form as the superpoten-
tials studied in previous sections. The important
piece from the kinetic Lagrangian is that for the
large fields Z and Y;. In terms of the new fields it
is

[| X cos6— U sinf + M cos6 | 2+(ee'?)33 | X sin6 + U cos6 + M sin6 [21p
=[X*8 + O*0 +2M%?sin%0(V,2+ V,2)]p +interactions . (5.12)
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Here P is in the adjoint representation
(P)pe=—2iV, €8 - (5.13)

The only supersymmetry-breaking expectation
value is Fy. From (5.11), (5.12), and (5.13) we see
that all vertices involving X also include V,, V2, or
C. These fields are all superheavy. Thus, to bridge
between the supersymmetry breaking and the light
fields always requires intermediate states with su-
perheavy fields. This comes about because the auxi-
liary field expectation value and the undetermined
scalar expectation value were in the same superfield
T. This is a general property of O’Raifeartaigh su-
persymmetry breaking.?’

This model does contam a light neutral field i
which can mix with X. This is not dangerous be-
cause U couples to the other light fields only
through superheavy fields.

The light sector in this model consists of the light
matter field £ and the unbroken Abelian gauge field
173. The L scalars get supersymmetry-breaking
masses from graphs mediated by heavy vector fields
such as Fig. 20. This induces .

e4

47%(eM sinf )?

The supersymmetric partners of the photons can
get mass from loops of heavy gauge and heavy C
fields, as shown in Figs. 21 and 22. These graphs
have been calculated in the supersymmetric R,
gauge of Ref. 22. Their mass is

_ e2f2
872M

(L*EX*X)) . (5.14)

2e2f2
872M

_ e
87M

gauge loop ¢ loop

and the sort of cancellation found in Appendix A
does not quite occur. This mass can also be ob-
tained from a low-energy theorem for spontaneous-
ly broken R symmetry.°

VI. CONCLUSIONS

What we have shown in this paper is that a class
of models exist in which supersymmetry is broken

A
X

x>

~ V|'2

> >—
L

FIG. 20. Supergraph inducing (£*LX*X)p via heavy
gauge bosons.

>
-

A
Vi,2

FIG. 21. Supergraph inducing (WiW3,X)5 via heavy
gauge loop.

at a scale p intermediate between a superheavy mass
M and a light scale u>/M. The breaking of SS
manifests itself in the light world through explicit
violations with a strength characteristic of the light
scalee. Most of the machinery of the
supersymmetry-breaking mechanism is hidden at
the superheavy scale. In practice, this suggests a
phenomenological, explicitly softly broken low-
energy theory which could contain nothing more
than the quarks, leptons, SU(3) X SU(2) X U(1) gauge
fields, and two Higgs doublets, plus their supersym-
metric partners. Explicit masses of order u’/M
would be (1) supersymmetric mass terms for the
Higgs doublets; (2) supersymmetry-violating gauge-
fermion mass; (3) supersymmetry-violating scalar
masses. The only supersymmetry-violating interac-
tion is a trilinear scalar interaction from [L *[ 1F-
Curiously, the constraints on the explicit breakings
are the same as in Ref. 19.

To calculate the actual value of the SS-violating
parameters requires a detailed knowledge of the su-
perheavy sector, perhaps including gravity. Ex-
change of gravitons and gravitinos of momentum
near the Planck scale should induce the same opera-
tors we have discussed with Mp in place of the su-
perheavy scale. Unless the superheavy scale is sig-

A
X

o>
0>

0 v
3 A 3
c
FIG. 22. Supergraph inducing (W‘;W;af )r via heavy
matter loop.
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nificantly smaller than Mp, gravity cannot be ig-
nored. In fact, if all other interactions connecting
the Goldstone fermion to normal matter were
turned off or made very small, gravity would still
connect the two. Indeed, one definite effect of grav-
ity is to combine the Golc31stone fermion and the
gravitino into a spin-3 particle of mass
(47 /)22 /Mp. 23

