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We construct, in the simpler case of scalar QED, a manifestly gauge-invariant pertur-
bation expansion in terms of an infinite set of completely transverse vertices which we
call "classes of invariance. " We use these classes to investigate the infrared divergences
of the S-matrix elements. The mechanism of the exponentiation of the infrared diver-

gences and the general proof of the infrared existence of the Bloch-Nordsieck cross sec-
tions, of the Kinoshita-Lee-Nauenberg probabilities, and of the transition amplitudes be-

tween coherent states is presented in this context.

I. INTRODUCTION

The purpose of our work is to analyze the or-
ganization of gauge invariance and of infrared
divergences in perturbative gauge field theories.
This paper is devoted to the Abelian part of the
subject and expects to contribute in part to a better
understanding of the physically meaningful gauge-
invariant structure of the gauge field theories. In
the literature, we may distinguish several types of
approaches to this probleID. A first approach' in-
troduces new gauge-invariant variables of the type

A&dx& and tries to develop the perturbation in a
manifestly gauge-invariant way. Another approach
has been achieved by Cvitanovic et al. who study
the group structure of the perturbation expansion
in order to classify the Feynman contributions into
gauge-invariant sectors. Such sectors appear to be
important if, for instance, we wish to discover the
cancellations which occur between Feynman
graphs of the same sector, of powers, and powers
of logarithms of a given asymptotic regime (for ex-
ample, Regge behavior ). The fact that such spuri-
ous powers and spurious powers of logarithms are
developed by Feynman graphs separately and can-
celed within gauge sectors indicate that rearrange-
IDent of Feynman graphs in each sector into more
physically meaningful objects might have to be
discovered. In other words, it appears to us that a
deeper structure should exist inside each invariant
sector and should describe more completdy the
gauge dependence of the amplitude and, as a
consequence, the gauge independence of the S ma-
trix. This implies that, in addition to the classifi-
cation according to the SU(N) weight of the Feyn-
man amplitudes, we should also investigate the
Feynman expressions themselves, split them into

pieces at each order of perturbation, and collect the
pieces differently in a way which manifestly
expresses the gauge dependence of the theory.

The first goal of this paper is to perform such a
reconstruction of the perturbative expansion in the
simpler case of scalar QED (generalization to spi-
nor QED can be translated easily). The main idea
which is applied to construct this new perturbation
theory is that the group of invariance for the total
Lagrangian which describes the evolution of the in-
terpolating field and the group of invariance for
the free Lagrangian responsible for the in and out
asymptotic fields should be the same. This is
achieved by performing a dressing transformation
of the matter field in such a way that the Abelian
transformation of the photon in the "photon
cloud" induces the usual local (space-time depen-
dent) transformation of the matter field. Such a
dressing transformation involves necessarily hard,
soft, and virtual photons and becomes more and
more singular when the photons become softer and
softer. The soft-photon part of this transformation
will be used to cure the infrared troubles of the S
matrix while the remaining-photons part is used to
express the new Green's functions in a way which
shows trivially the gauge dependence (or indepen-
dence) of the theory; this last property is due to the
structure of the vertices of the new Lagrangian
which we call "classes of invariance. "

The classes we introduce in this paper provide
manifestly gauge-invariant expressions for the S
matrix amplitudes. We believe that these classes
will clarify the organization of asymptotic behav-
iors, and a first sign in this direction is that their
introduction enables us to study the structure of
infrared behavior. This problem which was first
explored in the Abelian case by Bloch and Nord-
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sieck in 1937, and then essentially solved in QED
by Yennie, Frautschi, and Suura in 1961, remains
relatively difficult to understand especially when

we pass to non-Abelian field theory. Apart from
calculations in the eikonal approximation, a
modern approach uses the fact that infrared
behavior can, as many asymptotic behaviors, be
described by differential equations. In a similar
way that scaling behavior of Green's functions can
be obtained either from the renormalization-group
equations or at the level of Feynman graphs in
terms of forests of divergent subgraphs, the in-
frared behavior can be investigated in the Abelian
case at least, either from differential equations or
using classes of invariance; we even expect that in
the non-Abelian case, where we do not know what
differential equation to use for solving the infrared
behavior, the classes of invariance will provide the
appropriate language for a detailed description of
this behavior.

Let us now describe the content of this work.
We first emphasize that throughout this paper we
shall not mention, except if needed for the defini-
tion of the S matrix, the difficulties related to ul-

traviolet renormalization and in particular we do
not introduce (PtP) counterterms. Such difficul-
ties have been solved completely in Abelian' as
well as non-Abelian" gauge field theories in the
framework of the usual perturbation expansion; it
is not the purpose of this paper to formulate the
renormalization procedure in terms of classes of
in variance.

In Sec. II, we define notations and remind the
reader of the Ward-Takahashi identities in the
language of a generating functional. The integra-
tion of the functional integral over the matter
fields permits us to define an infinite set of new
vertices' and we establish the transversality prop-
erties of these vertices as a consequence of' gauge
invariance. In Sec. III, we first decompose the
low-order vertices of Sec. II into transversal and
longitudinal components and we define the low-
order classes of invariance. The end of this section
is devoted to the general definition of classes of in-
variance. This is achieved by performing a
matter-field transformation in the functional in-
tegral. Such a transformation has been already in-
troduced by Bialynicki-Birula' some years ago so
that the first part of this paper is a detailed pertur-
bative description of the work of Ref. 13. This

transformation is a photon-field-dependent
transformation (photon-cloud effect) which disen-
tangles the local and the global gauge-invariance
properties of the Lagrangian. This foimalism
leads directly to completely transversal amplitudes.
This transformation is not unique but we show
that the corresponding S matrix for the new matter
field is unique, manifestly gauge invariant, and for-
mally equal to the S matrix for the usual matter
field.

In Sec. IV, we give examples of manifestly
gauge-invariant calculations of some S-matrix ele-
ments. The classes introduced in Sec. III are pure-
ly formal in the sense that they lead for the
Green's functions to severe infrared divergences
even for matter off the mass shell. In order to
cure them, in Sec. V we define an infrared subtrac-
tion to the above transformation which leads to an
infrared-subtracted theory with infrared-finite off-
shell Green's functions. Moreover, we show that
there exists a subclass of transformations which
lead for the subtracted theory to an infrared-finite
S matrix. It is then easy to relate the new matter-
field theory to the new subtracted matter-field
theory. In this way we exhibit the exponentiation
of the infrared-divergent integral of Refs. 4 and 5
and we describe in detail the singularities in the
soft-photon momenta. The formal equality of the
S matrices between the usual theory and the new
theory becomes a strict equality (it is the conse-
quence of the equivalence theorem' ) once the IR-
divergent exponential has been understood.

