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Recent proposals to study Yang-Mills theory on the space of gauge-group orbits are
reconsidered. In particular, it is shown that the right formal Hamiltonian is not given by

fi /2 —times the Laplace-Beltrami operator plus the standard "inagnetic field" potential,
as was suggested, but has an additional potential term proportional to fi and is expressi-
ble in terms of the geometry not only of the space of gauge-group orbits but also of the
orbits themselves as embedded in the space of gauge fields. Formal discussion of the con-
tinuum fields is substantiated by a rigorous consideration of lattice gauge theory.

I. INTRODUCTION

In recent years it has been realized that gauge
theories are the natural field for application of
geometric ideas. Not only are gauge fields
geometric objects (connections), ' but geometric no-

tions are indispensable in studying classical solu-
tions of the field equations both in the relativistic
case and in the Euclidean case. These in turn
might have a bearing on the quantum theory
through a semiclassical approximation. Recently,
some problems directly related to the quantized
theory where shown to have a natural formulation
in geometric terms. Let us mention here the
gauge-fixing ambiguities and the problem of 0
vacuums. In particular, it has been argued that
the configuration space for Yang-Mills theory
should consist of the orbits under the group of lo-
cal gauge transformations of gauge fields at fixed
time rather than of the fields themselves. The
space of orbits carries a natural Riemannian struc-
ture g inherited from that of the space of fixed-
time fields, the latter being given by the "electric
field" part of the classical Lagrangian

—, I dxtr(P )

The "magnetic field" part of the Lagrangian

—, J dxtr(Ekt)

defines a function V on the space of orbits (the po-
tential). Formal reasoning based on functional in-
tegration seems to suggest' '" that we should take
H= —

(tent /2)hi s + V as the formal quantum Ham-
iltonian in the space of gauge-invariant functionals
with scalar product given by the (formal) Rieman-
nian volume element on the space of orbits. EL' is

the Laplace-Beltrami operator on the space of or-
bits. The reasoning uses the Faddeev-Popov stand-
ard trick' ' with gauge fixing depending only on
the spatial components of the gauge field. One
may come up with another proposition H ' for the
quantum Hamiltonian which is worked out in the
temporal gauge. H'=H+ 5V and 5Vmay be ex-
pressed by the scalar curvature of the orbit space
and the second fundamental form of the orbit. H '

seems to be the right Hamiltonian for Yang-Mills
theory. Two different facts support this statement:
First, H coincides with the Hamiltonian obtained
by Schwinger' in the Coulomb gauge by postulat-
ing the commutation relations with the famous
Schwinger terms for the energy density. Those
commutation relations guarantee the Poincare in-
variance of the quantum theory (on the formal lev-

el). Second, H' is the (formal) limit of the loga-
rithm of the lattice-gauge-theory transfer matrix.
Notice that H' is not given in terms of intrinsic
geometry of the orbit space. This shows that do-
ing the quantum Yang-Mills theory on the space of
gauge-group orbits is not totally natural. The
source of the discrepancy between H and H ' is the
arbitrariness in interpretation of the path-integral
formulas on Riemannian manifolds connected to
factor-ordering problems. We try to elucidate this
point in the text.

The paper is organized as follows. Section II
contains a heuristic discussion leading to two dif-
ferent expressions for the Hamiltonian, depending
on whether we work in the temporal or in the
spacelike gauge. The relation between them is dis-
cussed. Section III deals with lattice gauge theory
where part of the reasoning of Section II may be
made rigorous and the other part, if still formal, is
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more illuminating. Appendix A (formal) compares
the Hamiltonian H' with Schwinger's Hamiltonian
showing that they coincide. Appendix B (rigorous}
deals with the limit of lattice gauge theory when
the time-direction lattice spacing tends to zero.
Appendix C contains a formal computation of the
5V addition to the potential for the continuum
case. It could be regularized by considering the
lattice theory or by employing dimensional regular-
ization.

It has to be pointed out that the problem of the
relation between the temporal- and the spacdike-
gauge canonical quantizations in connection to the
ordering ambiguities has been addressed in
numerous publications (see Refs. 15—19). In par-
ticular, the translation of the temporal-gauge quan-
tum Hamiltonian into spacelike gauges, which is a
by-product of our paper, has been advocated or
carried out there. Nevertheless the arguments
presented here based on a geometric approach are
novel and offer in our opinion a "particularly sim-

ple and clear" picture on both the conceptual and
the computational levels.

II. HEURISTIC DISCUSSION:
THE CONTINUUM-GAUGE- THEORY CASE

—( 1/s) T Hamiltoniany } (2.2)

is proportional to the formal integral over paths
[O,T] Br~A~( r, ),

Ao At
T

)(exp
Tf dt f dxtrFq, $IDA(t),

(2 3)

F„,=B„A„B„A„—i[A„—, A„] (2.&)

DA(t)= g dA„(t, x) . (2.5)

One of the many problems with (2.3) is the pres-
ence of redundant degrees of freedom due to the
local gauge invariance of the integrand. This is
dealt with by the standard Faddeev-Popov gauge-
fixing procedure. 'i' One multiplies (2.3) by the
formally constant expression

Schrodinger-picture wave functions. According to
the functional prescription the (Euclidean) matrix
element

Consider the pure gauge theory with the com-
pact group 6=SU(Ã). The basic fields
A =—(A &( t,x)) take values in the I.ie algebra W of
G [&=su(N)]. The local gauge transformations
y:—(y( t,x)), y( t, x) E G act by

rAp ——yAqy
' i(B~y—)y (2 1)

%e shall also consider the fixed-time picture: the
space Q of fields A(x):—(Ak(x)), the local gauge
transformations y= (y( x ) ), and the gauge-invariant
functionals f on Q having the interpretation of the

f 5(F("A))bF(rA) g dy( t, x),
t, x

where F is a gauge-fixing functional of A, b.F(A } is
the Jacobian of the transformation A~F(e' A) at
A=O with A=(A(t, x)), A(t, x)FW, and dy is
the Haar measure on G. Changing the order of in-
tegration and using the gauge invariance of the un-

derintegral expression in (2.3) and of the

g„, -„dA„(t,x) measure we arrive at an expres-

sion proportional to

f P(A(0))(ti( A( t))exp ——f dt f dx trF„, hz(A)5(F(A)) ADA ( t) .
ax

(2.7)

Consider two specific examples of this situation.

