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Several topics in the loop-space formulation of non-Abelian gauge theories are con-
sidered. The basic objects dealt with are the unrenormalized dimensionally regularized
gauge-invariant loop functions W(C';g, e), where C' is a set of loops, g is the unrenormal-

ized coupling constant, and e is the deviation from four space-time dimensions. The
renormalization-group equations satisfied by the corresponding renormalized loop func-
tions are derived and, using asymptotic freedom, used to determine the exact behavior of
the functions when the length L of the loops approaches zero. The result is ( —lnLp)'~',
where p is the subtraction mass and y represents the cusp and cross-point angles of the
loops. The function a (y) is exactly computable and several examples are given. The
equivalent result may be stated as the exact behavior of the renormalization-constant ma-

trix Z"(y,g~, e) for @~0with fixed renormalized coupling constant g~, or as the exact
behavior of the unrenormalized loop function for e—+0 and g& fixed. It is shown next
that the S'(C;g, e) satisfy dimensionally regularized Makeenko-Migdal equations in all

orders of perturbation theory. The proof makes detailed use of dimensional regulariza-

tion, Becchi-Rouet-Stora symmetry, gauge-field combinatorics, and properties of the area
functional derivative of path-ordered multiple line integrals. Doubt is cast on the ex-

istence of such useful equations when other regularizations are used or when renormaliza-

tion is performed. The Mandelstam constraints are considered next. Among other

things, it is shown that the loop-function renormalization may be performed such that the
renormalized functions satisfy a constraint which has the same form as the unrenormal-

ized constraint g', +, 'a; W(C') =0, for the U(N) gauge group. The paper concludes

with illustrations of how observable matrix elements of physical (color singlet, quark bi-

linear) flavor currents may be expressed in terms of loop functions. Among other topics
discussed in the paper are the N~ ac limit, two-dimensional QCD, aud normalization

conditions on the renormalized loop functions.

I. INTRODUCTION

The ultimate goal of the loop-space formulation'
of non-Abelian gauge theories is to eliminate all
reference to gauges, gauge transformations, gauge
fixing, ghosts, etc. and instead deal only with
gauge-invariant scalar functionals W'„(C&, . . . , C„)
of loops C~, . . . , C„. The Yang-Mills equations of
motion would be replaced by functional equations
such as the Makeenko-Migdal2' equations (for
simplicity without fermions)

8" W, (C)=Ng f dy"5 (x —y)$g „(x) c

X W2(C y Cy ),

and the information about the local gauge group G
would be expressed as constraints such as the Man-
delstam ' constraints

I
g a'W„(C), . . . , C„' ) =0 . (1.2)

In all of this there is no mention of gauge transfor-
mation, quantum field operators, Hilbert spaces,

The program would then be to solve (1.1), or some-
thing equivalent, subject to (1.2), or something
equivalent, and to calculate observables such as the
appropriate functional integrals

w=f dCt dC„W„(Ct, . . . , C„)f(C), . . . , C„) .
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etc.
Unfortunately, all of the steps in this program

are currently problematic. Some of the problems
are the following: (1) The loop functions $V are
divergent and must be renormalized. (2) The area
functional derivative 5/50&„ is not so well defined.
(3) It is not clear what are a complete and effective
set of constraints. (4) It is not known how to
evaluate the functional integrals for observables.
(5) It is not known how to solve the functional
equations for the loop functions in four dimen-
sions. The object of this paper is to investigate
these problems in perturbation theory which, of
course, brings back all the gauges, ghosts, etc. But
in this context, we can solve the above problems as
follows. (1) The loop functions are multiplicatively
renormalizable. This is proved in Ref. 6 for nonin-
tersecting differentiable loops and in Ref. 7 for
loops with cusps and self-intersections. This work
is discussed here and the corresponding renormal-
ization-group equations are derived. Note that it is
insufficient to consider only nonintersecting loops
since intersecting loops are necessary for the non-
triviality of (1.1), the statement (1.2), the integra-
tion in (1.3), etc. (2) We show that the Makeenko-
Migdal equations are valid in all orders of (dimen-
sionally regularized, unrenormalized) perturbation
theory. We also briefly treat the renormalization
of the equations. (3) We derive the renormalized
version of the Mandelstam constraints. (4) We il-
lustrate how observables can be expressed as func-
tional integrals over loop functions. (5) In view of
(2) above, the perturbative solution of the MM
equations must give expressions for the loop func-
tions which agree with the perturbative expansions
for the loop functions which follow from their de-
finitions. We unfortunately have nothing to say
about nonperturbative solutions in four dimensions.

The connection between the loop-space formal-
ism (1.1)—(1.3) and the conventional local field-
theoretic formalism is provided by the definition

I ~:r~z"(r), 0 &«1,
z(0)=x, z(1)=y,

dz"=z„(r)dr, z„=dz„/dr .

A„(z) is the gauge-field N XN matrix, and g is the
(unrenormalized) gauge coupling constant. The
loops C; are closed paths I'„„and (1.4) is indepen-
dent of the starting points x because of the traces.

The field equations of motion and commutation
relations satisfied by A& imply the MM equations
and constraints satisfied by the loop functionals,
and conversely. The loop-space approach has the
advantage that one deals with scalar gauge-
invariant functions and the disadvantage that they
are functions of all loops and there are vastly
many more loops C than space-time points x. This
is what gives rise to the constraints in loop space.
The simplest constraints for the phase factors are
invariance under reparametrization,

@(CI)=4(CI ) when x I(r)=x2(f (r))

(1.7)

for smooth functions f which satisfy

f(0)=f(1)—1=0, and the inversion relation

@(CI) = [@(Cp)]

when xI(r) =x2(1—r) . (1.8)

The set of loops [with suitable identifications cor-
responding to (1.7) and (1.8)] with a fixed base
point x =x(0)=x(1) forms a group 8' (indepen-
dent of x) with the composition multiplication law

1

xI(2r), 0&r& —,

when xg(1.) = '

x, 2r —1, —, &r&l .

(1.9)

W„(CI, . . . , C„)

= 0 T rrr('(C (. . . —(rC&(C ( 0)—1 1

N

Then, for each classical field A&(x), the phase fac-
tors (1.5) give a representation of 8 on the gauge
group G regarded as an N by N matrix subgroup
of GL(N):

(1.4) 4(CI)4(C2)=C&(CI C2) . (1.10)

of the loop functions in terms of the path-
dependent phase-factor matrices

4(1„)=Pexp I'g I dz"A„(z)
ZP

(1.5)

Here the path I „z from x to y is defined as a map

The Wilson loop functions

8'(C) =—tr@(C)
1

N

are then the characters of this representation, and
(1.10) implies the constraint for loop functions4
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W(ci C2) = W(C2.Ci ) . (1.12)

The other Mandelstam constraints are discussed in
Sec. V.

Let us note here an interesting connection be-
tween the three main topics of this paper —the re-
normalization program, the MM equations, and
the Mandelstam constraints. Consider a loop C
which crosses itself one or more times. Then the
loop function W(c) is mixed with a set of other
loop functions WI" (i =1, . . . , Ni) upon renor-
malization, is mixed with a set of other loop func-
tions W ' (i = 1, . . . , N2) by the MM equation,
and is mixed with a set of other loop functions
W,

' (i = 1, . . . , N3) by the Mandelstam con-
straints appropriate to a suitable gauge group. ' It
turns out that these three sets are identical:
W;"'= W '= W ' (i = 1, . . . , Ni ——N2 ——N3). Al-

though the technical reasons for this are clear, we
feel that there may be a deeper significance to this
remarkable fact.

In Sec. II, we summarize the conventional
Becchi-Rouet-Stora formalism for Yang-Mills
theories and consequent Ward-Takahashi identities
involving loop functions. The renormalization pro-
gram is discussed in Sec. III. Part A summarizes
the Feynman rules and dimensional regularization.
In part B we derive the (trivial) renormalization-

group equation for loop functions of smooth (i.e.,
differentiable) and simple (i.e., non-self-intersec-

ting) loops. In part C we derive the renormaliza-
tion-group equation for renormalized loop func-
tions W~(cr) of simple loops Cr with a cusp (i.e.,
a point where the tangent vector to the loop jumps
through a finite angle y). The exact' behavior of
Wa(C&) when the length L of Cr becomes small is
seen to be (lnLp)'r' with a (y) ac ycoty —1. The
exact behavior of the renormalization constant for
dimension D~4 is also given. In part D we do
the same thing for loops with cross points. Here
the renormalization-group equation is a matrix
equation.

Section IV deals with the MM equations. In
part A we review the formal derivation of the
equations and in part 8 we discuss some formal
properties of the equations. In part C we derive an
expression for the area derivative of loop function-
als defined as path-ordered multiple line integrals
over the loop. Part D contains the proof of the di-
mensionally regularized MM equation in all orders
of perturbation theory. The proof is a diagram-
matic one which makes detailed use of the dimen-
sional regularization, a Ward- Takahashi identity
derived in Sec. II, the combinatorics associated

II. GAUGE INVARIANCE

We take the gauge group 6 to be a subgroup of
GL(N). The vector potential A& and scalar ghosts
C' and C' transform as adjoint representations of
G with a =1,2, . . . , d =dimG. Other fields in
other representations, covariantly coupled to the
vector potentials, could be included but will not be
considered in this paper for simplicity.

The X)&N matrix generators A,
' of 6 satisfy the

group algebra

[A,', )I, ]=if' 'A;

and may be normalized by

Trgagb gab

(2.1)

(2 2)

In terms of the field operator matrices

C=C ~', C=C

Fp =dpAv dvAp ig [A@—&—Av] ~

the quantum action is given by

(2.3)

P'= J d x ——, TrF„,Fi'v Tr(B&A„)2—
cz

i Tr(BqC)—(V"C) (2.4)

where the covariant derivative is defined by

V"C=8"C ig [A&,C—] .

The equations of motion read

(2.5)

o= — =V~F„„——a„a.A„—g [a„c,c],5W „a
CX

0= — =t'V'"8 C,
5P'
sc

(2.6)

(2.7)

with the Yang-Mills action, and the results of part
C. The renormalization of the MM equation is
considered in part E and the solution in two di-
mensions is reviewed in part D.

In Section V we prove that the loop functions
can be renormalized such that the renorxnalized
functions satisfy the same Mandelstam constraints
as do the unrenormalized functions. Section VI il-
lustrates how observable matrix elements of physi-
cal (color singlet) flavor currents can be expressed
as functional integrals over loop functions. Section
VII contains a brief statement of our conclusions.
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0= — —= —iB"V C,
5P'

and one has the general relation

5P . 5P'

(2 &)

(2.9)

matrix is defined by

A„'(x):—U(x)A&(x) U '(x)

+—'U(x)a„u-'(x),
g

(2.15)

Here P is A, C, or C, ~ is any functional of the ()I),

and

(e),=(oi T*(s ) io) (2.10)

denotes the vacuum expectation value of the co-
variant T* product.

The Lagrangian is invariant to the BRS transfor-
mation '"

then the corresponding phase factor is

C)'(r~y)= Pexp g I dz"Aq(z)

=U(x)e(I, )U-'(y) .