Finally in Sec. VI, (1) we prove in full generality
the infrared existence of the Bloch-Nordsieck
cross sections (summation over final soft photons).
(2) We also prove a stronger theorem than the
Kinoshita-Lee-Nauenberg" (KLN) theorem; name-

ly, we prove that if we change the initial state by
any number of incoming soft photons, the Bloch-
Nordsieck probability changes by a finite
amount. ' The KLN theorem becomes here a
consequence of the above theorem by summing
over an infinite number of incoming soft photons
with a normalizable density matrix. (3) We prove
the existence of the transition amplitudes between
coherent states. ' Some speculations about the ex-
istence of an S matrix for Abelian gauge fields and
some possible generalization of the classes of in-
variance to non-Abelian theories are discussed in
the Conclusion.

II. THE FUNCTIONAL POINT OF VIE%'

In this section, we wish to explore formally (without any care for the ultraviolet and infrared divergences)
the organization of the Green s functions in regards to their gauge symmetry. A possible approach is to in-
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troduce the generating functional for Green's function
T

Z(JJt,X&)= IDP D/DA&exp i I d x W($, (tpA&) —(ri&A&) +J P+P J+X&A& (2.1)

where the Lagrangian is

(2.2a)W(gt, P,A&) =(8&+igA&)P (()z ig—A&)$ m—gtg —,—(B„A„—Q„A„)2 .

Gauge invariance of the Lagrangian (2.2a) means that W(P, P,A„) is invariant in the local gauge transfor-
mation

P(x}—+e'ga( )y(x)

A„(x) A„(x)+a„a(x) .
(2.2b)

Obviously if a(x) is a constant of space-time, we have only a global gauge transformation and the invariance
of the Lagrangian is then related to the property of charge conservation. Owing to the invariance (2.2b}, the
quadratic form (()&A„—()„A&), which should be the inverse of the photon propagator, is not invertible. As
usual we introduce a gauge-fixing term i)„A" where il„can be understood as i}& in Stuckelberg gauges and

ri& in axial gauges. The photon propagator is found to be

m„„(k,ri) =— ri„k.+rikl. A,k'+g'
RPv k (k P P v (2.3)

where g& is k& in the

n„„(k,ri) =[g„p k„Gp(k—,ri)]

Stuckelberg gauge and i)& in the axial gauge. Equation (2.3) may also be written

k
[g~„—Gp(k, ri)k„] (2.4)

with

ri, +~ik,
Gp(k, ri) = (2.5)

From (2.1) and the transformation (2.2b), the Ward-Takahashi' identities for connected Green's functions
may be obtained as the functional identity:

ig J(x) —J (x) t — (3"„ri„rip — Z, (JJ,X„)= i BP„(x), — (2.6)

which gives

n n ps p
g g &(z —x;)—g &(z —y;) g p(x;) g p (y;) gA„.(z;)

i=1 i=1 i=1 i =1 i=]
n m pg p(x;) g p (y;) gA„(z;)A (z) =in.,n, |i„(1„'gz —z ) . (2.7)

i=1 j=l i —] c

The consequences of (2.7) for the perturbative expansion is that at each order in the coupling constant g,

kq. (A„,(ki) . . Aq (k„)}„=0,n )2,
as well as for n=2 except for the Born term which satisfies

(2.8)

ikk
gjx~pv k.g

(2.9)

[in (2.8), c and a mean connected and amputated by the inverse of the free-photon propagator]. The conse-
quence for matter fields are first n=m, and
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n n p
k g y(p;) g y (p ) g A„.(k;)A (k)

i=1 i=1 i=1 CqC

n n p n n n p
=g Z II N(p ) II 4'(p')4'(p; —9) IIA, (k ) —2 rI 0(p )4(pJ+e) II 4'(p') ll A, (k }

j=l i=1 i=1 i=1 &,a j=1 i=1 i=1 i=1i' i'
(2.10)

where P and A& have ingoing momentum, Pt has outgoing momentum, and where c and a incan connected
and amputated for photons only (throughout this paper we shall consider that inside the Feynman graphs
the matter lines which do not form a loop go from an incoming P field to an outgoing Pt field, irrespective
of the fact that the fields P and P represent a particle or an antiparticle). Equations (2.8) and (2.10) des-

cribe the transversality properties of the connected Green's functions.
Instead of treating the functional (2.1) along the usual perturbative approach (namely, by replacing the

fields P, P, and A& by i5/5J, i5/—5J, and i5/—5X&, respectively, in the interacting part of the Lagrang-
ian and then by integrating explicitly the free Lagrangian part as a Gaussian). We shall integrate the Gauss-
ian integral over P and Pt. We define

Zo(Jt JA )= f DptDp exp i f d pd p'p (p')K(p', p A)p(p)+i f d p[p (p)J(p)+J (p)p(p)]

(2.11)
with

K(p',p,A) =5(p —p')(p' — '}—g(p+p'}„f 5'kA„(k}5(p' p —k)—
+g2 f 54k, 5 k2A„(ki)A„(k2)5(p' p —ki ——k2),

which we also write

(2.12}

K(p',p,A) =(p' —m ) 5(p —p')—
p' —m

In (2.12) and later on, by 5 k we mean d k/(2m ) .

By integrating over P and P, we have

Z 0( J,tJA)=exp i f dpdp'—Jt(p')K '(p',p,A)J(p) [detK(p, p', A)]

%e sha11 write

(2.13}

(2.14)

ao n n n

K '(p', p,A)= + g, f 5 k, . 5k„8'„,. . .„(pp', k, . k„)PA„.(k;)5 p' —p —gk;
P —Pl n i=1 1

(2.15)

and

with

[detK(p', p,A)] '=exp[ —TrlnK(p', p,A}]

oo n n n

—TrlnK(p', p,A)= g, f 5 k . 5 k„gq, . . .„(ki k„)5 gk; ff Aq (k;) .
1

nf 1 i=1

(2.16)

(2.17)

From (2.13), we obtain

5(p —p') X(p,p', A) f X(p,p",A)X(p",p', A)
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which may be expanded in powers of g to obtain the functions W& . . .„.
For instance, we obtain

W (p,p', k)=
(p —m )(p' —m )

(2.19a)

2g» (2P+kt)p(2P' —k2)„k,~k2
(p —m )(p' —m ) (p —m )[(p +k )2 —m ](p' —m2)

etc. The quantities i W—
&

. . . & (P,p', kt k„) may be represented by the vertices of Fig. 1.
Their expressions are the sum of all Feynman tree graphs entering in the process of Fig. 1.
Similarly,

(
& A) I d4 X(ptAA) 1 P d4 d4 t X(PtP tA )X(P rp&A )pp =J" p ~ +—J" pp, +

p —pal (p —m )(p' —m )

and corresponds to functions of the type

(2.19b)

(2.20)

(2.21a)

d4p 1 4 (2p+kt)„(2P —k2)„k,~k2
(2.21b)

(again, ultraviolet divergences are neglected here). The quantities Q& . . .
& (kt . . k„) may be represented

by the vertices of Fig. 2. Their expression is the sum of all one-matter-loop Feynman graphs in the process
of Fig. 2.