A. Temporal gauge Ao ——0

Take F(A) =AD. Then i((F(A ) =det(BO —iAO) =const on the support of 5(AD). Performing the Ao integra-
tion we arrive at

(1( ~e
""' ' """""p)=const&& f g(A(0))p(A(t)) exp ——f dt f dx[2 tr(BOA) + —„ trFk& ] .

X ADA(t},
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DA(t)= gdA&(t, x) .
k, x

Remark: We could have obtained (2.8) directly from (2.3) by integrating first over A for Ao fixed and

gauge transforming A by an Ao-dependent gauge transformation such that (rA)o ——0 which would make the A
integral Ao independent. This procedure of fixing the temporal gauge carries over to the lattice and will be
used in the next section.

Comparison of (2.8) with the standard quantum-mechanical path-integral formula

I
P exp — T —— b.+V

fi 2
'2

=constX f p(x(0))1((x (t))exp ——f dt — + V(x) g dx ( t) (2 9)
1 T 1

fi o 2 dt

motivates the choice of

H= ——Qgg+ p
2

as the formal gauge-field Hamiltonian,

$2
dx tr

5Ak( x )5Ak( x )

(2.10}

(2.11)

I

gives the (flat) Riemannian metric on Q.
Fixing the temporal gauge left us with the resi-

dual gauge freedom to perform time-independent

gauge transformations. This is the source of pres-
ence in (2.13) of redundant gauge degrees of free-
dom. We may get rid of them again by the
Faddcev-Popov procedure writing

$2
(NIHIL)= f 2

g(d4d4)+IVY

V= —, f dxtrF~~ (2.12)

are the operators acting on the (gauge-invariant)
functionals of A(x) whose scalar product is given
by flat volume element C XD on the space Q of
gauge fields A(x), C is a constant. For the matrix
element of H we have

X &f( A)5(f( A))DA, (2.15)

~ ~g~ ~

= f pg5f( A)5(f ( A))DA . (2.16)

where hf( A) is the spacelike version of 4p( A )

and

(1(|
~

Hg}=C f g(dP, dg)+—PVP DA,
2

(2.13)

where

g(df, df)(A)= f dx tr
5Ak(x) 5Ak(x)

g
(2.14) transf

l

8. Spacelike gauges

%e have chosen the constant C so that it cancels
the constant factor produced by the gauge-fixing
procedure. The choice of C does not have a physi-
cal meaning since it does not appear in the Green's
functions (vacuum matrix elements). We claim
that H is the right (formal) Hamiltonian of the
pure Yang-Mills theory since it coincides with the
Schwinger Hamiltonian'" and may be obtained by
takin formal continuum limit of the lattice

er matrix.

In (2.7) we choose F(A)=(f(A(t))). [The Coulomb gauge with f(A)= —BkAk is an example of such a
gauge. ] Then

(2 7}=f f( (A))0f( (A)T) exp——f dt f dx [—, tr(p'kAO —50Ak)2+ —, trF„,']

X g (6f( A( t))5(f( A( t)))DA ( t)) (2.17)
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where

~k=()k —i[~k '] (2.18)

is the covariant derivative acting on M valued fields. But the Ao integral is now a Gaussian one and we

may evaluate it obtaining

(y
~
e

—(i/ii)THamiltoniany)

=const&( f g(A(0))g(A(T))exp ——f dt f dxI —,
'

tr[()peak(5kt 7kb, '—Vt)dpAt]+ —, trFkt j

. X g (det( 5) '—hf5(f)DA), (2.19)

where

(2.20)

Let v([A]) denote the volume of the 8 orbit [A]:

v([A])=constX f det( b, )'/ ("A)—gdy(x)
is the covariant Laplacian.

Equation (2.19) was given the following
geometric interpretation in Ref. 11 (see also Refs. 9
and 20). The group 8 of local gauge transforma-
tions y=(y(x)) acting on Q [the space of fields
A—=(At, (x))] preserves the Riemannian metric g
[see Eq. (2.14)]. Moreover, if we exclude A 's hav-

ing nontrivial local gauge symmetries (the so-called
reducible ones}, which form some sort of boundary
set, restricting ourselves to the set Qp of irreducible
A' s, 8 acts without fixed points and Qp/S—:Qp
is a decent space (may be given a marufold struc-
ture '}. The metric g projects down giving a
Riemannian structure g on Qp. By definition the
Riemannian square of a vector (djdt)[A] tangent to
Qp is obtained by taking a lift of this vector to Qp,
e.g., BpA, and computing the scalar square accord-
ing to g of its projection onto the subspace normal
to the orbit. Hence

g —[A],—[A]
dt ' dt

= f dxtr[BpAk(5ki Vk~ '—~i)()pAi] .