In particular, for a closed path (i.e., a loop),

4'(I „y ) = U(x)4(l „y)U '(x),

(2.16)

(2.17)

5A =AV„C=A(d„—C ig[A—„,C]),
l 1

5C =—g I C, CI,5C= iA—(3&A,
—

a

(2.11)

so that tr@(r ) is gauge invariant and indepen-

dent of the chosen starting point x on I
With U(x) =exp[ —iA(x)], the infinitesimal

form

where the Grassmann parameter A, anticommutes
with itself,

(2.12)

4'(r„y ) = 4(I „y)—iA(x)4(r~y)

+i@(r y )&(y) (2.18)

and the invariance of the action,

5P'=0, (2.13)

of (2.16) implies the transformation law

5e(r ) =igz[C(x), C (r )] (2.19)

implies the Ward-Takahashi identities

(5a )„=o. (2.14)

under the BRS transformation (2.11). It follows
that

It follows from (1.5) that if U(x) are i)i XN ma-
trices and a gauge-transformed vector potential

5 tr@(I' ) =0 (2.20)

5tr[a C(x)e(r )]=—intr la„[aA(x)]e(r )+g[a,C(x)][C(x),e(r„„)]a

The latter transformation law gives us the very useful Ward-Takahashi identity '
rr —()Q A(x)+g(()„(:(x),C(x)( r)r(I'„„)

)
=0.1

For open paths, the BRS transformation is

54(I „y)=igA, [C(x)4(I „y)—C)(r„y)C(y)],

so that

(2.21)

(2.22)

(2.23)

5[C(z)C (r„)]= —iX —[a A(z)]e(r„)+gC(z)[C(x)C(r„)—a (r„„)C(y)]a
(2.24)

We thus obtain the more general Ward-Takahashi identity

(2.25)
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III. RENORMALIZATION
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A. Rules and regulations

When the path-ordered phase factor

4(c)=Pexp ig f dy&Aq(y) (3.1)

in the loop functional

W(C}=—{0
~

T tre(C)
~

0)1
(3.2)

is expanded in a power series, one gets

oo
1 n 1W(C)=1+ g (ig—)" . . . dxi' . dx„"Hc(xi, . . . , x„)—trG, . . . ~ (xi, . . . , x„),

n
J1 =2

(3.3)

where 8C(xi, . . . , x„) orders the points
x1, . . . , x„along the contour C and

G . . . (xi, . . . , x„)
1 n

={0~T A (x ) . A (x ) ~0} (3.4)

The poles at D =4 in the dimensionally regular-
ized Green's functions are removed by the conven-
tional renormalizations

A ~AR —Z3 A C~CR —Z3 C

r

Dab
( ) gab I +&

8

I {(D—2)/2}
D/2( 2)(D —2)/2 P~5,

+&,s
—a1 —n
4

I (D/2)
(x )

D/2 2 D/2 P, v

(3.5)

in which internal x-space integrations are taken
over D dimensions, d x, and contracted Lorentz
indices run from 1 to D, so that 5&& D. The-—
resultant functions will be finite for a range of D
and will have poles at D =4.

is the n gluon G-reen's function. When (3.4) is ex-

panded in perturbation theory, we obtain an ex-
pression for W(C) as a power series in g given by
Feynman rules based (in Euclidean four-space) on
the usual bare propagators and vertices fop Green's
functions plus the new line vertex igA; J~ dry"(r).
The x-space expressions for these quantities are
given in Ref. 7.

The resultant integrations are usually formally
divergent and so a regulation should be introduced
which can be removed after renormalization. It is

extremely convenient for our purposes to use the
gauge-invariant dimensional regularization. ' Then
the (finite) expressions corresponding to the dia-

grams will be given by Feynman rules involving
the previous vertices and the dimensionally regu-
larized propagators, for example, the gluon propa-
gator

(3.6)

Z1 Z1

Z3 Z3
(3.7)

Here Z1 is the gluon-gluon-gluon vertex renormali-
zation constant and Z1 is the ghost-ghost-gluon
vertex renormalization constant. In (3.6) the
parameter p is in general an arbitrary constant
with dimensions of mass. For convenience we

have chosen p to be the momentum-space subtrac-
tion point for Green's functions. The power of p
in gR has been chosen so that gR is dimensionless
for all e

The loop functions have additional poles at
D =4 due to the coincident points in (3.3). It was
shown by Dotsenko and Vergeles ' that for
smooth (i.e., differentiable) simple (i.e., non-self-
intersecting) loops these additional poles cancel the
ones mentioned above and it was shown in Ref. 7
that for loops with cusps and cross points these
poles can be removed by further multiplicative re-
normalizations (with mixing). In the remainder of
this section, these results will be discussed and the

g gR =Z1 Z3 gP, A cXR =Z3 cx
—1 3/2 —g/2 —1

(a=4 D)—
when use is made of the fact that dimensional reg-
ularization maintains the BRS symmetry and the
consequent Ward-Takahashi identities and their
implications such as
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corresponding renormalization-group equations will

be deduced.

B. Siinple sxnooth loop

A given (unregularized) Feynman diagram corre-
sponding to (3.3) will involve (internal} integrations
d x over the internal x-space vertices and (line) in-

tegrations dx" over the line vertices. The diver-

gences in these integrations arise from integration
regions where two or more vertices are close to-
gether. If all the close vertices are internal, the
divergences correspond to the divergences of the
Green s functions (3 4) in (3.3}. With dimensional
regularization, these divergences are poles at D =4
(corresponding to the logarithmic divergences of
cutoff regularization) and are removed by the con-
ventional renormalizations (3.6). If some of the
close vertices are line vertices, then (3.3) has addi-

tional divergences. These new primitive diver-
gences are of two types: linear divergences arising
from one-particle-irreducible' (1PI) subdiagrams
with no external ghost or gluon lines, and logarith-
mic divergences arising from 1PI subdiagrams with
one external gluon line and no external ghost lines.
With dimensional regularization the linear diver-
gences are absent as usual, ' and the logarithmic
divergences become additional poles at D =4.
Botsenko and Vergeles have shown that for
smooth and simple loops C these poles plus the
above Green's function poles plus the poles in g all
cancel so that the dimensionally regularized expres-
sion (3.3) is finite at D =4 in perturbation theory
when expressed in terms of the renormalized cou-
pling constant gz ——Z& 'Z3 gp

The Dotsenko-Vergeles argument is based on the
Ward-Takahashi identity (2.25) arising from the
BRS symmetry. ' When expressed in terms of the
renormalized quantities (3.6), using (3.7), it reads

(8 A„(z)4(r.,)),= —Z, g„(C (z)[C„(x}4(I„„)—4(I )C„(y)]), .
CXR

(3.8)

The left-hand side of this equality will in general
have poles at D =4 arising from those of 4, ' but
a simple inductive argument in the Landau gauge
shows that these poles are in fact absent in each
order of perturbation theory in gii. Thus
W = (trk(C) ), being gauge invariant, is finite in

all orders of perturbation theory, in all gauges,
when C is simple and smooth.

For a smooth simple loop C, the renormalized
loop function is thus simply

Wii(C;g„,p, }=lim W(C;g(gR, p, e),e),
a~0

(3.9}

where

= W(1;g,e) = 1 . (3.12)

This is because g and L always appear in the di-
mensionless combination g L', which vanishes as
L~o w&th Re@~0.

It follows from (3.9) that Wii satisfies the simple
renormalization-group equation'

+~(gR )
g

~R(C gR I )
Bp ()ga

With dimensional regularization, the renormalized
and unrenormalized loop functions satisfy the same
normalization conditions at C =1—:the trivial loop
of length L =0:

~~(I ga p) = ~''a(»g~, 0)

@=4—D, (3.10)
where

~.(C;gR,~)= ~R(~,g. ,LI ) (3.11)

and W(C;g, e) is the dimensionally regularized un-

renormalized loop function. Note that, in order to
maintain the dimensionlessness of W(C;g, e), the
bare coupling constant g acquires a mass dimen-
sion of e/2. It is a function g(gii, p, e) of gR, p,
and e given by g =Z&Z3 ELM' . lf we charac-
terize a general loop C by its length L =L (C) and
various other dimensionless (angular) parameters
X=X(C), then we may write

P(gR ) 1™P 7 ~gR +0(gR 5

+0 Bp g

(3.14)

with

1 11"= ~3" (3.15)

in terms of the adjoint-representation Casimir
operator C, (f"f =2C, 5' }.' The solution to
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(3.13) is Z(y, g,P,e)=W '(Cr;g, ~), (3.21)

= WR(X,g(gz, t), 1),
t = lnLIJ—, , (3.16)

where the effective coupling constant is defined as
usual by

&g(ga t)

at
=P(g(gti, t)), g(g+, 0)=gz . (3.17)

Because of asymptotic freedom, the large-t
behavior of g is known exactly, '

Wit(C»"Y, gtt P)='1 (3.22)

of normalization condition. In perturbation theory

where C& is an arbitrary but fixed loop with cusp
Y. We characterize Cr by the fixed length 1/p
and dimensionless parameters X (fixed) and y. (Al-

lowing the length of C to be given by a new

parameter obviously leads to no increase in gen-
erality. ) The choice (3.21) corresponds to the
choice

g (gti, t)—-2 1

~~ bt
'

which implies the small-L behavior

Wtt(X, gtt, Lp) ~ 8'~(X,0, 1)=1,
L —+0

(3.18)

(3.19)

Z = I+ging rt(Y) —+finite +0(ga4),

where

(3.23)

which was already known from (3.12). In the fol-
lowing subsections, a less trivial use will be made
of (3.18).

i)(Y)= (Ycoty —1)(0 for U(N) .N
(2m. )

(3.24)

C. Simple loop with cusp

If C =C& is a loop which is smooth and simple
except for a cusp of angle Y (see Fig. 1), then in
perturbation theory the dimensionally regularized
loop function will have poles at D =4 arising from
integration regions in which subdiagrams with no
external gluon or ghost lines have vertices near the
cusp point. It is shown in Ref. 7 that these poles
may be removed by a further multiplicative renor-
malization so that the renormalized loop function
may be expressed as

Wtt (Cr, Y,gtt, P) = Wit(X, Y,gR, LP),

W(Cr,'g, e) = W(X,y,g~,Lp, E), (3.25)

Z(y, g,P,e)=W '(X,Y,ga, l,e)

The exact Z will be given below.
We characterize the general C& by a length

L =L (Cr) and dimensionless parameters X=X(Cr)
and y so that dimensional analysis gives

Wit «&,Ygtt, P )'

= lim Z(y, g,p, e)W(C;g, p)
g~0

(3.20)

Then (3.20) reads

Wti (X,Ygti, Lp) =lim Z(ygtt, e) W(X,Ygtt, Lp, e) .
e-+0

Here the renormalization constant may be written
Note that, because Z is singular at e=o, even

though

W(X,Y,gz, O, e) = W(1;g,e)=1,
Wa (X,Y,ga, O) is singular and does not satisfy
(3.12), but rather (3.22), or

Wz(X, Y,g~, 1)=1 .

(3.26)

(3.27)

(3.28)
FIG. 1. A loop Cz with a cusp of angle y. The

tangent vector to the loop jumps through angle y at the

cusp point.

Now W~ satisfies the nontrivial renormaliza-

tion-group equation
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I
—+P(gs } +I (r,g~ )

Bp Bgg

&& ~~(x,r,g~,Lv}=0,
where the anomalous dimension function is given
by

I (y,g„)=limZp Z
'0 ]

a~0 RIM fixed g, e

=gii rl(r)+O(ga )

The solution

(3.30)

Wg(X, y,ggLp)=WJi(X, y,g(gR, t), 1)Texp, «'I (y g(gR t'» r= ln—LP— (3.31)

combined with (3.18), enables us to calculate the
exact' small-L behavior of 8'~.