From the functional

Z(J,Jt,X&)= f DA&ZO(J, J,A&)exp i d"x &0(A) — (rl&A„) +X~A&

=Zo J,Jt, — exp ——I d k Xq(k)n„,(k, r))X,( —k) (2.22)

we may obtain a perturbation in g, from a sum of
graphs built with the infinite set of vertices of
Figs. 1 and 2. Each vertex of Fig. 1 introduces a
factor

Lg

(2~) n 1 nWq . . .q (p',p, kt, . . . , k„),

each vertex of Fig. 2 a factor

g
(2~) n2 Q„.. .„(kt, . . . , kn),

each photon propagator a factor n»(k, rl ), and we
integrate over all internal photon lines (the sym-
metries of the graphs take into account the count-
ing factor). It is easy to find what usual perturba-

k,

FIG. 1. The vertices 8'„, . . .„(p,p', k&, . . .,k„). FIG. 2. The vertices Q„.. . „(k&, . . . ,k„).
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tive Feynman graphs enter in this new set of
graphs by simply shrinking all internal matter lines
of the usual Feynman graphs (see, for instance,
Fig. 3}. Let us now concentrate on the transversal-
ity properties of the quantities 8'(„}and Q(„}.
First, we note the following symmetries: 8'I&I and

Q(z} are defined to be entirely symmetric in the
exchange of the photon variables Ik,p};also, on
the energy-momentum conservation subspace
p'=p+ g k;, the functions W(&} are invariant in

the transformation p~p' and k;~—k;.
In (2.11), we observe that Zo(O, O,A„) is invari-

ant in the gauge transformation A& ~Az+B&a; as
a consequence, detK(p, p', A) is invariant and then

Q„, . . .„(k) k„)

=k, ' k„"Q'(„}(,}(k, k„), (2.23b)

where Q' has a Taylor expansion around all k's=O.
This important property must be conserved by ul-

traviolet renormalization and explains why the
four-photon vertex is not subtracted and the pho-
ton propagator is subtracted only once.

We also verify that

Zo(J e 'g, Je'g, A&+B&a) =Zo(J,JA&} .
(2.24)

Using the fact that p(x)e s~'"' has for Fourier
transform

k„' Q„, . . .„(k), . . . , k„)=0. (2.23a)
exp rg I 5 ka(k)T& z k P(p), (2.25)

From the fact that the vertices Q„, . . . & have a

Taylor expansion around all k's=0 (for convergent
integrals or dimensionally regularized integrals),
and from the transversality properties (2.23a), it is
easy to prove that

where

kP(p) =P(p —k) (2.26)

(to generate the successive convolutions), we easily
obtain from (2.24}

k„',.&„,. . .„(p,p', k~, . . . , k„)=8' . . . - . . . (p,p' k;,k„.. —. , k;, . . . , k„)
1 i n

5—W„.. . „- . . . (p+k;,p', k, , . . . , k;, . . . , k„) atp'=p+ g k; .

The Eqs. (2.23) and (2.27) are equivalent to Eqs.
(2.8) and (2.10) and describe the gauge symmetry.
Of course the transversality properties of a vertex
of the type (2.21b), for instance, are valid only with

absolutely convergent integrals which allow change
of variables and especially translation of variables.

III. CLASSES OF INVARIANCE

The sum over all Feynman graphs at a given or-
der of perturbation satisfies transversality relations
which are imposed by the gauge symmetry of the
theory and which are made explicit by the Ward-
Takahashi identities. On the other hand, each
Feynman graph does not show this symmetry so

FIG. 3. Correspondence between Feynman vertices
and new vertices.

(2.27)
I

that the understanding of the gauge properties is
rather difficult. We wish to raise the problem
whether there exists "classes of invariance, " such
that the sum over all classes is equal to the sum
over all Feynman graphs, but each class separately
shows explicitly its transversality relations. The
first step to solve this problem has been to define
new vertices; the advantage of these new vertices is
that they collect several Feynman vertices in order
to construct the transversality properties (2.23) and
(2.27). When we close the photon lines between
these vertices, we collect several Feynman graphs
which together verify by themselves (2.8) and
(2.10). The disadvantages of these new vertices are
that they do not give a clear understanding of their
gauge-independent and of their gauge-dependent
part and especially the mass-shell gauge-
independent part (to compute the S matrix) does
not appear; 8 Iz~ is more and more singular on the
mass shell with the number of one-reducible-matter
lines (in Fig. 3, for instance, we have a quadruple
pole on the mass shell of the upper matter line).
We feel that it is necessary to develop a formalism
which splits the 8'I&I into transversal and longitu-
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P

(I

P

I

P

(p,p,k) % {p,p', k) V (p,p', k)
p

FIG. 4. The lowest-order classes of invariance.

dinal parts and which at the same time gives a
clear description of the mass-shell singularities.
This section is divided into three parts: (i) example
of classes of invariance at low order, (ii} generating
functional for classes of invariance, and (iii) formal
equalities of the S matrices.

(i) Example of classes of invariance at low order.
We first consider the simpler Feynman vertex

~„(p,p', k) =(p +p')„.
Then,

(3.1)

(3.2)k~ W~(p p', k) =P(p') P(p), —

where P (p) =p m is im—properly called a projec-
tor on external matter lines. Then, we define three
new vertices, W&(p,p', k), Wz(p, p', k), and

V&(p,p', k) such that

W~+ W~+ Vp
——8'~ (3.3)

and

k~W~ P(p'), ——

kqW~ ——P(p),

k~V~ ——0 .
(3.4)

These three vertices are represented in Fig. 4.
The values of these vertices are given later on in

(3.38). These three vertices are the elementary
classes of invariance and their transversality rela-
tions are given in (3.4}. The class V„ is purely
transversal while W& and %& are longitudinal
classes. Let us present another example by consid-
ering the three following Feynman graphs (Fig. 5).
We denote by W„„(p,p', ki, k2) the sum of the
above Feynman graphs; it is only on the above sum
that we can obtain the transversality properties:

W„(p,p' —ki, k2)
kpWP. (pp'kl k2)= ", '

2

'
2

P(p')
(p' —ki) —I

W, (p+ki,p', k2)
P(p)

(p+ki) —m

(3.5)

and in a similar way k„S'&„.. ..
The first idea to construct classes of invariance

according to the transversality relation (3.5) is to
write three classes W& W&„, and V&, such that

W„(p,p' —ki, k2)
kqW~, (p,p', ki, ki) =

2 2
P(p')

(3.6)

(and by symmetry k„W&„,. . .), k„'W&„corresponds
to the other projector, and

2k~Vp„——k„Vp, ——0 .