=const Xdet( —6)'/ (2.22)

itA~
A

dt

We have used the gauge invariance of det( —tI(,).
For a gauge-invariant function 1( on Qp let p
denote the corresponding function on Qp. Let
d P([&]) be the measure on Qp defined by the
Riemannian volume element. %e have

f QDA= f gv dj
=constX f 1{det( b, )'/2dp . — (2.23)

Gn the other hand, by the Faddeev-Popov trick

f QDA=constX f gbf5(f)DA . (2.24)

Hence

f pdp=constX f Qdet( 4) +f5(f)D—A.

(2.25)

since —6 gives the pullback of g by the exponen-
tial map

(2.21) Using (2.21) and (2.25) we may rewrite (2.19) as

(y~e
—"/+T"' '"' '"1()=constx f (7([A](0))g([A](T'))exp ——f dt —,g —[~] —[~] +I'([~])

dt
'

dt

X gd p([&](t)), (2.26)

where Vis given by (2.12).
This way (2.26) becomes an analog of the quantum-mechanical path-integral expression on a Riemannian

manifold
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~ ~

1 T
1 dx dxjconstX f P(x(0))g(x( t))exp ——f dt —,g; (x) + V(x) g [g(x( t))]' dx( t) .0 ' " dt dt (2.27)

However, the intepretation of (2.27) is not as
straightforward as that of the right-hand side of
(2.9) since there is a factor-ordering problem in-
volved. One might understand by (2.27) the matrix
element

1f exp T —— b,L))+ V
2

where hz~ is the Laplace-Beltrami operator on the
Riemannian manifold and the scalar product is de-
fined with the use of the Riemannian volume ele-
ment. Based on this it was recently argued' that
(2.27) gives rise to the quantum Hamiltonian

g2

f exp T———
2

(~La+«)
fi

for V=O where a is the dimension-dependent con-
stant and r is the scalar curvature. In our case the
postulate of the Poincare invariance is the symme-
try principle at hand. Let us compare H to the
Hamiltonian H chosen in Sec. II which, according
to the analysis of Ref. 14 and of Appendix A is
compatible with the Poincare symmetry principle.
H and H act on spaces with different scalar prod-
uct which may be related by a unitary transform
U,

H= ——Ega+ V,
2

(2.28) Uy e
—h/2y (2.29)

where hit) is the Laplace-Beltrami operator on Qo.
H acts in the space of functionals on Qo with the
scalar product defined by d p, . This definition of
H was at the origin of an attempt' to construct
rigorously cut-off versions of H. The choice of
(2.28) is based, however, on an arbitrary convention
for factor ordering in (2.26). The right convention
should be compatible with symmetry principles. It
is known, for example, that the postulate of the
conformal symmetry forces one to interpret (2.28)
as

where

e"=const Xdet( —4)'

and the constant is chosen so that

(2.30)

IIU&ll'= f eedP (2.31)

see (2.16) and (2.25)]. Denote by H ' the operator
U 'HU acting as H in the space of functionals on

Qo with the scalar product defined by d P:

(f l
H'((t))=(UP

l
HUf)= f g(d(e "—f),d(e " P))+/Vie " 6~5(f)DA (2.32)

= f g(df, dg) —g(d(Pg), dh—)—+ gg (dh, dh)g+—/VS e hb/5(f)DA
//t — fP — A'—

fi = — fi =- — A' == f g(df, df) —g(d(P, P),d—h—)+ Pg(dh, dh)P+P Vf dP

2
-= f y ——b,„i)+V+5V qdP,

2 (2.33)

where

2

5V= bLi)h+ g(dh, dh) .
4 8

Hence

H'=H+5V.

(2.34)

I

tation of the 5V addition to the potential.
For the matrix element of e ' "' one obtains

(y l
e

—(T/t))Hy) (eh/2y
l

e (T/&)H e—h/2q)—
(eh/2q

l
e

—(T/t))(H+sv)eh/2, g, )

In Appendix B we give explicit but formal compu- (2.35)
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which we claim is the right interpretation of (2.26)
as contrasted with (1(

~
e "~+ g). The presence

of the e "~ factors is not physically relevant [they
do not appear in the (Euclidean) Green's func-
tions]. We shall moreover be able to elucidate
their origin to a certain extent going to the lattice.
The additional "quantum" potential 5V seems,
however, relevant.

III. RIGOROUS DISCUSSION:
THE LATTICE-GAUGE- THEORY CASE

Most of the previous formal arguments (except
the one based on the Poincare invariance} can be
made rigorous by considering the lattice gauge
theory in the manner of Wilson ) in a finite

volume. A &( t, x) gets replace by the Lie-group-
valued fields gb FG, gb i

——gb ', with b running

through the bonds of the lattice A=A, &&A, where

A, =a,Z A [O,TJ, and A, is, e.g., a cube in the
spacelike lattice a, Z . The local gauge transfor-
mations y=(y } are specified by giving a group
element y for each x EA and act by

gb y——gby,
' for b=(xy) . (3.1)

In the fixed-time picture we consider the space Qt
of g—=(gb}bz~, gb, gb

——', the local gauge

transformations y—=(y-„)„Ez forming the group

8'i, and gauge-invariant wave functions f on Qi.
The regularized version of (2.3) reads now (Tla, is
assumed to be an integer}

g 0 g T exp —Retr 'a, 'a, gp
—1 + "a,a," gp

—1
pcA pcA

II «b
bcA~

(3.2)

where g' ~z runs over the plaquettes of A containing timelike bonds, g "cz over the spacelike plaquettes,

gz
——IIb ~s gb, and dgb is the Haar measure on G. Equation (3.2) is perfectly well defined for p in

P =L (Qt, dg) where dg=IIbc~ dgb. We shall show that, after proper normalization, its a, ~O limit ex-

ists and defines the standard Hamiltonian of the lattice gauge theory. 3 To this end transform (3.2) by fix-
ing the temporal gauge. This is done by performing the local gauge transformation y with

y(t, x)=
bc[0, t]x I x )

gb, y(O, x}=1.