Wa(»r gR Lp} —Nga r}(—InLp)"
L —+0

(3.32}

I

ly, by (3.14) and (3.30) without e—+0. The solution
1S

Z '(r&gii&e) =exp dg'I (r,g', e)/P(g', e)

(3.34)

where the g and Lp independent dimensionless
function g(gz, y) is not computable. Note that, al-

though (3.32) is dependent upon the cusp angle y,
it vanishes for all 0(y& ~ except for y=—0 where
the cusp disappears.

It follows from the definition (3.30) that Z ' sa-
tisfies the renormalization-group equation

from which, using

P(gR&~) igRe i bgR +O(gR
1 1 5

I'(g~, ~) =n(r)g~'+o(g~'),

we obtain the exact' small-e behavior

(3.35)

(3.36)

P(gR F-) r(r gR—, E) Z (y gR
8

~gz

(3.33)

where P(gii, e) and I'(y, ga, e) are given, respective-

Thus the poles in Z at a=0 in finite orders of per-
turbation theory add up to a branch point.

It is of interest to compare Eqs. (3.26), (3.32),
and (3.36). This comparison may be summarized
by the diagram

Wg (X&y&gR &Lp) —( InLp)1'r'~—b
L~O

e —+0
Z(Y gz e) W(X&r&g'z, Lp, e)

I. 0 (Zrgg, E) E'
e—+0

(3.37)

It is clearly the vanishing of Z(y, git, e) at e=O which is responsible for the vanishing of W~(X, y,g~,Lp) at
L =0; and although the regularized unrenormalized W is finite (and unity) at L =0, it diverges at e=O as

W(X&Y gii&LP&e) —Z '(y&gii&e)WZ(X&r&gZ&LP)-=e "' ' WZ(X&r gZ&LP) .
a~0

(3.38)

The above comparison becomes more transparent if we use a conventional momentum space cutoff k in-
stead of dimensional regularization. For this purpose, we assume the existence of a gauge-invariant regulari-
zation in which the cutoff parameter &(, has the dimension of mass. Then g =g(gz, A, /p) remains dimension-
less and (3.26) is replaced by

Wz(X, yg+, Lp }=lim Z(yga, l/p)W(X, yg&, LA) .
A~00

Now, for large A, /JM, we have the renormalization-group equation

(3.39)
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IM
g

+P(gR)
g

~(y gR) Z (y gR ~~V)
8

Bp ~Re
(3.40)

which implies

Z — ln——1

p

' —g(y) Ib

(3.41)

The large-A, and small-L limits are now directly comparable:

Z y,gg, W—(X,y,gs, LA, ) ~p L —+0

Wz(X, y,g&,Lp) —( —InLp)"' ' "
L—i0

A~00

r

Z y,g„,— —(ln)(, /p)&'r'~'.
P A.~ oo

(3.42)

D. Loop with cross point

Suppose now that the loop C =Cz is smooth and
simple except at a single point where it crosses it-
self one or more times. The p. rameter y now
stands for the set of independent crossing angles at
the cross point. Examples are given in Figs. 2 and
3. Suppose that at the cross point there are X in-

coming and N outgoing lines. Then, as shown in
Ref. 7, the renormalization of W(C) must be con-
sidered in conjunction with the renormalization of
the loop functions of all the sets of loops which
are the same (in space and in direction) as C except
at the cross point where (say) the N outgoing lines
are permuted in any way. We denote the sets of
so-defined loops by

L, =L(C)= g L, (C,') (3.45)

is the length of C and (X,y) represent the dimen-
sionless characteristics of C or the sets (3.43). We

renormalized dimensionally regularized loop func-
tions by

W'(X, y,g„,Lp, e)= W„,(c'~, . . . , C„', ;g,e),

(3.44)
where

IC', , . . . , C„' J, i =1, . . . , IN, (3.43)
I E

CI C2 C2 C~ ~ Cs

where I~ (N+1)! is the——number of possible dis-
tinct permutations and the integer n; is the number
of disconnected loops CJ resulting from the ith
permutation; 1 (n; (N. Examples are given in

Figs. 2 and 3. We denote the corresponding un- c', - c4 c' - c' ~ c'
I 2

c6

2
1

FIG. 2. A loop Cl with a cross point of angle y. y is
the angle between the two distinct tangent vectors to the
loop at the cross point. C~ and C2 are the two subloops
of Cl which meet at the cross point. The loop functions
8'~(C~ ) and W2(C&, C2) mix upon renormalization.
The 2&2 renormalization matrix is given explicitly in

Eqs. (3.64)—(3.66) to order gq .

FIG. 3. A loop C) with a (double) cross point. The
geometry of the loop at the cross point is characterized
by the angles y;J between the ith and jth tangent vectors
to the loop at the cross point. (For clarity some of the
tangent vectors shown in the figure end at the cross
point, but the angles y;J are defined to be the angles be-
tween the tangent vectors when drawn such that they all
begin at the cross point. ) Only five of the y," are in
dependent. The loops CJ (i=1,...,6; j=1, . . . , n;) are
subloops of C~ which meet at the cross point. The loop
functions W„(Cl, . . . , C„' ) mix upon renormalization.

The 6&(6 renormalization matrix is given explicitly in
Eqs. (3.74)—(3.76) to order g~2.
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denote the corresponding renormalized loop func-
tions by

w,'(x,y,g~,Lv) = w—„„(c',, . . . , c„';g„p,) .

(3.46)

precisely, writing

we take

n=0
(3.48)

According to Ref. 7, there exists an Iz ~I~ ma-
trix Z'J(y, g,p, e) =Z'J(y, gtt, e) such that20

Zg(y, e)=—div; WNJ(X, y, Lp, e)

(3.49)
Wtt (X,y,gtt, Lp) = limZ'J(y, gR, e)

a~0

X W'(X, y, gtt, Lp, e) . (3.47)

There is a considerable arbitrariness in the matrix
elements Z'J. We choose here to make the Z'~

unique by renormalizing the 8'J according to the
minimal subtraction scheme. This means that in
each order of perturbation theory Z'J is given by a
sum of poles at e=O, with no finite part. More

exactly a sum of poles. Given gx, the renormaliza-
tion matrix has a unique expression of the form
(3.49), independently of the choice of p. The in-
dependence of Z„'J on the loop characteristics X,L
other than y is proved in Ref. 7. Further discus-
sion of the arbitrariness of Z'& will be given in Sec.
V.

The renormalized loop functions satisfy the
renormalization-group equations

+~"P(gtt )
&

+r"(y gR) Wk(»y g~ LV }=o
Bp

(3.50)

where the anomalous dimension matrix is given by

r"(y,g~)=»m Z'"(y, g} ~)V [Z '(ygS ~))"'
g-+0 Bp

From the perturbative expansion

fixed g, e
(3.51)

Z'J(y, g„,~)=5'J+g„'q'J'(y) +O(g, ')—, (3.52)

we obtain

r'J(y, g„)=g, '~'J'(y)+o(g„'} .

The solution to (3.50) is (t= lnL p and T d—enotes anti-t ordering)

t ij
Wtt (X,y,gtt, Lp, )=g T exp dt'r(y, g(gtt, t')) Wg{X,y,g(gs, q), 1)

j
in terms of the effective charge (3.17). The exact small-L behavior is thus'o

IN

Wtt(»y gR Lp) —y [exp[re(y)1«lb]) "M'"(X,y, gg ) =y ( lnLp)"' wt'(X—,y, gtt ),
Ojk 1=1

(3.53)

(3.54)

(3.55)

where the eigenvalues rt~(y} of rt'~(y) are known
«om (3.53) but the coefficients w~' are not comput-
able by these methods. In terms of the known pro-
jection operators Pp(y) which decompose rt'J,

rttPtj, QPP=5'J,
I I

{3.56)

we have

wt =QPPMJ",
jk

(3.57)

but the mixing matrix MJ is unknown. Some of
the eigenvalues rtt(y) will in general be positive so
that Wz(X, y,gx, O) will be divergent unless
wt'(X, y,g~ } accidentally vanishes.

As in Sec. III C, Eq. (3.51) (without e~O} can
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be recast as the renormalization-group equation

8
8'J'P(gR, ~) —rj'(y, g„,e)

~gz

X [Z '(y, gR, e)] J=0, (3.58)

whose solution is the anti-g-ordered exponential

, r(y, g', e)[Z '(-y gR ~)]"= GexP dg'

where

with

0 a
(&")=2

1

+2 (a b)—b

a =mcoty, b =ycoty —1 .

Thus the anomalous dimension matrix is

(3.65)

(3.66)

which gives the exact small-e behavior

[Z (yg e)]"—ye ' zP(y g )
e—+0

(3.59)

(3.60)

r (y,gR) =zp —z
g, e fixed

4
2

A+O(gR ),
(2n. )

(3.67)

~ ~

in terms of the unknown projected coefficients zP.
Comparison with (3.55) is again facilitated by use
of a momentum cutoff A, instead of dimensional
regularization. Then (3.47) is replaced by

which has eigenvalues NgR A, +/(2') with

A, + b+[b ——+4a (a b)/N2]'~— (3.68)

~~(»y gR Li )

= lim Z'J(y, gR, up) WJ(r, y,gR, AI., A, /p),
A~00

(3.61)

the eigenvalues of A,. Now a is positive for
0 & y & m/2 and negative for ~/2 & y & m., but for
all 0 & y &~ we have the inequalities

b&0, a —b&0,

and (3.58) is replaced by (for large A,)

P +5 13(gR) r (3 gR)
Bp

2
1 b a 1 Qb+ —a(a b)= ——— + 1—4

x[z '(y, g ~R/) -)]'J=0 &0. (3.68')

whose solution has the large-i, behavior

[Z '(y, gR, A/P)]' — (Ink/P) ' zl'(y, gR) .
A, /IM —+ oo

(3.63)

We illustrate the above results first for the mix-
ing group of Fig. 2, in which C( is a loop which
is smooth everywhere and simple everywhere ex-
cept at the single cross point, and C& and C2 are
the two subloops of C~' which meet at the cross
point. There is then only one independent angle y
necessary to characterize the crossing. We find
that the matrix elements of the renormalization-
constant matrix are

2

;VJ(y)—
(2n )2 e

Thus for 0&y&m/2 we have A, &0 and A, + &0,
and for m/2&y&m we have A, &I,+ &0. It fol-
lows that A, + gives the small-L behavior of the
loop functions,

NA, +(y)/(2e )~b~R~+ y~gR ~P) ( 1~( )L~0

X W+ (X,y, gR ), (3.69)

(z (),J( )
Nb, (r)l(2w)2b

0

and A, gives the small-e behavior of the renorrnal-
ization constants,

+o(gR') (3,64) Xz" (y,gR ) . (3.70)
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The eigenvalues A, +(y) are plotted in Fig. 4. Note
that for N~oo with Ngz =g fixed, A, +b-,
A,+~0, and A, ceases to be diagonalizable. We still
have the expansion

2O
I I I I

I
I
I
I
I
II

III

0 a
A, =2 0 b

——2bP++OP (3.71)

in term of the projection matrices I I I I

0.5 I l.5 2 2.5 3 3.5

0 alb
P+ ——

1 a /b—P-= 0 0 (3.72)

and may conclude that the small-L behaviors of
the renormalized infinite N-loop functions W'„are

(y y g I+) ( l~+)b(y)/(2n)ib
L -+0

Xw'„(X,y,g„) . (3.73)

2

Z'J(y, g. ,.)=~'J+ '",A'J(y) —'+O(g, '),
(2m )'

where

(3.74)

As a second example, we consider the six loop
functions 8" (i = 1 —6) associated with the loops
of Fig. 3 (Ci' and the sets of loops with which it
mixes). There are six tangent vectors at the cross
point and we call y;~ the angle between the ith and
jth (outgoing) tangent vector. We find

po I I I ( I I I

FIG. 4. Plot of the eigenvalues A, +(y), Eq. (3.68), of
the 2)&2 matrix A, given in Eq. (3.65), and of the max-
imum and minimum eigenvalues A+(y) of the 6)&6 ma-
trix A given in Eq. (3.75). The lowest-order anomalous
dimension matrix for the mixing set of Fig. 2 is
F(y,gq )=Ng~ A, /2~ and for the mixing set of Fig. 3
is Q(g, gs ) =Nga A(y)/2' when y=y(i varies between
0 and 3.5 with yi; fixed for i+3. [The angle yiz is held
fixed at 2.9 and so A+(y) diverge at y=2.9.] The
greater eigenvalue )(+(y) is positive for 0(ymir/2 [with
)(,+(0)=+ 00] and negative (and numerically very close
to zero) for m/2 & y & ~ and zero for y=m/2 and m.