Unfortunately, it is easy to realize that from
k&W&„and k„W&„we obtain two different values
for k„'k „%„and consequently that such a %„„
does not exist.

The next attempt to construct classes of invari-
ance is to construct convolutions of the basic
classes of Fig. 4. Two cases occur: first, we ob-
tain combinations such that the internal matter
line has no dot (Fig. 6).

Such classes are obtained by interaction of two
elementary classes through an undotted line called
"lateral interaction line" and for instance (a) has
the value

W„(p,p +ki, ki)W„(p' —kz,p', kz)

(p+ki) —m

P

~k

I,
(, k

P

I 2
v

P

"u

P
I

I kp

29pv

FIG. 5. Feynman tree graphs at order 2.
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P
I

$1

P

I

I

v

1

kV

P

2
kv

FIG. 6. Convolutions of t~o loosest-order classes of
in variance.

and (b) is

Wq(p, p' —k i,k2)
, &(p'),

(p' —ki) —m

W„(p+ki,p', k2)
, &(p),

(p+ki } —m

k„'W„,(p p', ki, k2) =

kqWq„(p, p', ki, k2) =—

V„(p,p+ki, ki)W (p' —k2,p', k2)

(p+ki) —m

The transversality properties of these classes are
obtained by application of (3.4).

Next, we obtain convolutions with dotted inter-
nal lines; the application of (3.4) tells that such
convolutions separately are not classes of invari-
ance and only their sum (plus the extreme right
graph of Fig. 5) have transversality properties in
terins of projectors. We are thus led to define
three new classes (Fig. 7) satisfying the relations

P(x)= I d xS(x,x,A)4(x), (3.8)

and, respectively, similar results with k,. Again,
the value for these classes are given later on in
(3.38). We may proceed similarly with a quasi-
topological description of higher-order vertices

8'(„) using classes of invariance. At all orders, we
define three new classes of invariance, one purely
transverse and two longitudinal; the remaining
classes are obtained by convolutions of lower-order
classes interacting through "lateral interaction
lines. "

(ii) Generating functional for classes of invari-
ance.

We now describe a more general approach using
the generating functional (2.11). In this section
everything is formal in the sense that we are com-
pletely careless about ultraviolet and infrared diver-

gences.
We consider that the usual matter field P(x) is

related to a new matter field 4(x) by a nonlocal
transformation S(x,x',A) which is dependent of
the photon field A&(x). In other words, P(x) is ob-
tained from 4(x) by a certain "dressing" via a
"photon cloud" effect. We write

k@V(p,p', ki, kg) =0, (3.7)
I

where using a Fourier transform we may write

S(p,p,A)=5(p —p)+g I 5 k S„(p,k)A„(k}5(p —p —k}
2

y 54k, 54k,sp„(p,k],kg )A p(k ] )A „(kp )5(p —p —k i —k2)+ (3.9)

The condition on the transformation S is that the Lagrangian (2.2a) written in terms of A&(x) and of the
new matter fields 4(x) and 4 (x) is invariant under the transformations

4(x}—+e'~4(x),

Aq(x)~A„(x)+ 8~a(x),
(3.10)

where P is a real space-time constant independent of a(x). The transformation S disentangles the global and
the local gauge transformations; the global transformations mean charge conservation of the new matter
field; the local transformation means that the new vertices are all transversal. Let us write the matter part
of the Lagrangian in terms of the new matter field:

P P

1

kp
2

k~

w „(p,p,k,k )

2
k~k

1
W (p,p,k„k~)

JgP

FIG. 7. Classes of invariance at order 2.

1

k

V (p,p',k„k,)
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J d4x W (x)= I d4p d p4+(p )IC(p,p,A)4(p),

where E is obtained from E in (2.12) by

E(p,p,A) =Sf (p,p', A)E(p',p,A)S(p,p,A) .

The infinite set of new vertices Vz . . . & (p,p', ki, . . . , k„) are defined by the expansion

(3.11)

(3.12)

oo n n n

E(p',p,A) =5(p —p')(p —m )—g, I 5 ki5 k„V„,. . .„(p,p', ki, . . . , k„)g A„(k;)5 p' —p —g k;
1

n! i=1 i=1

(3.13)

and the invariance of the Lagrangian under

A„(k)~A„(k) +ik„a(k)

requires

k„' V„, . . .„(p,p', ki, . . . , k„)=0 for i =1, . . . , n .

The first few vertices can be easily computed; we find

V„(p,p', k) =(p+p')„—(p' —m')S*„(p', —k) —S„(p,k)(p' —m'),

V„„(pp', ki, k2)= 2g„„—(p ™— )S„*„(p',—ki, —ki) —S„„(p,ki, k2)(p' —m )

(3.14)

(3.15)

+ (2p+ki)&S'„(p', —k2)+S (p, kz)(2p' —ki)& S&(p,k&)[—(p+ki) —m ]S',(p', —kq)

(3.16)

Vz„z(p,p', ki, k2, ki) is given in Sec. IV Eq. (4.15).
We now specify the transformation S from the transversality relations (3.14). It is found that

kqSq(p, k) = 1,
k„'S„.. .„(p,ki, . . . , k„)=S . . . - . . . (p, ki, . . . , k;, . . . , k„) .i 1 n u~'

The most general transformation (3.9) satisfying the transversality relation (3.17) can be written

S(p,p,A)=exp g J 5 kg&(p, k)A&(k)&z

(3.17)

ao n n

5(p —p)+ g f 5 k, 5 k„T„,. . .„(p,ki, . . . , k„)gA„.(k;)5 p —p —g k;
n=l i=1 i=1

(3.18)

where

kpgp(p, k) =1,
k„' T„,. . .„(p,k i, . . .. , k„)=0, (3.19)

(3.20)

and Tz ~ k is the shift operator defined in (2.26). Under the gauge transformation A&~A&+ik&a(k),

S(p,p,A)~exp ig f 54ka(k)T, ~ „S(p,p,A),

so that the local gauge transformation of the usual matter field P(x) is by (3.8) and (3.20) induced from the
gauge transformation of Az(x) in the "doud effect."