[See Remark preceding Eq. (2.9)].] The result is

g 0 g T exp —Retr a, 'a," gb g+a, gb g

teA, bcA,
t+T

g a,a," '(g~ —1)
tEAt pcA

II dgb(t) .
tEA,
bcA,

(3.3)

Denote by W, the operator in P with the kernel

1
W, ,(g',g)=exp —Retr g a, 'a, (gbgb

' —1) 8; (g)
bcA,

'

I exp —Retr g a, 'a, (gb
' —1) dg,

bcA,
(3.4)
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W, (g)=exp —Retr g a,a (gz —1)
1

c~,

W, is the transfer matrix of the lattice theory.

Equation (3.3) is proportional to

(3.5)
d [g]=e"'""dP([g]»

where e"' ~ ' is proportional to the Riemannian
volume of the Si orbit [g] in Qi. The unitary
mapping U:A =I (Qi, ,dP)~A;»,

(3.10)

to Qi giving rise to the metric g. The two natural

measures on Qi, the projection d [g] of the mea-

sure dg and the Riemannian measure d P([g]), are
related by

T/a,
In Appendix C we prove that a, ' converges

strongly as a, ~0 to

(3.6) Uy e —h/2y

allows one to define the Hamiltonian
H ~

——U 'HIUin M such that

(3.11)

1 A'

exp ——T —— 6+ V
fi 2

where 6 is the Laplace operator on the group

Xbch G (=Qi) corresponding to the invariant

Riemannian structure g defined by the scalar prod-

uct

( h/2y
I
e I eh/2y)

(3.12)

Moreover, for smooth invariant functions g van-

ishing in a neighborhood of reducible g 's

(A,A ) = g a~ trAb
bcA,

AE Xbc~ M, and

(3.7)
(1(, I~ ~) (, h/2~Ice h/2~)

$2——biB+ V+5V f

V= —Retr g a (gz —1)
bcA,

This gives immediately convergence of (3.6) to

where

f2
5V= bLBh+ —g(dh, dh)

(3.13)

(3.14)

1f exp — T — 5+—V
fi 2

and produces the lattice version of the definition

(2.10) of the quantum Hamiltonian

by virtue of (3.10) and of a (rigorous) computation
analogous to (2.33). Let us denote by %=V(g) the
covariant derivative V: X„c~W—+ Xbeg ~,

S S

HI—=——6+V
2

(3.8)
(~A)b =

d
(' g)bgb

'

t=O

in A;„„,the gauge-invariant subspace of 4 . This
is the Kogut-Susskind Hamiltonian. For gauge-
invariant smooth 1('s (such p's constitute an essen-

tial domain for Hi in A;„„)

=A„—gb A„gb
' for b = (xy ) . (3.15)

Consider in Xbc.h M the scalar product (3.7) and

in X„czM the one given by

(PI%4)= J g(dy, dy)+pe dg. (3.9)
fi

The group of local gauge transformations SI
acts freely on Qi except for a closed subset of mea-

sure zero composed of reducible g's. The quotient
space Qi =Qi,i9'i of classes of irreducible g's is a

manifold.
The Riemannian metric g on Qi projects down

(A, A)= g a,'trA„'.
xEA

Let V~ be the adjoint of V' and let

be the covariant Laplacian. Then

e"=const Xdet( —5)'/

(3.16)

(3.17)

(3.18)
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or

h = —, Tr ln( —b, )+const . (3.19)

Notice that e" vanishes at reducible g's possess-

ing continuous subgroups of symmetries and does
not vanish on irreducible g's. The additional
"quantum" potential 5V of (3.14) could be
rigorously computed based on formulas (C15) and
(C16). The result is an involved expression and we

do not give it here.

The second approach we have followed in our
heuristic discussion of the continuum gauge theory
which consists of fixing a spacelike gauge and in-

tegrating out Ao has its lattice counterpart also
only on a formal level. However, the lattice case is
more illuminating than the continuum one. We
shall first take the formal a, ~O limit of the prop-
erly normalized (3.2) by setting g&~, „x,+, -„~&

iatAO(, t, x )=e ' ' . This gives

f f{g(0)}g(g(T))exp —f dt —
2 ~~g

—VAO~~ +Retr g a, (gz —1) gdg(t)dAO(t), (320)
pCA, t

where

1 de
gb ~ Sbi dt

and
~ ~ ~ ~

is given by (3.7). Formal integration over Ao yields now [compare (2.19)—(2.26)]

(3.21)

constX f p(g(D))g(g(T))exp —f dt —
2 {g,[1—V'( —6) 'Vt)g }+Retr g a, d

(gz —1)
pCA

X g det( —b, }'~'dg( t)

=constX f p([g](0))17([g](T))exp ——f dt —,g —[g],—[g] + p' gdp([g]), (3 22)
dt

'
dI,

which we might be tempted to interpret as

f exp T ——b,—in—+ V
1 irt—

2
(3.23)

whereas it should be interpreted as (3.12}. We may illuminate the source of this discrepancy setting a finite
difference approximation scheme for the last steps leading to (3.22) in which we keep the lattice spacing
small but nonzero:

f g(g(0))g(g(T))exp —g a, ——,
~ ~g( t+a, l2) V(g( t+a, l—2))AO( t+a, l2)