The fact that the Goldstone fermion and its
scalar partners are massive has cosmological impli-
cations, as noted by Weinberg’* and Hung and
Suzuki.?® Assuming that they are in thermal equili-
brium in the early universe, they would dominate
the mass of the universe at helium-synthesis tem-
peratures unless they had already decayed. This
gives a lower bound on the SS-breaking scale of
~ 10! GeV, consistent with our SS-breaking scale.
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APPENDIX A:
THE ONE-LOOP GAUGE-FERMION MASS

Consider a Lagrangian of the form
f(ﬁiﬁjgij —#2)+Mijﬁi§j +2N;B,C; +Pij6i6j )
(A1)

where 1/3\, and 6’, are a collection of chiral fields
(i =1,...,n). For convenience we take them all in a
real representation of the gauge group G; the argu-
ment is trivially extended to arbitrary representa-
tions. The condition for SS to be broken is

P;=0, N;; nonsingular . (A2)
The mass matrix then has the form
B C
B|M N |=#. (A3)
C|N* O

The coupling matrix of the Goldstone-fermion field
toBand Cis

g0

00|=9- (A4)

Let .# be a matrix which diagonalizes .# and de-
fine

LML '=4', diagonal (AS)
LYr'=9'. (A6)

In the one-loop supersymmetric-gluon mass
graph, Fig. 18, the gauge vertices are always diago-
nal. By dimensional analysis the total contribution
is

1
G ——=Tr[ 9" (')
; 7 [ ]

=Tr[$.#""]. (A7)
From (A3) it follows that
0 (N*+)!
—1_ A8
A= N NIV (A

and from (A8) and (A4) we see that (A7) vanishes.

This cancellation is curious. It takes place only
at zero gauge-fermion momentum, and the condi-
tion that it take place is precisely the condition
[(A2)] that supersymmetry be broken. In general it
appears to be accidental (though for a special case,
see Ref. 20) and we know of no reason for the two-
loop graph to vanish. In the case that some eigen-
values of N are small (order u), some mass eigen-
values are order u?/M. The cancellation then ap-
pears after adding the effect of the light loops to the
effective operators from the heavy loops.

APPENDIX B:
SUPERSYMMETRY BREAKING
BY D TERMS

In this appendix, we consider some general
features of models in which the SS breaking at scale
p is due to the Fayet-Iliopoulos mechanism.'® A
toy model has a low-energy gauge symmetry G and
an additional U(1)’ gauge symmetry, with super-
fields P and ¥ and couplings e and e’, respective-
ly. There are heavy-matter superfields B, with
(G representation, U(1)’ charge )=(R,+1), and C,
with (R ,—1), and light superfields L with (r,0) and
K with (7,0). The Lagrangian consists of the usual
kinetic terms with minimal coupling, plus

M (BC)p+MB*C*)pe +-p (V') . (B1)

The last term is the Fayet-Iliopoulos D term for the
U(1)’ gauge symmetry. The auxiliary fields for
V', B, and C are given by

D'=—pu’—e'(B*B —C*C),
FBt=—MC Py (B2)
Fct’—_ —MB .
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These cannot all vanish. For u << M, the scalar po-
tential is minimized at B =C =0, and the only SS-
breaking VEV is D'=—u? The gauge symmetries
are unbroken (we assume L =K =0, since this is
undetermined at the tree level). Because the U(1)
gauge invariance is unbroken, effective operators
must be gauge invariant. Since all light fields are
neutral under U(1)’, the effective operators can only
depend on the field strength

Wo=—+DDyV'=—0,p° . (B3)

The light gauge and matter flelds couple to D’
only through the heavy fields Band C. The graph
in Fig. 23 induces

e2e42

4r’M
Inserting (B3), this becomes a supersymmetry-
violating wave-function renormalization, with negli-
gible dimensionless coefficient of order (u/M ).
The operator (W WEW' P W), which leads to a
gauge-fermion mass, is excluded by an R invari-
ance. If additional fields are added to break the R
invariance, a two-loop gauge-fermion mass of order

AW WEW P (B4)

2,212 4

ge’e'” u~ (BS)
(4m2)?* M*
can be produced.