As we realize from (3.18), the transformation S such that the Lagrangian (3.11) is invariant under the



CLASSES OF INVARIANCE AND INFRARED DIVERGENCES IN. . . 3SS9

(3.21)

gauge transformations (3.10) is not unique. As a first simplification, we may take all tensors T(&} to be
zero, and in practice we shall do so in many occasions (see Sec. IV). Unfortunately, the transformation

S(p,p,A)=exp g f 5 k g&(p, k)A&(k)T& ~ k 5(p —p)

is not unitary if P& is p dependent and its inverse S which may be written in the form (3.18) (with P in
—1(t) has an infinite set of nonzero tensors T(„}.We may also determine the tensors T(z) such that S is a
unitary transformation, but these tensors become quickly complicated. On the other hand, if S is not uni-

tary, we know from the equivalence theorem' on Green's functions and on the S matrix that the transfor-
mation S does not change the physical system only if we introduce the Jacobian of the transformation (or
equivalently Faddeev-Popov ghosts) to restore the value of the matter loops (it is only in the case of a
transformation S which is a local power series in the fields and its derivatives that such Jacobian contribu-
tions cancel by ultraviolet renormalization). We shall come back to this problem of Jacobian later on in this

section.
We now calculate the generating functional Zo from (2.11):

Zo(Jt, JA„)= f D4 D@Jac(A)exp i f d pd p'4 (p')E(p', p,A)4(p)

&&exp i f d pd p'[Jt(p')S(p', p A)4(p)+4t(p')S (p',p A)J(p)] (3.22)

where

JacA =det(SS ) . (3.23)

After integration upon the new matter field, we obtain

Zo(Jt, J,A„)=
r

exp i fd pd p—'Jt(p')S(p', p,A)E '(pp„A)S(p, p,A)J(p)
detE(A }

(3.24)

which by comparing with (2.14} shows that

detE(A) =detK(A)/Jac(A),

E '(p', p,A) =S(p',p„A }E '(p,p,A )St(p,pA ) .

We write the expansion of E ' (p',p,A) as

(3.25)

a& n n n

E '(p', pA)= + g, f5 k, 5 k„V„'.. .„(pp',k„.. . ,k„)gA (k;}5 p' —p —gk;p' —m' i=1 i=1

(3.26)

We now interpret the result (3.24) in terms of classes of invariance. First, the vertices V(&} defined in (3.13)
and which are the elementary vertices of the new 4(x) theory are called transversal classes of invariance be-
cause of the relation (3.14). They represent the elementary classes from which all transversal classes are
built. By convolution of these elementary classes through lateral interaction we construct other transversal
classes. For instance

Vp„(p p', k), k~) V„(p p+k), k))V,(p+k),p', k2) p~&
V„„'(p,p', k„k )= ", +, +P~ ' ' '

(
2 ~2)(pi 2 ~2) (p2 ~2)[(p +k )2 ~2](p ~ ) k)~kg

(3.27)

which can be represented graphically by Fig. 8. This result is very similar to Feynman graphs except that
each vertex is purely transverse (and that we have an infinite number of such vertices). Similarly, 4 matter
loops are obtained from [det E'] '=exp[ —Tr lnK].

If we write
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FIG. 8. Convolutions and lateral interaction lines.

—TrlnK= g, f5 k, . 54k„Q„, . . .„(k„.. .,k„)5 gk; gA„.(k;),
n=1 i=1 i=1

(3.28)

we obtain the completely transverse classes

Vq(p, p, k)
Q~(k)= d p

p m
r

V~~(p p ki k2) i ~ Pp(p~p+ki~ki)V~(p+ki~p~k2) I ~v
p —m (p —m )[(p+ki) —m ]

(3.29)

(3.30)

(3.31)

etc., which again may be interpreted as convolutions of elementary transversal classes of invariance through
"lateral interaction lines" along a matter loop.

As we already mentioned, the physical system described by the Lagrangian (2.2a) is unchanged under the
transformation S only if we consider the contribution of Jac(A) which is different from I when S is not uni-
tary. Of course, this Jacobian is completely transversal; we write

T

Trln(SS )=g, J5 ki . 5 k„Q„,. . .„(ki, . . .,k„)5 gk; gA„.(k;) .
n=l i=1 i=1

We may thus define the elementary "unitarity classes of invariance" as

Cq(p, p', k) =Sq(p, k)+Sq(p', —k), (3.32)

Cpy(p p k ki) 2Spv(p~kl ~k2)+—Sp(p&kl )Sv(p ~ k2)+Sv(pik2)Sp(p i k2)+Spv(p r kit k2) y

(3.33)

(3.34)

etc., which are null when S is unitarity. The "unitary classes of invariance" Q may be obtained from the
above classes by their convolutions through "lateral interaction lines" with propagator equal to one; the
trace in (3.31) requires that these lines form a loop which may be interpreted as a Faddeev-Popov ghost
loop' (no convolutions between V classes and C classes are allowed):

Qq(k)= Jd p Cq(p, p, k),

4
IM~'P

Q„„(ki,k2)= Jd p C( pp, k, i')+ — d p C„(pp+k„k, )C„(p+k„p,k, )+ (3.35)

It may be checked from (2.21) that

Q(i ) +Q(~) Q(v) ' (3.36)

The new matter field theory [4(x)] may be constructed completely in terms of convolutions of elementary
transversal and unitarity classes of invariance. To obtain the Green's functions corresponding to the new



CLASSES OF INVARIANCE AND INFRARED DIVERGENCES IN. . .

field 4(x), we must close the photon lines using the propagator n&„(k) defined in (2.3) and (2.4). It is clear
from the transversality properties of the classes that the 4 Green's functions are completely independent of
the gauge introduced in the Lagrangian to quantize the photon field.

If we want to construct the usual matter field [{{)(x}]theory, we must perform for each matter line the
derivatives ( i—5/5J) ( i5—/5Jt) upon the functional (3.24). The term SE 'St shows that for each matter
line, in addition to the convolutions of transversal classes, we must introduce convolutions with longitudinal
classes of "invariance" defined by S{&}on the ingoing part of the matter line and by S{&}on the outgoing
part. A typical matter line for the usual P(x) field is shown in Fig. 9, and is described by

S„',q(p+ki+k2+ks, —ki, —k2, —ks)[(p+ki+k2+ ki)2 —m2] 'V
2 (p+ki+k2+ki, p' —k6, k4, k~)

X[(p' —k6) —m'] 'S,(p' —ks, k6) . (3.37)

W~(p,p', k) =S~(p', —k)P(p),

Wp(p, p', k) =Sp(p, k)P(p'),

W~„(p p', ki, k2}=S~„{p',—ki, —k2)P(p),

W~„(p,p', ki, k2)=S~„(p,ki, k2)P(p') .