~ ~fi, ~A
t+T

+Retra, " g [g~(t+a, /2) 1]—
pCA, t&A, t E-A,

t+T

P dg(t) g dA, (t+a, l2),

{3.24)

where

gs( t+a, l2) =exp[ —,ta, g( t+a, l2)]gb( t) =exp[ , t'a, g( t+a, l2)]gs—( t—+a,),
seems to be a good approximation to (properly normalized} (3.2) when a, ~O. The version of (3.24) with Ao
integrated out, projected to Qo, reads
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const X f p([g](0))g([g](T))exp —g ( —1)a,[—,g([g],[g])( t+a, l2)+ V([g]( t+a, /2))]
fi t~h

t+T

X g det{ —h(g(t+a, /2))) ' g det(h(g(t)))' g dP([g](t)) . (3.25)
t6h,
t+T

t&h, t E-h,

Equation (3.25) contains certain ordering prescription for (a finite difference approximation of)

T

f, «g —[g] —[g]

Moreover, the cancellation of the determinants does not occur completely which allows one to understand
the appearance of the factors e "~ =const Xdet( —6,)' in (3.12) and is another reason why the a,~O limit
of (3.2) should be (3.12) rather then (3.23).
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APPENDIX A

We compare the Hamiltonian (2.15) to the formal expression obtained by Schwinger in Ref. 14. In the
Coulomb gauge (2.15), (2.16) reads

fi
(g

~
Hp) = f g(d p, d Q—)+/VS det( —Bk Vk )5(Bk Ak )DA,

2
(A 1)

IIIII'= f A'de« —~kVk)5(5kAk»A.

Consider another scalar product

Il~ll'= f ~~5(~.A. »A,
which may be related to (A2) by a unitary transform U,

U1( =det( —5kVk) tl'=e"

(A2)

(A3)

(A4)

The space with scalar product (A3) is the one Schwinger implicitly used. The canonical transverse operators
Ak =PktAt and mk =Pkt(A/i)5/5At, where Pkt =5kt —Bkbo 'Bt, ho=a„B„,are symmetric with respect to
(A3). Upon the similarity transform H goes to H'= U 'HU. By virtue of (Al), we have

$2
(tP ~H'f)'=(Ug ~HUP)= f —g(e "~ d(e" ~ g),e "~~d(e"~~/))+/VS 5(dkVk)DA

2

Now

= f . —f dxtr
$2

2

5
=&~k4+ dk&

k

5$ i —5u
5A '

5Ak

5f i 5u

5A,
+ ~5A, +/VS, '5(dtAt)DA . (A5)

(A6)
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and Vk 5$/5Ak =0 since g is gauge invariant. This gives

A= D—Vkinkp=iD[Ak, ink/],
where D=(VkBk) '=(Bk Vk)

' and

(A7)

(AS)

Introducing a set of generators t' in the Lie algebra W, trt't =5', [t',t ]=ic ' t with structure constants
c completely antisymmetric and writing Ak =Akt' we may rewrite (AS) in components as

= f dy[5ki5'~5(x y)—BkD—'b(x, y)c Af(y)]int(y)g
5Ab(x)

= f d y [5»5' 5( x y) —AD—' ( x, y )c At'( y )].i n I ( y )P

+ z f dy[inI(y), dkD' (x,y)c+~A'(y)]P, (A9)

where we have used Schwinger's notation A.B=—,AB+ , BA and —BD(x,y) (D(x, y)B ) denotes the derivation

with respect to the first (second) set of variables.
Now

[ ( ) D' ( )]=—f dudvD"(x, u)[ini(y), (V„B„)'(u, v)]D (v, y) (A10)

(V 8 )'f(u, v)=5'f505(u —v)+c'sfA (u)B 5(u —v) .

Hence

(Al 1)

'[int(y), ( VB„)' (u, v)] =c' f[5(y —u)BI5(u —v) —BtB„E '(y, u)B„5(u —v)], (A12)

'[in. ( ) D'(x )]=—'c" D"(x,y)BD ( )+ f duc'ID"(x u)B 5 5 '(y, u)B„D (u y), (A13)

and

&

g—1 f d~[ ~ d( ) 5 Dab(~& ~)cbcdAc(~)] i f d~cbcdcedf5 Dae(~& ~~)5 Dfb(~ ~~)A&(y)

+—' f dyduc ' c' BkD"(x,u9iB 60 '(y, u)& D+(u y)Af(y) .

(A14)

Next we shall compute

5u

5Ak(x)

We have

trln( —B„V„).
5

5A,"(x )

[in 1 ( y ),tr ln( —B„V„)]=tr(D [in I ( y ),B„V„]}

=Pi f dudvc' D '(v, u)[5I„5(y—u) —BiB„bo '(y, u)]8„5(u —v)

and by (AS)

(A15)

c"fd„Df'(x,x)+ —fdy[c"fd Df'(y y)B 5 b, '(x, y)+cb'~c'+8 D'b(x, y)d, D~'( )A'( )]
5Ab(x)

f d d bed ed' Dab( )5 g g —1( u)5 Dfe(u }Ac( (A16)
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We shall simplify the expressions on the right-hand side of (A14) and (A16) employing

f dv(V 8 ) (u v)D f(v z)=boD"f(u z)+cd'A'(u)B D"f(u z)=5 f5(u —z)

Using the symmetry of D, the antisyrnmetry of c'+, and integrating by parts we get

f dy du c+"c«BkD"(x,U)BIB 50 '(y, u)B„D+(u, y)A'(y)