The lesser eigenvalue A, (y) is negative for all 0& y& m

and minus infinity for y=O and ~. The maximum
eigenvalue A+(y) is positive for all y, and the minimum
eigenvalue A (y) is negative for all y, with A+(y) =+ 00

for y=O and 2.9. The maximum eigenvalues determine
the exact small-length behavior of the renormalized loop
functions according to Eqs, (3.69) and (3.77), and the
minimum eigenvalues determine the exact small-e
behavior of the renormalization constants according to
Eqs. (3.70) and (3.78).

0

b 2436C 2634
A=

b 1625C 1526

0

0

N a 1s2346
2

0 N a 123456
2

0

0

2536C2635 1645 1546 b 1324 1234

N b 16c1426 Nb1325C1523 N b3645C3456
2 2

2N a152634 N b134sc143s N b2436c2346 N b162sc12s6
2 2 2

b 1345 1534 142635
2 0 N b2536C2356

2

N b1645C1456
2

N b1324C1423
2

2N a 142356

0

0

b 1624C4612

b 1325C 1235

b 3645C 3546

N a 123546b24
2

(3.75)

with
aj =y,jcoty~i —1, bj =(ir yj)cotyj, —

(3.76)

and a;JkI
——a,j +akI, etc. We have computed the

l

eigenvalues of A(y) numerically and found both
positive and negative eigenvalues for all y and also
complex eigenvalues for some y. In Fig. 4 we have
plotted the maximum eigenvalue A+ (y) and the
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minimum eigenvalue A (y) as a function of
y:—y]q at constant yi; for i+3. The maximum
eigenvalue A+(y) determines the leading small-L
behavior

(Z ')' (y,gx, e) —e — z" (y,g„)a~0
ofZ

IV. THE MAKEENKO-MIGDAL EQUATIONS

A. Formal derivation

Xw+ (Xryrgg ), (3.77)

of 8'z and the minimum eigenvalue A (y) deter-
mines the leading small-e behavior

We take the gauge group G to be U(N) or
SU(N). The first step in the formal derivation of
the MM equation is to use (2.9) to obtain an ex-
pression for the insertion of the local field operator
V"Fz„(x) into a loop function. We take
M =4(l ~) and / =A&(x) and easily obtain

tr "(ry(x)xBd) d(x)——g[1,C(x),(—.'(x)] O((' )
)

=—ig f dy„()t(x —y)([trttt(I'~)][trttt(I'r, )])„~
~1

a XZ

+ —II)„dy"5 (x —y)(trC&(I ))„
SU(N)

(4.1)

(4.2)

The left-hand side of (4.1) is i (tr4)][, 5$/5A'„)„and the right-hand side, in which the relation

d()JAk] =5;i5Jk for U(N), VJ Ak] =5g5jk —
N

5ij5k] for SU(N),

has been used, is (trA. 5(p/5A„), . There is a contribution to the right-hand side for each decomposition of
I' into the product I'~I'«„of [closed because of 5 (x —y)] paths I „«and I «„. From now on we will for
simplicity take G =U(N) so that the second term on the right-hand side of (4.1) is absent. The gauge-fixing
and ghost field contributions to the left-hand side can be eliminated by use of the Ward-Takahashi identity
(2.22). The result is

(trI[V&F&„(x))gIy(I )J),= ig t(„)—gd„5(x —y)([tr@(I'«)][tr@(I'«„)]),. (4.3)

The right-hand side of (4.3) involves only
8'2(I'~, I'«„) and the object now is to also express
the left-hand side in terms of functional derivatives
of loop functions. To accomplish this, MM used
the old Mandelstam' area derivative

%(C„)= lim
~
5cr&„~

5
50'~ (x) ~&y „~ 0

X [+(C„5C„,) —+(C„)]

(4.4)

on functionals ]II of loops C =I' (or paths).
Here 5C&„ is a little loop around x in the p-v plane
of area

~
5o„„~. Mandelstam states that '

tr@(C)=ig tr[F&„(x)C)(C„)]. (4.5)
5

5o']g x

To make this more precise, we first take the ad-
ded loop 5C&„ to be a square in the p-v plane be-

I

ginning at x with sides of length e and with the
same orientation as C. Thus 5C& starts at x, goes
a distance e in the p direction, then goes a distance
e in the v direction, then goes a distance e in the
—

]M direction, and finally goes a distance e in the
—v direction. This is illustrated in Fig. 5. Then

~ 5oz„~ =e ~0 as e—+0. Using (1.5} and assu]n
ing that the local field products like A&(x)A„(x),
which occur in (3.4), are not singular, we arrive at
(4.5). This smoothness assumption is crucial in the
derivation of (4.5). Without it, one would obtain
additional contributions to the right-hand side such
as the symmetric term

1 2
S„„(x)=— lim f A(y) dy

(
&y

(
~0 50]gtr ]t&

(4.6)

If A(x)A (x) is finite, this limit vanishes since the
line integrals are of order 5o., but in unregularized
perturbation theory A (x)A(x) is singular and (4.6}
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AC) v

SXp

SXp

C

FIG. 5. The loop C.SC„„used to define the area
derivative 5/50.„„(x).

FIG. 7. The loop 5x„'C 5x„used to define the
derivative 8/Bx„.

does not vanish. [See Eq. (4.70) for the two-
dimensional analog of this. ] We must therefore al-

ways assume that a suitable regularization is
present which renders the local field products fi-
nite. Furthermore, to be as safe and general as
possible, we will define 5/5o&, to be antisymmetric
in p and v. That is, we take

4'(C„)—= lim
~
5o„„~5o~„x f 5cr„„f~o

x —,[4(C„5C„„)—%'( C„5C„„)],

B„@(C„)=ig [Ap(x), 4(C„)] .

It then follows from (4.5) that

(4.9)

Bz tr@(C)=ig tr[V&F„,(x)4(C„)] .5
"5o.„„x

(4.10)

Combining (4.3) and (4.10), we arrive at the first
MM equation

B„W~(C)=g N f dy"5 (x —y)"5o„„x

(4.7) X W, (C„„C„„). (4.11)

(4.8)

where 5x& is a line in the p-direction length

~
5x&

~

. This is illustrated in Fig. 7. If %(C„) is
just an ordinary function f(x) of x, this reduces to
the ordinary derivative 8„f(x). From the defini-
tion (1.5), one finds

C C

FIG. 6. The loops C-5C„„and C.5C„„used to define
the manifestly antisymmetric area derivative 5/50„„(x).

where 5C„„is as above and 5C„„covers the same
points as 5C& but begins in the v direction and
ends in the —p, direction. Thus (4.7) is manifestly
antisymmetric in p and v. This is illustrated in
Fig. 6.

Given (4.5), MM next take the ordinary deriva-
tive 8/Bx„defined on functionals of loops by

)Sx ]
~0

X [%(5xq 'C5x„)„+s„—%(C„)],

All reference to local gauge fields has been elim-
inated as desired. This is the first of the infinite
set of equations which relate the loop functions
8' (C&, . . . , C ). These equations, together with
the Bianchi identities

(4.12)

and suitable constraints, hopefully provide a com-
plete system of equations for the loop functions.

So far the formal derivation of (4.11) only sug-

gest its validity for points x on or near the loop C.
Although this is all that is needed, it is interesting
to ask if (4.11) can be extended off of C. There is
no difficulty with the right-hand side, which is
well defined as a distribution in x with singular
support on C [assuming that 8'2(C„~,C~„) is not
singular]. We may try to define [5/50&„(x)]%'(C)
for x not on C by using (4A) with C replacing C„
and with 5C„defined as a loop starting at a point
z on C, proceeding to x along a line y, proceeding
back to x about the old square (p, v, —p, —v) con-
tour, and finally returning back to z along the line

y '=y~. This is illustrated in Fig. 8. The
problem of course is that the resultant area deriva-
tive might depend on the choice of z on C and on
the choice of the-line y from z to x. Since we
have no control over this at present, we will only
use (4.11) for x on C in this paper.
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Y
Xo

The solution to (4.15) which satisfies the normali-
zation condition

W(I„)=1 (4.18)

C
[C =1„ is the trivial loop I r +y—(r):—x J

—the unit
element of 9'„],and the Abelian constraint

FIG. 8. The loop y '-C y 5C„„used to define the
area derivatives 5/50.„„(x)for x not on C.

W)(C) Cp)=Wp(C), C~), (4.19)

B. Formal properties

In this subsection we will discuss some of the
properties of the MM equation (4.11). Our discus-
sion will be formal in that we will ignore the regu-
larization which is necessary to make the opera-
tions and functions in (4.11) well defined, and we

will take x to lie on the loop C.
The general oriented loop C on the left-hand side

of (4.11) may be parametrized as

&(x)—=
(2m. ) x

(4.21)

is the massless free-field Green's function, which
satisfies

Ob, (x)= —5 (x) . (4.22)

W~(C)=exp ig' f f dy&dy2~6(y& —y2)

(N =1), (4.20)
where

C = Irony(r), 0&r& 1, y(0)=y(1) J .

(4.13)
The MM equation also simplifies in the large-N

(fixed g„=Ng ) limi—t. There'

The orientation of C is defined by the path order-

ing in (1.5}. The loops C„z and C~„on the right-
hand side are parts of C running, respectively,
from x to y and from y back to x (x =y 'because of
the 5 function). These loops have the same path
ordering (orientation} as C. Without loss of gen-

erality we may take x =y (0)=y (1) so that

C=Cy Cy„. (4.14)

&„"W)(C)=g I„"( )CW)( )C(N =1),
(4.15)

where we have introduced the abbreviations

(4.16)

For each r such that x =y (r) there is a contribu-
tion to the right-hand side of (4.11). This includes
the trivial case ~=0 or 1 as well as other ~'s if x is
a point of self-intersection of C.

There are two cases when (4.11}simplifies.
These are N = 1 and N = oo. N = 1 is the (free if
there are no charged fields) Abelian gauge theory.
In this case the N XN matrices in (1.5) are just
numbers and W2(C„~,C~) = W~(C). Then (4.11)
reduces to

W, ( C~,Cy„)= W, (C~ ) W, (&y„) (N = ~ ),
(4.23)

so that (4.11) becomes

&"„W~(C)=g„ f dy"5 (x —y) W~(C„~)W&(C„„}

(N = ~ ), (4.24)

a closed equation for W&. In two dimensions,
(4.24) (with 5 —+5 } can be solved exactly and
reproduces the known solution (see Sec. IVF). In
four dimensions, (4.24) has not been solved, but the
simplicity of (4.24) has rekindled the hope that
the N = ao gauge theory may be (at least, approxi-
mately) soluble. However, for N~ao the con-
straint equations become very complicated and
therein might lie the undoing of this hope (see Sec.
V).