(3.38)

(iii) Formal equalities of the S matrices.
The equivalence theorem' implies that the S

matrices for the new matter field 4(x) and for the
usual matter field P(x) are equal (if we keep the
contribution of the Jacobian of the transformation,
that is, of the "unitarity classes of invariance").
This theorem is here formally valid in the sense
that we close our eyes to ultraviolet divergences
and infrared divergences of the original P(x) field

theory and of the transformation S. The formal
equality of the S matrices proves formally the

Of course, several (one or zero) convolutions of Vs

may occur while we have only one or zero convo-
lution with S* at one end and one or zero with S
at the other end of the matter line. When we close
the photon lines with the propagator m„,(k) de-

fined in (2.3) and (2.4) all the dependence in the

gauge of the Lagrangian is taken by the longitudi-

nal classes of "invariance"; it is the purpose of the
last part of this section to show that the longitudi-

nal classes contribute nothing to the S inatrix.
It is clear from the above description that the

quantities introduced in the first part of this sec-

tion, (3.4) and (3.7), may be identified. The
transversal classes V& and V&„are given in (3.15)
and (3.16) while

I

gauge independence of the S matrix of the usual

P(x) theory and the independence of the S matrix
of the new 4(x) theories with regard to the
transformations S. This theorem can be made
rigorous by ultraviolet renormalization but this is
not the purpose of this paper; on the other hand,
the infrared problem is entirely solved in Sec. V.

First, let us construct the usual matter-field
complete propagator (P(x)P(y) ) from the classes
of invariance by closing the photon lines. We wish
to classify the graphs according to the number of
one-matter reducible lines which are, as shown in
Fig. 9, lateral interaction lines and which carry the
propagator (p —m ) '. First we have a set of
graphs, necessarily dotted at both ends {with longi-
tudinal classes) which have no propagators
(p —m ) '. The sum of these contributions are
denoted by F(p ). Then, we consider the graphs
with one propagator (p —m ) '; they have at least
one longitudinal class of invariance except for the
Born term (p —m2} ' itself. Such graphs are
summed under the form

[I+F{p'}1[i+F{p')I
(p —m )

The functions F, F, and F are all gauge dependent.
Then comes the possibility of having several propa-
gators (p —m ) '. Between two consecutive such
propagators, we sum the contributions in a gauge-
independent function X(p ). We also sum over the
usual geometrical series of ratio X(p2)/(p2 —m )

and we obtain the complete propagator as

2 2 [1 +F(p )][1 +F(p )]
p —m —X(p2)

(3.39)

1 2 3
kp kv kp k)

5

FIG. 9. Convolutions of longitudinal and transversal
classes.

Clearly, the complete propagator for the new field
theory 4{x)is

i[p —m —X(p )]
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Equation (3.39) shows (formally at least) that the
position of the poles of the propagators are gauge
independent in the usual tI}(x}theory and of course
independent of the transformation S in the new

4(x) theories. The functions F(p ), F(p ), F(p )

and X(p ), are ultraviolet divergent. Although we
do not want to enter into the details of the renor-
malization procedure, let us simply say that we
may always subtract these functions (by usual
power-counting arguments) in such a way that

X(m )= 2(p =m )
dX

Gap

=F(m )=F(m )=0, (3.40)

so that the pole of the propagator is at p =m and
the residue is equal to i.

Next, we concentrate on the vertex functions of
the usual iI}(x) field. Similar analysis leads to

(3.41)

F„(p,p', q}[1+F(p'}l [I+F(p')]F„(pp' q}
iG.(p—p'q}=F.(p p'q}+ ",, 2, 2 +p' —m —X p' p —m —Xp

[1+F(p'}] X, [1+F(p'}]+ 2 2 2 PP'P 'q ~2 2 i2
p —m —X(p ) p' —m —X(p' )

In (3.41), the functions F, F&, X, and X& contain neither the propagator (p —m )
' nor (p' —m ) '; the

functions F and Fz are gauge dependent while the functions X and X& are gauge independent.
Ward identities imply

qi Xi.(p p' q)=o

q„F„(p,p', q) =[1+F(p') ],
q„F„(p,p', q) =—[1+F(p')],
q„F„(p,p', q) =F(p') —F(p' ) .

(3.42)

We could proceed to higher-order (in external legs) Green's functions but the rule is easy to understand. We
obtain many terms which do not have on every external matter line a pole of the type

[ 2 m 2 X(p2)]—I.

then, we always have a term of the form

1+F(p')
2 2 2

incoming p m X(p
matter line

&21+F(p' )
, 2) (is} pi~pi ~qs

outgoing I ~ &I'
matter lines

'

(3.43)

Using the renormalization conditions (3.40) which
define the matter mass shell, we get after amputa-
tion (t2),

(a) ~(a) r
iG(is) (p p qs ) matter X(it}(pi~pi ~qs ) matter

mass shell mass shell

ton field appears in the photon propagator (2.3)
with k@0. The form (2.4) of this propagator
shows that it is equivalent to consider (i Ik2) as the
photon propagator while the vertices of the theory
are dressed into

(3.44) II g~.—
(rlq+~Ak„) k„W„.. . (p, k,' ) .

This proves formally the equality of the S ma-
trices, the gauge independence of the usual S ma-
trix, and the equality of the S matrices obtained
from the various new fields 4(x}defined in (3.8}.

Let us close this section by discussing the differ-
ence between gauge dependence of the usual P(x)
theory and transformation S dependence of the
new field theories C&(x}. The gauge introduced in
the Lagrangian (2.2a) in order to quantize the pho-

photon
lines

(3.45)

There exists no transformation S which corre-
sponds to such a dressing (A,+0). If we take the
limit A,~O of the Lagrangian field theory we ob-
tain the so-called Landau gauges which are purely
transverse; to this dressing corresponds the trans-
formations S where all T's in (3.18) are null and
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fq(p, k) =re(k)lk r)(k) .

Such S transformations are unitary. But the set of
S transformations is much larger than the set of
Landau gauges since the transformation S is in

general dependent on the matter momentum p. In
Sec. V, it is a very specific p dependence which
will be chosen for S in order to take care of in-
frared divergences.

IV. PRACTICAL CALCULATIONS OF S-MATRIX ELEMENTS (INFRARED DIVERGENT)

Although the expressions for the new vertices look rather complicated, several simplifications occur by
the use of transversality and by the choice of convenient transformation S (since the S matrix is independent
of this transformation). As a general rule, we shall, for practical calculations, take all tensors T(&) in (3.18)
equal to zero. Then, from (3.21), all quantities S&, . . . & (p, k~, . . .,k„) factorize into

The transversality of the vertices are such that we may multiply them by

lg~x kpfx(p—k)1

or

lt~x+kp4x(p' »1—
and obtain for instance

V„(p,p', k) =n „(p,k) (p m—)g„(p,—p'k)

q(p', k)'(p' —m2 g—q(p, p', k'),

where

(4.1)

g„(p,p', k) =P„(p,k)+P„'(p', k), —

rr~(p, k) =(2p +k)~ —k(2p +k)1(&~(p,k),
mq(p', k)=(2p' —k)„+k(2p' —k)tC(p', —k),

&»(p,p', k~, k2) = —2g&„(p,k~, kq) —(p —m )g„(p,p', k& )g„(p,p', k)2

+rrp(p, k, )g„(pp', k2)+rr, (p, k2)gp(pp', k] )

=—2g&„(p', ki, k2) —(p' —m )gz(p, p', &k)g„(p,p', k)2

+gy(p p', k] )8 „(p',k2)+ g„(p p', k2) rry(p', k'/ ),

(4.2)

(4.3)

where

g,.(p ki k2) =lg„x —kxP„(p ki)1[gx.—kx4.(p k2)1

gz„(p', k &,k2) = [g~z+kxkz(p'& —k
& )1lghv+ k zfv(p &

—k2)1 .