(A17)

and

= —f dydu[5"f8„5(y —u)B„EO '(y, u)BkD"(x, u)c'f

+g~df(~ ~u)peg g —1(~u ~)5 Dae(~x ~&)cedf]

= —f dyc«fd„D f(y, y)d "dkD"(x, y)=0 (A18)

= f dy duc 'dIDsf(y, u)d„A'( )d„h '(y, u)BkD"(x, u)c'f

f dyducb dcedf5, D a(b-xy)(), ()„g, '(y-, u)()„Dfe(u, u}A,'(y}

(A19)

f dyducdebr}D+(y X)5 Al(y)5 g (y u)5 Df(u u)c f

f dy du 5~Bk5(x —y)B„AO '(y, u)B„Df'(u, u)c' f

f d~d~ g~da(~ ~}5k' g —1(~u ~}5 Dfe(~u ~u)cedf

f dye"fB Df'(y, y)dkd„bo '(x, y)

f dy cedf5 Dda(y x)5 "5„Df'(y y} .

Equations (A14), (A16), (A18}, and (A19) give

5u'
fi ' f dy[i—n((y), &kD.' (x, y }c «Af(y)l+

=——,c"BID '(x, x)+ —, f dy(c "c' c"c )d—kD' (x, y)B~D '(y, y)A (yI)

——, f dye«fd„D (y, x)BI,d„Df'(y y) .

Using the Jacobi identity for the structure constants and (A17} again we show that the second and the
third term on the right-hand side of (A20) cancel. Hence finally

H'= —, f dx f dy[5k15' 5(x y) dkD' —(x,y—)c+ A'(y)] m(~y) ——c'. 'BkD '(x, x)

X f dy[5k„5 ~5(x —z)—B~D"(x,z)c'f~A„(z)].n „(z)+ c" dkD—' (x,x) + e f dx+kI(x)

(A21)

which is Schwinger's Hamiltonian. '

APPENDIX B

We have to prove that

T/a f2~ exp
a, 0

(B1}
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strongly, see (3.4) and compare. I.et U, be the operator with the kernel

1
U, (g',g) =exp —Retr g a, 'a, (gl', gb

' —1)
bcA,

Then

f 1
exp —Retr g a, 'a, (gb —1) dg .

bch,

(82)

(83)

a, —+ Wa is a one-parameter self-adjoint semigroup with bounded generator
t

V= —Retr g a" (gz —1)
bcA,

U, is a one-parameter family of bounded self-adjoint operators. We shall show that U, is strongly continu-
t t

ous, U, ~ 1 strongly, and that lid/dt ~, OU, =(A' /2)h, where the derivative is taken in the strong sense.
a 0t

Equation (81) becomes a Trotter-type formula and actually the proof of the Trotter formula given in Ref.
25, Theorem VIII.30, extends immediately, yielding (81). Thus we are left with showing that for the one-

parameter family u, : I. (G,dg) +I- (G,dg—), with the kernel

1 1 d —2u, (g',g) =exp —a, 'a, " Retr(g'g ' —1) Z-2f exp —a, 'a, Retr(g —1) dg,

u, is strongly continuous, u ~ 1 strongly, and fidu, /da,
~ o

——(A /2)A, where 6 is taken with respect to the
t a ~0t

metric (A,A ) =a, trA on M. The Fourier transform on G diagonalizes u, : On functions carrying ir-
t

reducible representation o it becomes multiplication by a (a,):

—1 d —2a (a, )= —. f exp —a, 'a, Re tr(g —1) X~(g)dg exp —a, 'a, Re tr(g —1) dg,
dimo.

(85)

where X is the trace of o.. Equation (85) gives immediately

0(a (a, )(1, (86)

a (a, ) is continuous in a, .

It is also clear that a (a, ) ~ 1 since Retr(g —1) is negative except at g= l. This givescr t

(87)

~~g, ~~ ~1, u, is s«ongly continuous, u, ~ 1 strongly.
t t a 0t

(BS)

Now we sha11 prove that

« (u&) a (a, ) —1
=A lim =- . —Qg (1) .

0 a, dimo. 2
(89)

Indeed
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n (a, ) —1

a,

f exp —a, 'a, d 2Retr(g —1) [X (g) —X (1)]dg
dlmo'

—1 d —2exp —a, a, Retr(g —1) dg

p(g —1/2)f, , exp a, '—a, e 2Retr(e ' —1) [X (e '
) —X (1)]v(a„A)dA+ —e

dimo a, a, -'~'~ A' a,

d-2 iu& 1/2A —d'(
Ng )Re tr(e —1) v (a~,A)dA +e

I

(810)

where d is a bounded neighborhood of zero in ~, and the invariant volume element

v(a„A)=a, d'm ~2[const+8'(a, 'trA )] .

Since

ia 1/2A

g (e '
) —g (1)= &a,X"b(1)A A +d'(a, trA )

where

(Bl 1)

ds) ds2

and

ia~ A
Retr(e ' —1)=—, a, trA —+d'(a, trA ), (B12)

it is easy to show using the Lebesgue theorem that

a (a, )—1 g f exp[ —(1/2')a, trA ]—,X",&(1)A'A bdA

a, ~, o dimcr f exp[ —( I/2&)a, e 2trA2]dA

1 ——bX (1)=—kz'(0) .
dimo 2

(B13)

Since (fP/2)h is also diagonalized by the Fourier transform of L (G) and in the o subspace is multiplication
by (I/dimmer)(fi /2)b+~(1) we see that on D CL (G), D=spanIX j, fidu/da,

~ o
=—A and (A' /2)b, coincide Ais.

symmetric, and D is an essential domain for (A' /2)b„hence showing that A =A
~ D will yield the equality of

both operators. Let us notice that iffED(A) and f=g f, where f are the Fourier components of f,
then (Af) =fia' (0)f . A

~ D is just defined by this expression with the domain consisting of all

fEL (G) such that pa~(0) [(f~() «x& .