For N+I or oo, we must deal with (4.11) and
the infinite chain of equations to which it is cou-
pled. However, if C is a loop without self-
intersection, then the factorization (4.14) is possible
only if one of the factors is C and the other is
trivial:

and

I„"(C)=f dy"5 (x —y) . (4.17)

C=C 1„.
Then, with (4.18), (4.11) reduces to

(4.25)
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&"„8'&(C)=Kg I„"(C)8'&(C) (C simple) .

(4.26)

24); (ii) (4.20) is not a finite function of the renor-
malized charge. (see Secs. III and IV E).

This is the same as the Abelian limit equation
(4.15) and that is why it is insufficient to consider
only simple loops. Note, however, that (4.20) is
not the correct solution to (4.26) for %@1. There
are (at least) two good reasons for this: (i) (4.20)
satisfies the wrong constraint (4.19) (Refs. 22 and

C. Area derivative of multiple line integrals

In this subsection we will derive an expression
for the area derivative of multiple line integrals of
the form

W(C )= f dx)' . dx„"8C (x), . . . ,x„)fa, . . . a (x), . . . , x„)
1—:f dr~ ' dr„8(r~ —12) 8(r„) 1g)x—(7&) ' x (T„)f a. . . a ( x(r)), . . . , x(r„)),

(4.27)

where C~ is the loop [r~xa(r), 0 & r & 1, x (0)=x (1)=x]. We must assume that the function f is a non-
singular function of its arguments. The expression for JY(C) is of this form in each order of perturbation
theory with dimensional regularization. We will now see that the area derivative (4.7) is well defined for
such functionals of loops.

It immediately follows from the definition (4.7) that

P (C )= hm
~

5o.„„~
5gp~ x ~scr „)~0

1

X dr(+) dr„8(r+,, . . . , r„)
0

.a& a,.
X[xs (r)) xs'(r;)f . . . (xs(r)), . . . , xs(r;),x(r;~)), . . . , x(r„))

a& g,—xs (r~) xs'(r;)f . . . (xs(r, ), . . . , xs(~;),x(r;+&), . . . , x(~„))]

(4.28)

where xs(~) represents 5C&,[r +xs(r), 1&~&-2, xs(1)=xs(2)=x] and xs(r) represents 5C&,[r~xs(r),
1&x&2, xs(1)=xs(2)=x, xs(r)=xs(3 —r)]. Taking 5C&„a rectangular in the p, -v plane with the sides of
order e, the individual terms in this sum can be easily evaluated up to the desired orders e . The result is

5 W(C~)= dr, . dr„)8(r), . . . , v.„)x (r)). . . x " (r, i)
.a, a„

5o„„(x)

X[ag„,. . . , (X,x(1.$), . . . , X(7.„]))—a,f„a, . . .a, (x,x(1.]), . . . , x(7.g $))]

~ ~
~ ~ ~

~
~ ~ ~

~
1

dr). d1„28(7~&. . . , 7„2)x (7&) x " '(r„2)
0

(4.29)
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The first term in (4.29) comes from the i = 1 term in (4.28) and follows from an application of Stokes's
theorem. The second term in (4.29) comes from the i =2 term in (4.28). The i &2 terms in (4.28) are at
least of order e since we have assumed that the function f is sufficiently smooth.

It must be stressed that one cannot neglect the i & 2 terms in (4.28) unless a proper regularization is intro-
duced in perturbation theory. In the dimensional regularization scheme which we have adopted, we are ef-
fectively integrating over D dimensions and the meaning of the area derivative in an arbitrary direction is
unclear since the general function f . . . a (xi, . . . , x„}is not defined in the entire D-dimensional spaceCX)

' C~

where the indices a range from 1 to D. Fortunately, for the perturbative expansions of loop functions, the
functions f which are encountered are expressed in terms of propagators and derivatives and these can be
unambiguously extended to D dimensions.

Our next task is to calculate the ordinary derivative arax„defined by

8„%'(C,x)—= lim
~
5x„~ '[%((5x„'C 5x„)„+s„,+s„,x+5x)—~II(C,x)] . (4.30)

(5 „[~0
Here 5x„ is a line which starts from x, lies in iu, direction and has a length

~
5x„~ and 5x„ is the same

line with the opposite orientation. Then (5x& C~5x&)~+s„~+L„ is a loop which runs from x+5x to x
along 5x&, around C~ and goes from x back to x +5x along 5x„. This is illustrated in Fig. 7. If 4' were
just an ordinary function of x, this reduces to the ordinary derivative 8/Bxz.

Using the definition (4.30), the derivative for a multiple line integral,

a& ~n&(Cxx»)= Jc dxt ' '
dxn "(c (xi~ . ~xn)fai a„(xi~ ~ ~ ~ ~xnix) ~

is given by

B„W(C~,x}= lim
~
5x„~

[5x (
~0

n n —i
X g g dx, ' . dx;'Hc (xi, . . . , x;)c dx;++i' . dx„"J'Oc (x;+i, . . . , x„j)

5x XX XX XX
i =0j=o

n —j+1. . . nX dxq Jyi ' ' ' dxq Os i(x» I+i, ~ ~ ~, g)
5x —' x

Xf, . . . (xi, . . . , x„;x+5x)—a(C,x) (4.31)

where each line integral is defined with an appropriate parametrization as in (4.28}. The terms in (4.31) are
easily evaluated up to the order

~
5x&

~

and the result is

B&~(C,x)=J dxi' . dx„"Oc (xi, . . . , x„)BQ(xi, . . . ,x„;x)

+ J dxi' . . dx„" i'8c (x„.. . , x„ i)[f„,. . . , (x,xi, . . . , x„ i,x)

fa . . . q(xi—, . . . , x„ i,x;x)] . (4.32)

We can use the results (4.29) and (4.32) to give a
second formal derivation of the MM equations.
Equation (4.5) follows from the application of
(4.29) to (1.5) and Eq. (4.10) then follows from the
application of (4.32). In the next subsection, we
will use (4.29) and (4.32) to prove the MM equa-
tions in all orders of perturbation theory.

D. Proof of the Makeenko-Migdal equations
in perturbation theory

functional 8'(C) and the corresponding expansion
of the loop functional

V„(C„;x)—= (tr[V"Eq,(x)qi(C„)]}, (4.33)

with the V.F insertion. The expansion of V.F in
powers of A includes linear, quadratic, and cubic
terms. These terms may be represented graphically
by the new vertices shown to the left of the equali-
ties in Fig. 9. The linear term

We consider the unrenormalized dimensionally
regularized perturbative expansion (3.3} of the loop

L. '„=a a„~'„—ay~~„'

gives rise to the propagator

(4.34}
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V

=-g„„5 (x-y)}'
a

X

FIG. 9. Diagrams (on the left-hand sides of the
equalities) representing the vertices which arise when
V"I'„„(x)is expressed in terms of A. The (0) and (1)
vertices arise from the terms linear in A, the (2) vertex
arises from the term quadratic in A, and the (3) vertex
arises from the term cubic in A. A wavy line between
two dots represents the usual gluon propagator (3.5).
Such a line with a 5 on top represents the expression
—5' g~5 of Eq. (4.35). A wavy line between an x
vertex and a dot represents the expression
—a '5' B„3~D~of Eq. (4.35). The resultant contribu-
tions to diagrams are given on the right side of the
equalities in diagrams (0) and (1). The equalities illus-
trated in diagrams (2) and (3), in which the three- and
four-gluon vertices on the right are the usual ones oc-
curring in diagrammatic expansions of Green's func-
tions, follow from straightforward but lengthy combina-
torics.

(L',(x)A„(y)),
i o———5' g,„5 (x —y)

——5'sB„B"D~„(x—y) .
O!

(4.35)

cubic coupling gf'"'A&A „BI'A'„ in the action (2.4).
Another elementary but tedious calculation shows
that the new vertex corresponding to the cubic
term in the expansion of V F, illustrated to the
left of the equality in diagram (3) of Fig. 9, satis-
fies the equality given in Fig. 9, where to the right
of the equality the four-gluon vertex is the
usual one corresponding to the quartic coupling

,g f,—&,f,d,A&A„A&A„"in the action (2.4)
We ca,n also use the vertices (0) and (1) of Fig. 9

to obtain a graphical statement of the Ward-
Takahashi identity (2.22). This is illustrated in
Fig. 10. The first figure employs the one-gluon
vertex (1) and the second figure, which employs
the 5 propagator (0), amounts to a new two-ghost
vertex

6' (x;y,z) = igf ' '—

X[5„b,(x —y)]h(x —z)A; .

(4.37)

The decomposition of (4.33) corresponding to
the expansion of V L in powers of A reads (the v
index is suppressed}

y y(O)+ y(1)+ y(2)+ y(3) (4.38)

where V'"' corresponds to the vertex (r) of Fig. 9
with r =0,1,2,3. This is illustrated in Fig. 11. We
can further expand the general diagram corre-
sponding to V' ', as illustrated in Fig. 12, into dia-
grams in which the 5 propagator ends at a gluon-
ghost-ghost vertex [Fig. 12(a)], a three-gluon vertex
[Fig. 12(b)], a four-gluon vertex [Fig. 12(c)], or a
gluon-line vertex [Fig. 12(d)]:

We have used the equation y(O) y(O)+ y'(O)+ y(O)+ y(0)a b c + d (4.39)

(4.36)

satisfied by the gluon propagator (3.5) to obtain
this result.

The two terms in (4.35) correspond to the dia-
grams (0) and (1}of Fig. 9. An elementary but
tedious calculation shows that the new vertex cor-
responding to the quadratic term in the expansion
of V I', illustrated on the left of the equality in di-
agram (2) of Fig. 9, satisfies the equality given in
Fig. 9, where to the right of the equality the 5
propagator is given in diagram (0} and the three-
gluon vertex is the usual one corresponding to the

(4.40a)

the equality of Fig. 9(2) tells us that

p'2 yO(2) (O)
(4.40b)

0

FIG. 10. Diagrammatic representation of the Ward-
Takahashi identity of Eq. (2.22). The vertices on the
left sides of the loops are given in Fig. 9(0) and (1).

Now, the Ward-Takahashi identity (Fig. 1()) tells
us that
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and the equality of Fig. 9(3) tells us that

(4.40c)
(0) (2)

Equation (4.38) thus becomes simply

y y(0) (4.41)

and it is clear from Fig. 12(d) that (4.33) is there-
fore given by

FIG. 11. Diagrammatic representation of the expan-
sion of the functional V= (trV F4&}+ corresponding to
the expansion of V F into powers of A. The vertices on
the left sides of the loops are given in Fig. 9.

V„(C;x)=—g„& f dy"5 (x —y)(tr[A, '~p(C„~)igA;4(C„„)]),

ig f—dy 5 (x —y)([tr@(Cy)][tr@(Cy )) (4.42)

This is precisely the dimensionally regularized
form of the result (4.3) previously derived formal-
ly. If the gauge group were SU(N) instead of
U(N), we would have also obtained the second
term on the right-hand side of Eq. (4.1).