If moreover we choose

(4 4)

(2p+k)„
~ (pk)=

k (2, +k)
which of course is possible only if k (2p +k)+0, we have

(4.&)
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m p(p, k)=0 if k (2p+ k)+0,
P„(p',k)=0 if k (2p' —k)+0,
g„(p,p', k) =0 if p'=p+k but p' Qp

(4.6)

Such simplifications give for the classes of
invariance

FIG. 10. Matter interacting with one photon at
lowest order.

Vp(p, p', k)=0 if p Qp'

V»(p p', kl, k2) = 2g—»(p, kl, k2) (p—m—)$1&(p&p'&kl )gv(p&p'&k2)

2g (p kl k2} (p ~ 4 (pp klan (pp k2}

etc.
We may now calculate the following S-matrix elements:
(a} The lowest-order vertex function of Fig. 10:

V-"'( k}~, .=V ( k), ,pp tp2 p2 ~2 pp&p& ~p2 p2 ~2 ~

Since we are on the mass shell, the choice (4.5) is not allowed but any nonsingular choice for g gives

Fq(p, k) =(2p+k)q,

m q(p', k) =(2p' —k )„,
so that from (4.1) and (4.2)

2=(p+P')p

as expected.
(b) The two-photon amplitude at lowest order (Fig. 11).
Here, we have

(4.7)

(4.8)

(4 9)

(4.10)

(4.11)

(P»p kl k2}
I p2 p. 2 ~2= Vpv(p P k 1 k2 }

I p2 p 2 ~2+
Vp(PP+kl kl)Vv(p+kl p k2)

kl (2p+k1 )

p~'p
+ k~k} 2 p2 p~2 m2

(4.12)

With the choice (4.5) and from (4.7), we have

Vpv (p&p &kl &k2}
I p2 p 2 ~,———2g»(p'&kl&k2)= —2g»(p'&k»k2) .

(c) The three-photon amplitude at lowest order (Fig. 12).
If we choose f to be (4.5) such that the classes V„=O, then

V»p (P&P &k1 &k2&k3 }
~ p2 p'2 &&&2 V»p(p&p &k1&k2&k3 }

~ p2 p
2 ~2 '

We have by generalization of (3.15) and (3.16)

(4.13)

(4.14)

P

()

kp

P
(&

()

,
)

kv

P

(

2 I

v

P

I

I

2
ku

FIG. 11. Matter interacting with two photons at lowest order.
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FIG. 12. Matter interacting with three photons at
lowest order.

FIG. 13. Matter interacting with four photons at
lowest order.

~pvp(p&p &kl&k2&k3)= —(p —m )Sl&~p(p &
—kl, —k2, —k3) —(p' —m )S „(p,kl, k2, k3)

—g S„„(p,kl, k2)[(p' —k3) —m ]Sp(p', —k3)

—g S„(p,kl )[(p+kl) —m2]S'„~(p', —k„—k3)

+ p [Szv(p&k»k2)(2P' —k3)z+S&(p k&, )(p+p'+kl —k3)vS&(p'& —k3)

+(2p+kl )„S'„~(p',—k2, —k3)]

—2 g le&vSp(p', k3)—+g„„Sp(p,k3)] .
I 1,2,3, )

Using transversality properties and (4.5), we get

~1&vp (P&P &kl&k2&k3) I p2 I&
2 »&2 — g g pv(p&k1 &k24p(p&P &k3)

I1,2,3, I

"'
=—2 g gl&v(p', kl, k2)gp(p, p', k3) .

I1,2,3I

(d) The four-photon amplitude at lowest order (Fig. 13).
Without giving the details, we obtain

~1&vs (P&P &kl &k2&k3&k4) I p2 ~'2 ~2 ~pvpa'(P&P &k1 &k2&k3&k4) 1~2—+ 2 ~2

V„,(p,p+k, +k„k„k,) V,.(p' —k, —k4,p', k„k4)
(k 1 +k2)(2p +k 1 +k2)

(4.15)

(4.16)

p =p' =m

(4.1'7)

that is,

~1&vpo' (P&P &kl&k2&k3&k4) 11&2 1&~2 &&&2
2 p gl&v(P&kl, k24p(P&P &k34&r(p&p &k4)

perm

g„„(p,kl, k2)g (p', k3 k4)1&v

(k 1 +k2 )(2p +k 1 +k2 )
(4.18)

(e) Matter-matter scattering (the Born term in Fig. 14).
From (a), we get trivially the gauge-independent result P

+1 (p+p'). (q+q')
A P'O'P 'q

(2 )4 (
' — )2

(4.19)

(f) Matter-matter scattering (order 4 partially

-v Fig. 15): FIG. 14. Matter-matter scattering at order 2.
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FIG. 15. Matter-matter scattering at order 4.

d4k, d4k,
~(p qp q ) @p p kl k2)g (p kl k2)g (q kl k2)

(2~)s

(g) The vertex function at order 3~ Fig. 16. Here, as in (a), the choice (4.5) is not allowed since

q (2p +q) =q (2p' —q) =0 .

We find it convenient to choose

(2p +k +N)q
k(2p+k+N)

(4.20)

(4.21)

with the possibility of calculating the N~0 limit (for simplicity) since the result is N independent.
It must be said that the result (4.16) cannot be used because it becom=s singular at k~+k2 ——0; the reason

is that closing the photon line (k, k, ) on Fig. 12 generates self-energy graphs which are not in Fig. 16 and

are infinite on the mass shell.
We then calculate

d'k
2(2m. ) k

Vga�(p p k k q) + V„p(p,p'+k, k, q) V„(p'+k,p', —k)

k (2p'+k)

V„(p,p+k, k) V„p(p+k,p', —k, q)+ k.(2p +k)

V„(p,p+k, k)V~(p+k, p'+k, q) V„(p'+k,p', —k)
k (2p+k)k (2p'+k)

(4.22)

In (4.22), we have eliminated the terms V&& Vz or Vz V& Vz which correspond to self-energy parts. In the
N —+0 limit,

V„p(N)~ V„p(0)+0

while Vz and

V~(p +k,p'+ k, q) -N ~0 .

Consequently, only the limit E—+0 of V&&& has to be calculated.
With the choice (4.21), we obtain

P

FIG. 16. The vertex function at order 3.