Thus we have to show that any such f is in D(A). It is enough to show that there exist C, e, such that for
a11 a, & e and a11 o

a (a, ) —1
&C(1+ ~a'(0)

~
) .

a,

Indeed if (B14) holds, fED(A
~ D ) and I is a finite set of irreducible representations of G, then

(B14)
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a (a, }—1
A—(u, —1)g f =A'g f

~I o~I

converges uniformly in a, & e over the net of I 's. Hence

lim —(u, —1)f1

a, oa)

exists and fED(A). Equation (814) follows from (810) and

~X~(e
'

) —X~(1)
~

& f ds(1 —s) X (e ' )
S

= f ds(1 —s)a,
~

trdu (A)ie '

& J ds(1 s)a, tr—du (A) & , ab X~(—1)t—rA

a,d—imcr
~

a'(0)
~

trA

APPENDIX C

Consider a general case of a Riemannian manifold Q with metric g on which a compact group 9' of
isometrics acts freely. To any vector Y on the quotient space Q we may assign a unique vector field Y on Q
projecting to Y and normal to the 9' orbits. Of course, Y is 9 invariant. The quotient Riemannian struc-
ture on Q is given by g( Yi,Yz) =g(Y),Y2). Let V and V denote the corresponding metric covariant deriva-
tives. It is easily seen that if Vr- Y2 ——Yz then (V„Yz) =Vr Yq ——Yq, where by () and () we denote the

normal and tangential components of vector field on Q with respect to the 8 orbits. Let X be an element of
the Lie algebra Q of G. Let X be the vector field on Q corresponding to the infinitesimal action of X on Q.
%e have

g(V r, Y21»= —g(Y2 I Vr,X}=—g(Yz I Vx Yi }=g(VxYz
I

Yi }= g(V r Y)—I»,
where we have used the 9' symmetry of Y; which yields

[X,Y;]=0.
Choose a basis X; of tangential vector fields and a basis Y~ of (local) normal fields to the 9' orbits on Q.
Let

(Cl)

(C2)

g(Vi Y~ ~X(}=a~~,= a~g, — (C3)

and let

g ( Y~ I Vega }=g( Y~ I Vx Xi }=—g (Vx,. Y~
I XJ ) = —g (Vr.Xi

I XJ }=Aaij =A—
&jr

be the second fundamental from of the 9 orbits.
Introduce now the 9-invariant function

(C4)

1
h = —, Trln(g;~) (C5)
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and the function h it defined on Q, where g,j——g(x;QJ}. e" is proportional to the volume of the 8 orbits.
Let us compute

But

( Y)
I
Vr- dh ) =[Yz(( Y)

I
dh ) )—(Vr, Y(

I
dh )]=—( Yi I Vr,dh )

(Y) ldh) = —,g '[g(vr X; IXJ)+g(X; I
Vr XJ)] .

g(Vi, x; IXJ)=g(V» Y) lxj)= —g(Y,
I
V»XJ)= —g(Y) I

V»X;)=g(vrX~ IX;) .

(C6)

(C7)

(C8)

Hence

(Yi Idh&=gj'g(VY, &r IXJ}

and

Y2(( Yi I
dh &)= 2g' g—(xk

I VY xi)g 'g(v r xi
I xj}+gj'g(vrvr xi

I xj }+g"«Vrp'i
I vr XJ»

(Vr, Y]
I
dh) =g"g(Vv„rXg IXJ)=g"g(v»vr, Yi IXJ)

=g~'g(vr V» Y& IXJ)+gj'g(R(X;, F2)Yi Ix~)

=g~'g(vr Vr X;
I XJ }+gj'g(R(X;,Y2) Yi I XJ ),

(C9}

(Cl 1)

where R is the curvature tensor on Q and we have used [X;,Vr Y~ ]=0 following from the 9 invariance of
2

Vz, Y&. Moreover,

g g(x, lv„x, )x, =(v, x, ) .

Equations (C6) and (C10)—(C12) give

(Y,
I V,dh)= —gj'g(R(X;, F )F, IX )—gj'g((V„X )~~ l(V,X )~~)+gj'g((v, x ) l(V„,X ) ) .

We may write (C13) as

( Y~ I Vr dh ) = R'gp, A~(~A—p'J+B~—r,Bp+,

and contracting a and P

Finally, for g(dh
I

dh ) we get from (C4) and (C9)

g(dh ldh)=(A~ A JJ)

(C12)

(C13}

(C14)

(C15)

(C16)

For continuum theory Q is flat. We shall compute formally bt, ah and g(dh
I
dh) for this case. In fact,

these expressions diverge and need regularization (e.g. , the lattice one). The vectors Y—=(Yk(x)) are normal

to the 8 orbit at A=(Ak(x)}, if V'k Yk=-0 where Vk—=Vk(A) is the covariant derivative. For A=(A'(x))
the vector field X is VA if X—:A. Notice that

Vy(VA}= i [Y,A]—

g(vr (VAJ )
I Fp) = i ([Y~k,AJ—] I Fpk) = I d x c'"'Y~k(x)A)'(x )Ypk(x}=B~p~,

B~pJBrs„= f dxc' Y~k(x)AJ(x)Ypk(x) J dyc 'fYri(y)Af(y)Ysi(y) .