To complete the proof of the MM equations, it
remains to show that

IV(C) = V„(C„;x).5
5o &"(x)

(4.43)

G =Gq, (x)+G„„(x),
5o ""(x) (4.44)

where G&„(x) is the contribution of the rth (an-
tisymmetric) term in (4.29) for r =1 and 2. Next

8'G&„(x)=G"„'(x)+G"„(x), (4.45)

where G„(x) is the contribution of the sth term in

(0) (b) (c) (d)

FIG. 12. Diagrammatic representation of the expan-

sion of diagram V' ' of Fig. (11) corresponding to the

various ways in which the 5 propagator can couple in

the blob.

Given our expressions (4.29) and (4.32) for deriva-
tives of multiple line integrals and the equalities of
Fig. 9, it is just a matter of combinatorics to verify
(4.43}. We will omit the simple but tedious details
and simply outline the calculations.

Let G represent the contribution of the diagrams
(written as multiple line integrals over the loop C
and multiple D-dimensional integrals of a product
of dimensionally regularized gluon and ghost
propagators) for the nth term in the expansion of
4(C) to IV(C)=((1/N) tr4(C))~. We have

(4.32) for s = 1 and 2 and p runs from 1 to D.
G„"(x) is given by putting one of the line vertices
in G at the point x and taking the second deriva-
tive of the propagator attached to x with respect to
x. G„' (x}and G,'(x) are given by putting the
neighboring two-line vertices in G at x and taking
the first derivative. G, (x) is given by putting the
neighboring three-line vertices in G at x. We find
that G„"(x) is exactly the term in V„(C„;x)linear
in the A dependence of V.F, G, (x)+G,'(x) is ex-
actly the term in V„(C„;x)quadratic in the A

dependence of V F, and G„(x) is exactly the term
in V„(C;x) cubic in the A dependence of V F.
That is how (4.43) comes about in perturbation
theory. Notice that (4.43) is valid in any regulari-
zation scheme; we did not use specific properties of
dimensional regularization to derive it.

The first MM equation (1.1) is thus verified in
each order of dimensionally regularized perturba-
tion theory. It has the surprisingly simple form

B„R'~(C;g,e) =Ng f dy&5 '(x —y)
5

"5o„,x C

X W2(C„y, Cy„,.g, ).e
(4.46)

The higher equation may be similarly verified. Let
us emphasize the great advantage of dimensional
regularization in our analysis. If we had used a
different regularization, such as the Pauli-Villars
regularization accompanied by higher derivative
terms in the action, then the analog of (4.36) does
not hold and/or there appear additional vertices
which come from the modification of the action.
This would spoil the above derivation and give rise
to additional terms on the right-hand side of (4.46)
which could not be represented in terms of loop
functions.
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E. Renormalization

and in Sec. IV 0 we saw that is satisfies the regu-
larized MM equation

S'„"(c)W(C;gs, p, e) =a(gs, p, e)I„"(C;e)

X W(C;gs, p, e),
(4.48)

where

4 5&,"(e)=g 8'
hi= 1 Olgv X

«gs u e)=&[g(gs IJ &)] (4.49)

+[gRZ1(gR e)Z3 (gRi~)P' l

I,"(C;e)=f dy"5 '(x —y) .

Thus, if the s'—+0 limit commutes with the dif-
ferential operator S'", the renormalized loop func-
tional will satisfy the same MM equation (4.48) as
the unrenormalized one satisfies:

In this subsection we will point out some prob-
lems one encounters in attempting to formulate a
renormalized MM equation. We start with a
smooth and simple loop C. In Sec. IIIB we saw
that the corresponding dimensionally regularized
loop function W(C;gs, p, e) is finite for e~O,

W(C;gs, p, ,e) ~ W(C;gs, p, O)
e—+0

(4.47)
CI GR (x)=54(x)+g+I's(x) (4.51)

which relate conventional renormalized Green's
functions G~ and F~. Since it is the renormalized
coupling constant which appears, (4.51) says that
Cl„ is a finite operation, in contrast to the behavior
of &„ in (4.SO}. In the exact theory where

a(gs, p, O) =0, Eq. (4.SO) is even more surprising.
To see what is going on more clearly, let us at-

tempt to explicitly calculate the area derivative
5/5o of Ws. (We suppress the parameters gs and

p and the indices p and v.) Referring to the loop
C.5C of Fig. 5, we have

Ws(C 5Cr) =lim g(y, e) W(C 5Cr;e), (4.52)
e—+0

where y stands for the set of cusp angles Iy; J in
C 5C& so that, according to (3.23) and the locality
of cusp renormalization,

g(y, e)=gZ(y;, E) . (4.S3)

Thus

&„"Ws(C'gs P) =a(gs, P,O)I„"(C)Wz (C'ga P)

(C simple) . (4.50)

This is a remarkable result. In perturbation
theory, where the unrenormalized coupling con-
stant g is logarithmically divergent, it says that the
operation of &6„" on the finite function WR leads to
a divergent result. This should be compared with
equations of the form

j.
Wg(C)= lim —[Wg(C.5Cr) —Ws(C)]5' o—+0 0

= lim lim g(y, e) [W(C 5C—r;e) W(C;e)]+——[g(y, e) —1]W(C;e)
j. 1

cr—+0 e—+0 CT 0
I

If the cr +0 and —e—+0 limits can be interchanged, this becomes

(4.54)

Ws(C)=lim lim g(y, e) W(C;e)+lim ' .W(C;e)
5 . (y, e)—1

50' @~0 o ~0 50' cr +0 0'— (4.SS)

Here we have encountered a serious problem since
we have no control over the limit of g(y, e) or
[g(y,e)—1]o' ' for o ~0. These expressions are,
however, independent of x and so if the derivative
8/Bx can be taken inside of the e—+0 and 0.—+0
limits, we arrive at

O', Wz(C)= lim lim g(y, e)a(e) I„(C)Ws(C) .
e~o o~o

(4.S6)

This result and its derivation are sufficiently am-
biguous to cast doubt on the existence or usefulness
of a renormalized MM equation. One can, of
course, insist that the loop 5C used in the defini-
tion of the area derivative is such that C 6C has
no cusps. Then g(y, e)—:1 and, assuming the limit
interchanges are valid, we arrive back at (4.50).
This procedure seems to us to be very artificial and
so we have concluded that it is best to first solve
(or approximately solve} the regularized unrenor-
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angle y at a point z but with no cross points. Then
the renormalized loop function is

FIG. 13. Example of a diagram which does not con-
tribute to the area derivative 6/5o.„defined by the dia-

grams of Fig. 6. It also does not contribute to the area
derivative by the diagram of Fig. 5 if the gluon propa-
gator is nonsingular at short distances.

malized equation (4.48) and then take the @~0
limit (4.47).

If the loop C has a cusp, there are additional
problems. Consider such a loop C~ with a cusp of

Wii(cy, y,gz, p) =limZ(y, ga, e)
p—+0

)& W(cy;gii, p, e), (4.57)

where the renormalization constant Z is given in
(3.23). If xQz, then the loops Cy 5C&„used in the
definition (4.4) of [5/5o'& (x)]W~ have the same
cusp angle y as does Cy, and so W(cy 5C„) is re-
normalized by the same factor Z(y). (To circum-
vent the previous difficulties, we are assuming that
5C does not introduce new cusps. ) We therefore
again obtain (4.50),

~xWR(cy&gR&itb) a(gR&P& ) x(cy)WR(Cy y&&gR&P) (4.58)

and the same discussion applies. For y =z, C& 5C„can have a cusp angle y+y' different from y. Then

Wii (Cy.5C&„,'y+y', gii, p) = limZ(y+y', git, e) W(Cy 5C&,gii, p, e),
e~o

and so (suppressing irrelevent variables)

(4.59)

5 58'~ (y) =Z (y) W(y)+ lim
Z(y+y') —Z(y) .W(y) .5o.

q
5o.„ /50

f

~0 5o„,
(4.60)

Here again we have a big problem since the indi-
cated limit is uncontrollable.

~
5o„„~ can ap-

proach zero with y' remaining finite so that (4.60}
does not exist. %e could attempt to restrict 5C„,
such that the limit does exist, but this is unnatural.
It is perhaps more reasonable to assume that the
divergence 8/Bx" of the limit in (4.60) is zero.
This is formally true, but is difficult to formulate
rigorously. The safest approach is to use (4.58)
only for x+z and treat x =z as a limit. Of course
one must still contend with the previously encoun-
tered difficulties associated with (4.54).

We consider finally the case where the loop
C =C, .Cb has a single cross point z, where C, and
Cb are the two subloops which meet at z. Now
W'(C} mixed with W (C„Cb) by both renormali-
zation,

w„' =z'~w,

where formally
w)+e

J„"(C;z):lim J d—~"(y)5 (x —y(y)),

&„Wg aI„(C) 8'g (x——+z) (4.63)

just as in (4.50). For x =z, the same problem as in
(4.60) precludes us from reaching definitive con-
clusions, but at least formally, (4.63) then general-
izes to

&„Wii aI„(C)Wii +aJ (C;z)X'iW——si, (4.64)

where

z =y (r, ), (4.62)

and we have taken x EC, for definiteness. For
x+z, if the previously discussed difficulties are
circumvented, we have simply

and by the MM equations, gij =Zi (Z )2j+ Zi2(Z )~j
N

(4.65)

&„W'(C)=aI„(C, ) W'(C)

+aJ„(C.&z) W'(C, &Cb),

W(C2„Cb) =aI„(C, ) W (C„Cb)

+—aJ„(C,;z) W'(C),

(4.61)

is the cusp angle dependent —divergent in perturba-
tion theory —combination of renormalization con-
stants.

The above considerations lead us to conclude
that the renormalized loop functions do not satisfy
useful functional differential equations. The need
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for assumptions about limit interchanges and for
restrictions on contour deformations severely limits
our confidence in such equations. It is clearly
more sensible to first determine the regularized
unrenormalized loop functions as solutions to the
MM equations and then perform the renormaliza-
tion.

F. Two dimensions

The pure Yang-Mills theory in two dimensions
is trivial and the loop functions W(C) are func-
tions E(A I, . . . , A„) of only the areas A; subtend-

ed by the subloops of C. For a simple loop C of
area A, one has simply2'

but for more complicated loops, the A; dependence
is more complicated and difficult to determine by
conventional methods, even for 1V~ 00. It is far
simpler to determine the loop functions using the
MM equation, as has been shown by Kasakov and
Kostov (KK). We will briefly review this work
here, partly for illustration and comparison with
the four-dimensional case, and partly because we
can simplify the KK treatment.

Using the definition

5 . 1W(C)—:lim —[W(C 5'„)—W(C)]
5o„„(x) s~„„o5o„„

(4.67}

W(C) =F(A) =exp( ——,g A) (C simple)

(4.66)
I

of area derivative, where 50.
&

is the oriented area
of 5C„„(sothat, e.g., 5cr~2& 0 if 5C„„is clockwise
oriented), KK show that

5 W(C)= trP F„,(x)exp ig f A dy
50~„(x) , g n„—,( x)W(C), (4.68)

where n&„(x) is the orientation tensor of 5C&„(x):

~

5cr(x)
~

= , n&, (x)5o&—„( )x. (4.69)

a~ 5
W(C) =g' f dy„5'(x y) W(C—„,)5o„,(x)

Note that the second term in (4.68) is not present
in the regularized (or cutoff) four-dimensional

theory. At this point, KK wanted to avoid using
C's which added new self-intersections and so
demanded that 5C(x) changed orientation as x
crossed through C. Then the term

,g 8'n—&„(x) W( C)in the divergence of (4.68} ex-

actly cancels the term in (4.3) (with 5 —&5 ) arising
from the trivial coincidence of x and y. We, on
the contrary, find it simpler and more natural to
demand that 5C(x) does not change orientation as
x crosses through C, so that 5"n&,(x)=0. We thus
obtain in the N~ao limit25

I

three loops of Fig. 14. We assume that the corre-
sponding loop functions are functions of the areas:

W(Ci ) =F(A), W(C2) =F(A +A'),

W(C3) =F(A,A'),

with the boundary conditions

F(0}=1, F(A,O)=F(A),

(4.71)

(4.72)

and show that this gives a solution with deter-
mined F's For the si.mple loop C~, we use (4.70)
to relate the 50.~0 limits of the two loops shown
in Fig. 15, and obtain

2F'(A) =g F(A—), (4.73)

whose solution [subject to (4.72)] is (4.66). For the
loop C3, we use (4.70) to relate the 5cr~O limits of
the two loops shown in Fig. 16, and obtain

X W(C„„), (4.70)
, F(A, ') — E(A,A')=g E(A)F(A') .