The light matter superfields couple to the super-
symmetry breaking only at two loops, through light
gauge bosons. Direct coupling of the light matter
fields to B or C is absent in this model, because it
would restore unbroken supersymmetry. Figure 24
gives rise to the operator

e4e'4

( 4-772)2M6
which, using (B3), becomes a light scalar mass of
order

2,12 4

ete’” put
i (B7)

(LW W, Wy W Py, (B6)

O7

\

>

>
@>

8 %

FIG. 23. Supergraph inducing (wew, NIW 8 )p-

N
L \

Vo
L A/

FIG. 24.

( Supergraph  inducing (L*EW ;
XWW')p.

The masses (B5) and (B7) are much smaller, for
given u and M, than those found in models with
O’Raifeartaigh breaking. The SS-breaking scale u
can be much closer to M than in those models.

Other effective breakings can be induced if fields

are added to break the R symmetries of this model.
The coefficients depend on how this is done, but
they are generally comparable to (B4)—(B7). One
interesting operator, which can occur if there is a
light field L% in the adjoint representation of G, is
(we W“ L%,
—‘/%x“zh‘f +D°Le. (BS)
It gives a Dirac mass, mixing the light gauge and
matter fermions, plus a mixing between matter
scalar and gauge auxiliary fields. Power counting
and spurion analysis!® shows that it is soft in the
sense of Girardello and Grisaru, whereas the two
pieces Ay and DL are separately hard.

Actually if G has a U(1) factor, there is one more
operator which dwarfs all other effects. The graph
of Fig. 25 gives

(0°WELY) =

e2e:2 2

(W"‘W )
F 472

4 5 D, (B9)
which is a Fayet-Iliopoulos term for the low-energy
U(1), with large coefficient. Such a large D term
for ordinary hypercharge is not acceptable. To
make a realistic model one has to embed hyper-
charge in a semisimple group at low energy, or ex-
clude the operator (B9) by a symmetry.

The small size of (B4)—(B7) came about because
U(1)’ gauge invariance forced the effective operators
to be of high dimension. More general models
could be built if the U(1)’ gauge invariance had been
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A
B

<>
<

FIG. 25. Supergraph inducing (Walf’,;).

broken at the large scale M. Is it possible for the D
term of a gauge symmetry broken at scale M to
break the supersymmetry by the Fayet-Iliopoulos
mechanism at a much smaller scale? No, it is not.
The tree-level vacuum minimizes the energy

E=3 F/F; . (B10)
i
The energy is stationary under all variations, in-
cluding the complex extension of the gauge group,?
8¢;=g°rj;¢; (without the usual i) , (B11)
under which
8°F;=g"rij¢; » (B12)
8an= _ (MZ)ab+igafabch ,

where (M?)? is precisely the vector-boson mass ma-
trix. Going to a basis in which (M?) is diagonal,
8°E (F;,D%) =0 implies
2 FTiF
De=2g0 = _—— 2 (B13)
& ey
Since the total energy density is O (u*), F; < u?, and
for heavy gauge fields

4
D°g —]lyl_z <’ (B14)

and the SS breaking must be due to some other aux-
iliary field. This satisfies our intuition that all com-
ponents of a multiplet of mass M, including the
auxiliary, should decouple from the physics at
much lower scales.?6

The model of Ref. 11 is not a counterexample to
this. There, the D term of a U(1) broken at high en-
ergy has a VEV of order 1 TeV. As pointed out in
Ref. 11, though, there is also an auxiliary field F.,
with an intermediate VEV. This is an interesting
variation on our models. The most direct connec-
tion between R and the low-energy world is ex-
change of a single heavy gauge boson. Inserting the
VEV for F,,, this becomes a D term for the heavy

RC’
u(.
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