Similarly,

(C18}

(C19)
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g(VvA (V.AJ) i
Yp)= f dxc' (VbA;) (x)AJ'(x)Ypb(x)=ApJ,

Ap~JAs „=f dxc' (VkA;) (x)AJ(x)Ypk(x) f dy c ' (ViA )'(y)A„(y)Yi(y) .

We shall first compute

&ap)&~gn+~ pi~as

(C20)

(C21)

(C22)

To this end we have simply to treat (C19) as a quadratic form in Y and Yz and compute its total trace (in
both the tangential and normal directions). Hence

(C22)= f dxc' c~ JAJ(x)A„(x)Ypk(x)Ysk(x) .

Now we shall contract P and 5 in (C22). To do this we have to treat (C22) as a quadratic form in Yp, Ys,
compute its total trace, and subtract the trace in tangential direction. This gives

gap +g gpi f dx cabccabfAc(x)Af( x) 5( 0) 5 f dx cabccdbfAc( )Af( )(V g —1V )ad(x x)

(C23)

Next we contract j and n:

gapJ+g gpiJ f d~xcabc abf(Z —1)cf(~x ~x)5(0)5 + f d~x abccdbf(Z —1)cf(~x ~x)(V Z —1V )ad(~& ~x)

= f dx(c b'c "c~b c iN)(V g ')' (x, x)(Vk5 ) (x x)

—f dx c' c' I(b ')'~(x, x)5(0)(5kk —1)

= f dx(2c'" c +c'" c' )(V b, ')' (x x)(V 6 ')'J(x, x)

—f dxc' c' (b, ')' (x x)5(0)(5 —1) (C24)

(C25)

(C27)

The last term is equal to

f dxc' c "(Vkh ') '(x x)(V b, ')' (x x)

—f dxdy c' c '
(VbJb. ')"'(x, y)(Vib, ')J'(y, x)(Vkb, 'Vi) (x, y), (C28)

where we have used integration by parts and Jacobi identity for the structure constants to remove the second
Vk from Vkh 'Vk. Similarly we compute

ApiJAP~„= f dxc' ' c~(V Ak;)"(x)A&(x)(V Ak~)'(x)A~ (x~)

f d~d~ abc def(V A )b(~)Ac(~x)(V A )e(~)Af(~)(V g —1V )ad(~x ~)

A;JAp '= —f dxc'+c" (V A ) (x)(VkA )'(x)(& ')' (x x)

+ f dxdyc'~c~'(V A )"(x)(V,A )'(.y)(& ')'J(x, y)(Vb~ 'Vi)'(x

f d~xcobccaefAb(~x)(gA )e(~x)(g —1)cf(~x ~x)+ f d~xcabccaefAb(~&)(V A )e(~x)(V g —1)cf(~& ~x)

+ f dxc''c"JA". (x)(V A )'(x)(V„b )J'(x x)

f d~d~ abc defAb(~)(JbA )e(~)(V g —1)cf(~ ~)(V g —1)ad(~x ~)

f dx cabccaefAb(x)(gA )e(x)(g—1)cf(x x)

+ f dxdyc''c 'J(V A. ) (x)(V A )'(y)(V 4 ') '(y x)(V 5 ')' (x y) (C26)

Ap;Ap'&= —f dx(c' c" +c' c'")(Vkb ')'"(x, x)(Vkh ')' (x,x)

+ f d~xcabccdbf(V g —1)ad(~x g)(V g —1)cf(~x ~x)

+ f dx d cabccdef(V g—IV )be(& )(V g —1)J'c( )(V g —1)ad(x
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where the second term is again the same except for the sign. Hence the last term in (C27) is equal to

I dxcabccdcc(V g —1)ad(x x)(V g —1)bc(x x)

and

Ap;AP"= ——J dx(c"fc ' c"—~c'f)(V„E ')'(x x)(V b, ')'f(x x)

Finally

( Yp
~

dh) =trVb '[Y ]= J dx(Vkh ')' (x, x)cbd'Ypk(x) .

Hence

g(dh ~dh) A ~AP JJ.dxcobdccbf(V g —~)ad(x x)(V g —')cf(x -„)

Gathering (C15), (C24), and (C29) we get

h=3 J d 'f '(V & ')'(» )(V b, ')'f( )

—I d x c' 'c'"f(fb ')'f(x x)5(0)(5kk —1)

and

2

5V=- [E„Bh+—,g(dh
~

d h)]
4

d~(3 abf dbc+ ' cabdccbf)(V Z —1)ad( x x)(V Z
—1)cf(x x )

2

I d~xcabccabf(g —1)cf(~& ~x)5(0)(5 1)

(C29)

(C30)

(C31)

(C32)

(C33)

5 V may be compared to the geometric objects like the scalar curvatures r and r of Q and of the 8 orbits,
respectively. For the general situation we consider here

~ ~p=g"'+3 '3
~

—A JA
'

I =g~p+3B~p;B P'.

(See Ref. 26, Theorems 1 and 2.)
In our case

r

d~&(CabfCdbc+CabdCcbf)(V g —&)ad(~X ~X)(V g —&)cf(~X ~X)—
2

(C34)

(C35)

(C36)

d~&(5cabfcdbc+cabdccbf)(V g —1)ad(x ~x)(V g —1)cf(x ~x)2.
—3 I dxc'bcc'bf(b ')'f(x, x)5(0)(5 „—1) (C37)

Hence

2

5V= ( , r+r Aa A —) .——
4 3

(C38)
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