(4.74)
wherein the line integral receives contributions
both from trivial and nontrivial coincidences x =y.
This actually makes it easier to solve (4.70) since it
immediately yields (4.66) for a simple loop,
whereas the KK equation reads 0=0 for a simple
loop and then (4.66) can only be obtained by con-
sidering a simple loop as a limit of nonsimple
loops.

We will illustrate the solution of (4.70) for the

Cz

FIG. 14. Three loops. The loop functions are
8 (C, )=E(A), 8 (C ) =E(A +A'), 8'{C ) =E(A,A'),
in terms of the areas of the subloops.
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(a) (b)

sum is taken over all permutations m in the sym-

metric group SN+ ~ of order N + 1 and ( —1) is
the parity of m. The constraints read

0 y ( 1)l'wN~w

ES++J

FIG. 15. (a) The loop C&-6C for x just outside of
C~. The loop function is F(A +6o.). (b) The loop
C~.6C for x just inside of C~. The loop function is
F(A —6o ).

where

X W, (C„„C„,, . . . ,

(5.2)

As in KK, we can similarly determine the solution
for an arbitrary loop C.

V. THE MANDELSTAM CONSTRAINTS

The Mandelstam constraints are the loop-space
analogs of the choice of the gauge group G. They
guarantee classically that the loop functions in-
volve traces of X&(N matrices. Their general
form, given by Giles, follows from the identity

0= g ( —1)'S„,. t'„. ,
n'ES~+ )

(5.1)

where the indices n;, m; range from 1 to E and the

V=@ V

(a) (b)

FIG. 16. (a) The loop C3-6C for x just outside of
C3 and just below the cross point. The loop function is
F(A+6o,A'). (b) The loop C3.6C for x just inside of
C3 above the cross point. The loop function is
F(A,A '+6o. ). In the indicated coordinate system, the
v=2 direction is one of the tangents to the loop at the
cross point, and the v= 1 direction is perpendicular to
v=2.

[There is no F(A,A') contribution on the right-
hand side since we chose v=2 in (4.70) in the coor-
dinate system shown in Fig. 16. The F(A,A') con-
tribution is purely v= 1, whereas the F(A)F(A')
contribution is both v= 1 and v=2.] The solution
to (4.74) subject to (4.72) is

F(A,A')=(1 —g A')exp[ ——,g (A+A')] .

(4.75)

(5.3)

where W(C) =tr@(C) are the characters of the
representations C—+C&(C) of the loop group 9 (see
Sec. I), S( W) is the classical action expressed as a
function of 8', and the integration is over the set
8 of characters of representations of S. This rep-
resentation is formal in that the existence of a
measure on 9 has not been established. We thus
have a suggestion, but not a proof, that the Man-
delstam constraints are sufficient to determine A

[i.e., the Green's functions (3.4)] up to gauge
transformations in quantum field theory.

It is remarkable that the sets of loops which are
related in (5.2) are precisely the sets of loops which
mix upon renormalization. [They are also the sets
of loops which are related by the MM equations,
but in this section neither this fact, nor the equa-
tions themselves, will be used. ] This will enable us
to give a simple renormalized version of the con-
straints. We may use the summation convention
and suppress all irrelevant variables and write the
constraint (5.2) as

(5.4)

and the renormalization relation (3.47) as

8 g
—Z'JW, (5.5)

is the cyclic decomposition of m, with c the num-
ber of cycles. Giles has proven that, in the classi-
cal case where W„(c~, . . . , C„)
= W&(c&) . W&(c„), the constraints (1.12) and
(5.2) are sufficient to allow reconstruction of the
N XN matrices 4 and hence A (up to gauge
transformations).

We can formally extend Gile's proof to quantum
field theory by use of the representation

w„(c,, . . . , c„)=f dwe

x W(ci) . . W(C„),
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with i and j ranging from 1 to IN =(N + I )!, the
number of elements in Sz+&.

It is first of all clear that the precise form of the
renormalized constraints must depend on certain
details of the renormalization conventions. Thus,
if a given renormalized set ( Wii [ of functions
satisfies a constraint

and the expression

Wg(C) =1'+gR [g(plj+R ((C;0)]

+g„[g'!',R» (C;0}+g'!OR
& (C;0}

+glij+R2(C;0)+0 (g„')],
(5.13)

a'8'g ——0,
then the equivalent functions

W:—(K)ijW) =(E)'i(ZV W

(5.6)

(5.7)

where

Rjii(C;0)= Rii(C;e)
BE'

(5.14)

where t
K'jj is an arbitrary finite invertible matrix,

will satisfy the different constraint
The dimensionally regularized unrenormalized
function (5.11) will satisfy (5.4), so that

a'Wg —=a j(X ' V'Wg ——0 . (5.8) O=a jlj=a jp~, ajR, (C——;e)=a jp' =ajp',

The most we can expect is therefore that the renor-
malization matrix Z'j can be chosen such that (5.6)
is satisfied.

To avoid unnecessary complications, we will al-

ways choose

=& p20=& R2(C;&), (5.15)

but this does not imply that a'8'z ——0 except in
lowest order:

~'Wi «}=gjt'u'0L I'
W' =W'=1, i.e. , Z'j=s'~ (g=0) (5.9} +g~'[&'WiW i «'0)+&'0'!'OR'i «'0}

in the lowest order of perturbation theory. This is
not necessary. We could always take Z'J=E'J, an
arbitrary invertible finite matrix or even
I 'j=c'a~+ with c' divergent. However, (5.9)
is the simplest and most natural choice. In some
sense it associates Wz with the ith loop set in all
orders. Relatedly, it also gives us a'8'z ——0 in
lowest order.

Let us now ask if the Z'J can be chosen such
that a'8'~ ——0 in all orders of perturbation theory;
e.g., a'Z'J ~ a~. It is easy to see that this condition
need not be satisfied in general. With (we suppress
irrelevant variables)

'jg, v]+o(g (5.16)

Wg(C"}:—Wii„.(C'i, . . . , C„' )=f'.(5.17)

Of course, we can try to choose the g~j such that
(5.16) vanishes, e.g. , a'g~~ ~ a j, but it is not clear
that this is consistent with the finiteness of the
8'g.

Another, related, question of interest is whether
the Iz pIN components of Z'J can be uniquely
specified by imposing normalization conditions,
e.g., of the form

Z"(~)=~"+gR (e 0'i'1+0'!'0)

+gji'« 'If'+& '0'ti+070)

+0(gR )

and"
Wj(C;e) = 1j+g~ e 'pj &+R jj (C;e)

(5.10)

on the renormalized loop functions at I~ specified
sets tC'i, . . . , C„' ] of subtraction loops. Given

(5.5), the general answer is no since the I~ &&Iiv

matrix W'(C") is not invertible because of its zero
eigenvalue implied by (5.4). In other words, if Z'j
is such that (5.5) is finite and (5.17) is satisfied,
then so is

+gR ~ p22+~ P21+R2( i Z J=Z'J+c'a'. (5.18)

+o(gz') (5.11)

(11 1+Pll

022 +011 Pll+P22 (21 1+$11'Rl(C}0)

+010 P 1 1 +P21

(5.12)

where RJ(C;e) are regular at e=O, we obtain the
finiteness relations

W'= T'J Wj, 8'~ T'jW$, ——
Zij Tikzkl( T—1 }ij

(5.19)

But we can still ask if some of the components of
Z'J can be fixed by normalization conditions.

In order to answer the above questions, it is con-
venient to perform the linear coordinate transfor-
mation
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T'J=aj (j =1, . . . , I~) . (5.20)

Then the renormalization relation (5.5) becomes

W; =Z'JWJ (5.21)

and the Mandelstam constraint (5.4) becomes sim-

ply

where T'1 is any (and there are clearly many) inuev-
tible matrix such that

is obviously such that Z' W is finite: Z' W
=Z'|JWJ for i+1 and Z ~M=0. Note that it is
crucial here that W'=0. Otherwise we would
have to take also Z"=0 to get W~ ——0, and that
would render Z' to be not invertible and therefore
unacceptable.

We could now attempt to specify the remaining

(Iz 1) (—IN 1) m—atrix elements Z' (i,j+1)by
normalization conditions such as

W =0. (5.22) Wg(C )=f' (i,k=2, . . . , I~) . (5.30)

In the original basis the loops were diagonal in the
sense that each W' corresponds to a specific loop
set, whereas in the new basis the constraint is diag-
anal. The zero coupling conditions (5.9) become

W„=W'=T"IJ, Z"=5" (g=O) . (5.23)

It follows from (5.22) that the I~ matrix ele-

ments Z" are completely arbitrary, and the IN —1

matrix elements Z'J (j+1) may be chosen to van-
ish:

Z" arbitrary, Z' =0;
i =1, . . . , IN, j=2, . . . , I~ . (5.24)

The arbitrariness of Z' in the new basis corre-il .

sponds to the arbitrariness (5.18) in the old basis.
We may use this arbitrariness to choose

The problem with this is that it will still not
uniquely specify Z' because the zero-order contri-ik

bution T'J1J to 8" is not invertible. %'e could
eliminate this contribution, e.g., by using normali-
zation conditions of the form

T 'k

L Wz(CL, )=f' (i,k =2, . . . , I&),
BL

(5.31)

where CL is a fixed loop set of type i and length L.
This would lead to a unique expression

Z' (e)=f J[W '(e)]J" (i j,k =2, . . . , I&) (5.32)

for Z if we assume that the matrix
'k

W' (e}= L W(CI. ,e) (i,k='2, . . . , I~)
BLZ"=1, (5.25)

consistently with (5.23). The choice Z'1=0 (j+1)
implies that the renormalized loop functions Wz
satisfy

Wg ——0, (5.26)

just like the unrenormalized constraint (5.22). In
the original basis, (5.26} reads

a'Wg ——0;
and (5.24), with (5.25), implies that

iZik k

(5.27)

(5.28)

0, i=1, j@1,
Z J

lJ

Z i, otherwise
(5.29)

Of course, we could impose (5.28) in the original
basis and deduce (5.27); but it would then not be
obvious that (5.28) is consistent with the finiteness
of the Wtt. The equivalent choice (5.24) is, on the
other hand, clearly consistent with the finiteness of
Wz. Indeed, if Z& is such that Z'~ W is finite,
then the definition

(5.33)

is invertible, but (5.32) is unsatisfactory since the
(n + 1)th order W' is necessary to determine the
nth order Z' . Furthermore, the expression (5.32)
is of the complicated form (5.10) plus an infinite
power series in e. We conclude, therefore, that it
is best to specify the remaining matrix elements of
Z by direct conditions, such as the minimal-
subtraction statement (3.49), rather than by condi-
tions on Wz.

To summarize, we have shown that the I&.I~
components of Z' can be chosen such that the Iz
conditions

aiZ'J=a J (5.34)

are satisfied, and Iz —1 conditions are arbitrary so
that Z'J and Z' +c'a J are equivalent. [Only I~ 1—
components of c' are arbitrary since (5.34} requires
that a'c'=0 ]The remainin. g (I~ —1) (I~ —1)
components are best determined by a specified re-
normalization prescription such as the minimal
one.

There is another, instructive, way to interpret
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W~ ——Z'~WJ, i,j =2, . . . , I~,
and define

I
Wa = — g a'Wa,

a i=2

analogously to
I
g a'W'.

a1

(5.35)

(S.36)

(5.37)

the above analysis. According to Ref. 7, the Iz
unrenormalized function W' can be independently
renormalized, in the matrix multiplicative form
(S.S), without consideration of the constraint (5.4).
Then the I~ renormalized functions W~ need not
satisfy (5.4). Alternatively, we need only renormal-

ize I~—1 of the W', say W, . . . , W

Z has the arbitrariness (5.19) and this may be used
to make it invertible and, in fact, equal to the
preceding Z:

Z'1 =Z'1+5 "a~/a ' . (5.41)

As a final remark, let us comment on the large-
N limit of the Mandelstam constraints. As N in-

creases, the number of terms in the constraint
equations increases rapidly, and the degree of line

crossing at the cross point also increases. It is not
clear if the constraints have a nontrivial large-N
limit. The simplest possibility is of course that the
infinite-N theory is unconstrained. This is plausi-
ble since it should be sufficient to consider only
loops with a finite degree of crossing, but we have
no formal proof of this.

and

Z11
IN

g a'Z'1 (j=1, . . . , Iz),
1 l'=2

(5.38)

The W~ for j=2, . . . , IN are independent [assum-
ing that (5.4) is the only linear constraint], so that
Z'~ in (5.35) has no arbitrary components, and by
construction a'Wz ——0. If we now define

z~'=0

VI. OBSERVABLES

In this section we will illustrate how observable
matrix elements of physical currents may be ex-
pressed as functional integrals over loop functions.
For simplicity we consider first the case in which
the color singlet physical currents J&, which carry
flavor (index r), arise from covariantly coupled
scalar fields P' which carry both color (index a)
and flavor (index i):

then

and

Ws Z'~W~ (i,j——=l, . . . , IN) (5.39)

~~
Jp —lpQDp ttjpp

Here t~ are the flavor matrices and

D ~=5~~8 —igA ~
P P P

(6.1)

(6.2)

a'Z"=0 . (5.40)

We see that the I~.I& Z is not invertible, although
the (IN 1) (I~—1) Z —is invertible. But the I~ Iz

is the appropriate color covariant derivative ma-
trix. The multicurrent Green's functions can be
expressed as

(0~ T*[J„'(x)) . Jq (x )] ~0)=g "e ' " ip) 1 p,„n
r&

5aq (x))

in terms of the generating functional

5
~ ~ 0 l

5a~ (xq)

eiU(a)

, a=0

(6.3)

e'U"= I dA dCdCdpdptexp i P'(A, CC) +J d4x [ ~
(D& iga&t")p

~

i—m
~ p ~

]—(6.4)

where P' is the pure Yang-Mills action (2.4) and a„"(x) are external flavor vector fields.
The Gaussian scalar field integrations may be performed to give

e' "=J dA dCdCe' det '[(D„iga'„t') +m ], — (6.5)

in which D& —iga„'t' is a matrix with respect to both color and flavor. Following standard methods, we ob-
tain the representation
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det [ ]=exp f e '~ f dI,f(I )Tr@(A;r,)trC&(a t;r )
7

(6.6)

where the functional integral is taken over all loops I, of parameter length ~,

(6.7)

and

f(I,)—:exp ——f dr'z (r')
2

(6 g)

and

4(A;r) —=P exp igf 'dz&A„(z) (6.9)

are the classical path-order phase-factor matrices. The trace Tr is over color indices and tr is over flavor in-

dices. The proof of (6.6) is essentially the same as the corresponding one in the Abelian case.
%e thus obtain

e' "=f dAdCdCexp i A( A, CC) +f e ' ' f dr,f(r, )Tr@(A;r, )tr4(a. t;r, ) . (6.10)

Expansion of exp[i( )] now results in an expression in terms of the loop functions (1.4):

e' ' '= g, g f 'e ' ' f dI, f(I )Ntre(a. t;r, , ) W„(r,,, . . . , r ) .
n=0 ' i=1 i

(6.11)

In the large-N limit the loop functions 8'„ factorize and we can resume the series to obtain the remarkably
simple result

iU(a} —N f e ' ' f dI,f(r, )[tr@(a t;I,)]8'(r,) .
N~ oo 7

(6.12)

We consider next the realistic case in which, instead of (6.1), the color singlet flavor currents are bilinear
in spin- —, (quark) colored and flavored fields:

(6.13)

The generating functional satisfying (6.3) which replaces (6.4) is then given by

e'U"'= f dA dCdCdpdpexp i W(A, C, C)+i f d x[g(8 iga"A, " m)—g]— (6.14)

where

D„=8„igA „T', g =P—D„,
is the appropriate color covariant derivative matrix.

We find that the representations (6.10)—(6.12) remain formally valid in this case, with

7

f(I }—:—f dII+exp i f dr'[N(v') rr(r') z(r')]— .

(6.15)

(6.16)

instead of (6.8). Here the functional integration dII, is taken over all (momentum space paths)

(6.17)

and the path ordering P is with respect to the y matrices in @=PE.&.
The proof of these results is essentially the same as the proof of the Abelian analog given in Ref. 33. The

logarithm of the fermionic determinant which results when the integrations over the quark fields are per-
formed in (6.14) can be written



3638 R. A. BRANDT, A. GOCKSCH, M.-A. SATO, AND F. NERI 26

Trln(g —iga"a")= —f d x f &x
I
trexp[ —r(g i—ga"a")] Ix),0

(6.18)

where Tr is the complete trace and tr is the color-Aavor-spin trace. Now, according to the Trotter formula,

x
I exp[ —&(g —iga"A,")]

I y

4 4
4 dpi dpn= lim f d x~ f d x„&f 4

- f &
exp ibg(QT+aA)

n~ oo (2~) (2m )

X +Xn

2

Xexp[ ip—„(x—x„ i )]exp[i mp„]

X~+y
X . Xexp ihg(A. T+a &)

2

Xexp[ ip~—.( x& y)]—exp[imp~], (6.19)

where b,:r/n. W—e next formally change integration variables from p; to n; =p;+(A T+a A, )(x;) where

x, =(x;+x; &)/2. The integrand becomes

X +Xn
exp(ikey')exp[ i~„—(x —x„&)]exp ig(x —x„~) (A T+a.A, )

2

X)+JP
X . Xexp(ikey'~)exp[ in&(—x~ —. y}]exp ig(x~ —y) (A.T+a A, )

2

(6.20)

Although in general the meaning of this transformation is unclear since pt' is a number while (A" T+a" A, )

is a matrix, we can prove that the integral of (6.20) actually coincides with (6.19) to order b, =sin. This can
be seen by explicitly performing the p integration in each expression. For (6.19) we get

a4
~ ~

~
~

~—ipi (x —x 1) id, (A T+4'A, )(x-) id'
e ' ' e i e l

(2n )

4

=f e ' ' ' '
l 1+i'[(A" T+a" A(x;)+pt']y +O(b, )I

(2~) l f P

= I 1+idyl[(AI' T+a" A, }(x;) d"„]I5 (x; —x; —)+O. (b ), (6.21)

and for (6.20) we get

a4

f d p; -ip (x- —x- 1) ilkp' i(x ~ —x ~ 1)(A'T+a'A)(X. )i 1 l —1 e le i i —1 i

(2m ) 4
pi —ip; (x; —x; 1 . . ~, 2, i(x; —x; 1)A T+a A, (x,.~

~
~

~ ~

(2n. )

4 ~|M 4 i(x,.—xi 1)(A T+a A, )(x, )= I5 (x;—x; ~) —by„[o"„5(x; —x; &)]+O(h ) Ie

If we now use

[8"5"(x)]f(x)=8% (x)f(0)—5 (x)[B"f(x)]„

(6.22}

(6.23)

we confirm the equality of (6.21) and (6.22). We are thus permitted to use (6.20) in (6.19). This is impor-
tant since the matrices p, A T, and a A, in (6.19) do not commute with each other, whereas the matrices p,
A T, and a A, in (6.20) all commute.
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We thus arrive at the representation
r

(x ~exp[ r—()F i—ga A).] ,~y)= f dl, (x,y)F(l, (x,y))P, exp ig f T.A.dz Pfexp ig f A, a dz, (6.24)

where the functional integration is taken over all paths,

I,(x,y): v'~z(r'); 0&r'&r, z(0)=x, z(r)=y

and

P(r,)—:f dil+, expIi f dr'[p(r') m(—r') z(r')]] .

(6.25)

(6.26)

In these expressions, P, denotes color path ordering, Pf denotes flavor path ordering, and P, denotes spin
path ordering. Substitution of (6.24) into (6.18) now gives (6.10)—(6.12) with (6.16) and (6.17). We have
confirmed that these results are correct in perturbation theory.

VII. CONCLUSIONS

We have seen that the dimensionally regularized
unrenormalized loop functions W(C;g, e) are more
tractable than the renormalized loop functions

Wx(C;y, g~,p), for a general loop C with cusps
and cross points characterized by angles y. The
W's are unique, whereas the 8'q's depend on vari-
ous renormalization conventions. The 8 s ap-
proach unity when the length L (C) approaches
zero, whereas the 8'z's approach the complicated
but known expression ( —lnLp)"'r'~ . The W's

satisfy the MM equations, whereas it is doubtful if
the 8'~'s satisfy similar useful equations. The 8"s
automatically satisfy the Mandelstam constraints,
whereas such constraints must be enforced upon
the 8'~'s. We are therefore led to conclude that
one should formulate and solve non-Abelian gauge
theories in terms of the W's, and afterwards calcu-
late the 8'z's and observables.

In terms of the dimensionally regularized un-

renormalized functions W(C;g, e), our main results
are the exact' determination of the e—+0 behavior
(3.38), etc., and the proof of the dimensional regu-
larized MM equation (4.45). Explicit examples of
the a~0 behaviors follow from Eqs. (3.70) and
(3.78). We do not know how to solve the MM
equation (4.45), even for large N [Eq. (4.24)], ex-

cept in perturbation theory. Reversing our argu-
ments in Sec. IVD, we can show that the MM

equations have a power-series (in g) solution which
coincides with the conventionally calculated ex-

pressions for the 8"s in perturbation theory. This
indicates that the MM equations are at least con-
sistent.

The program should now be to find nonpertur-
bative solutions to the dimensionally regularized
MM equations, subject to the Mandelstam con-
straints (1.12) and (5.2), and then renormalize ac-
cording to (3.47). This exact renormalization is
easy since we know the exact small-e behavior
(3.60) of the renormalization matrices and since the
MM, the Mandelstam, and the renormalization
mixing sets are all the same. The final step would
be to calculate observables such as the flavor
current generating functionals (6.11). In the large-
N limit, the MM equation and current generating
functional enormously simplify to (4.24) and (6.12),
respectively. If, also, the Mandelstam constraints
disappear in this limit, loop space may be the best
hope for solving QCD in the large-N limit.
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