26 CLASSES OF INVARIANCE AND INFRARED DIVERGENCES IN. . . 3567

V„„(p,p', k, k—,q)~ g—„—(p,p', k,N)g„(p,p' k—,N)(p+p')

g q
—k~(2p+k+N)q—2
k(2p+k+N)

where we use the fact that g&(p,p', q,N) is null.
Before making the limit N~0, we note that

g „—k (2p+k)„
g„(p,p', —k)+(k —k)

k 2p+k)

g ~
—q (2P+q+N)~

gq(p, p' k,—N)+ (k~ k—)
qN

(4.23)

so that

d4k
q )& 4.24 =0.

(2p+k) (2p'+k) k (2p+k)(2p'+k)
+k (2p +k) k (2p'+k) [k(2p +k)][k (2p'+k)]

+(k~—k), (4.24)

(4.25)

The expression for the graphs of Fig. 16 is then

, C (p p'»Cp(p p' k)—l (P+P'), d'k
(2m) k

2 p d~k (2p+k)p (2p'+k)p kp(2p+k)(2p'+k)
(2~)s " k~ k(2p+k) k(2p'+k) k(2p+k)k(2p'+k)

(4.26)

The expression (4.26) is transverse in qz by (4.25) and is infrared singular. Naive power counting gives an
infrared divergence for the first line of (4.26); it is this first line which contributes to the exponentiation of
infrared divergences (Sec. V).

(h) One-photon-matter loop Fig. 17.
This example is very formal since the following integrals do not exist. For matter loops, we must calcu-

late the transversal classes Q(z) in (3.29) and (3.30) and the unitarity classes Q(&) in (3.34) and (3.35). With
the choice (4.5) Q&(k) is zero. Then

T r

p 4 2p+k 2p —k
(4.27)

by formal change p in —p. This is a consequence of Furry's theorem.
(i) Two-photon-matter loop Fig. 18.
With the choice (4.5),

4-

Q„„(k),k~)= f [—2g„,(p, ki, k~) —(p —m )g„(p,p, k))g„(p,p, kg)],
p —Nl

1 4
p+-+v

Q/lv(kl k2)= fd P kp(pip~kl ev(AAk2)+ d P kp(p~p+ki~kl ev(p+ki&p~k2)+

(4.28)

(4.29)

2===- kg

k~ -0 kp

FIG. 17. One-photon matter loop. FIG. 18. Two-photon matter loop.
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V. AN INFRARED-SUBTRACTED THEORY

The approach developed in the preceding sec-
tions is essentially formal in the sense that we did
not care about the existence (ultraviolet and in-

frared divergences) of the integrals involved in our
field theory. The equivalence theorem which tells
that the S matrix is the same in the old P and the
new 4 theory is valid only if the old P theory ex-
ists and if the transformation from P to 4 is non-

singular. Apart from the ultraviolet divergences,
the usual P(x) field theory is infrared divergent for
matter on the mass shell.

Moreover, the transformation S(p,p) defined in
(3.9) is singular on certain characteristic manifolds
due to the transversality relations (3.17). For in-

stance, if

pq (2p +k)q
(5.1)

but the choice (4.5) makes g&(p,p+ki, ki) to be
zero. Then

d4
Q„„(ki,k2) = —2J g„(p,ki, kg)

m2 PV

at (ki+k2)=0. (4.30)

This result, which is manifestly transverse, can be
shown to be equal to (2.2lb) after formal manipu-
lations.

These few examples show clearly that classes of
invariance are not pure theoretical entities but can
be used in practical calculations to simplify greatly
the expressions and to rewrite them in a way
which manifestly exhibits the properties of trans-
versality and of gauge invariance. The formal as-

pect of this section will be made rigorous from the
infrared point of view at the end of this paper.
We believe that ultraviolet subtractions are easy to
understand.

theory. We prove that logarithmic singularities ex-
ist even for matter off the mass shell [the usual

(P,gt, A&) theory cancels these singularities only for
matter off the mass shell], and that these infrared
singularities exponentiate. In order to achieve this
goal, we define an infrared-subtracted theory which
is infrared convergent for matter off and on the
mass-shell, and we construct the relation between
the subtracted and the nonsubtracted theories. All
the proofs are based on naive power counting al-

though we know that more rigorous proofs would
require more sophisticated power countings.

A. Off (matter) mass-she11
Green's functions of the 4?(x) theory

which diverges logarithmically as k~0. If we
make one of the choices (5.1), the divergence is of
the type

d'k 1 Pp qpf( )
(2~)4 k2 p k q'k

(5.3)

More generally, the vertices

Vq, . . .q (p,p', ki, . . .,k„)-ki ' k„' when the
k's —+0. Such simple arguments show that the
transformation S generates infrared divergences for

The presence of a singularity surface for S&(p,k)
may destroy the existence of the convolution in-

tegrals. Let us try to analyze this difficulty on the
following off (matter) mass-shell example: if we
look at Fig. 19 and at the structure of the vertices

V&(p,p —k, —k) and V&(q,q+k, k) from (3.15), we
certainly have to integrate

I 4 2S~(p, —k)S~(q, k)f(p k,q+k), —d4I

(2n. }4 k2

(5.2)

the hyperplane p k =0 or the hypersurface
k(2p+k}=0 are singularity surfaces for the
transformation S(p,p'}. Of course, whatever
choice is made for Sz(p, k), such a singularity sur-
face exists and the origin point k&

——0 is always on
this surface.

How much of a problem do we get from these
singularity surfaces? The answer to this problem
depends whether we look at the off (matter) mass-
shell Green's functions or at the on (matter) mass-
shell Green's functions. In this section, we first
study the infrared singularities of the (4,@t,A&)

p &i

p

kyar

&s qyk

FIG. 19. The elementary infrared divergence.
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the 4(x) theory which were absent in the P(x)
theory. We now construct an infrared-subtracted
theory.

First, we must take a choice of integration
around the singularity surfaces. To follow the
standard rule of quantum field theory, we choose
the +i@ ru1e although any other choice might have
been considered (this is simply a choice for the new
Green's functions and if the equivalence theorem
can be made rigorous, the S matrix is independent
of this choice); this rule defines properly the Feyn-
man integrals away from the point k =0.

Next, the infrared divergences around k =0 have
to be subtracted. Let us consider the transforma-
tion S(p,p ) as written in (3.18). If the tensors

TI&I are chosen to exist when k; —+0, the only
singular factor at k =0 comes from the exponen-
tial term.

It is absurd to make a subtraction over 1(„(p,k);
indeed, P&(p, k) is necessarily of the form

f„(p,k)

k f(p, k)

Then a possible subtraction at k =0 would be to
introduce

f„(p,k) f„(p,0)
k.f(p, k) k f(p, 0)

but the transversality properties and the classes of
invariance would be completely destroyed by such
a choice [the bracketed quantity might even be
zero for instance if f„(p,k) =p„]. Another absurd
choice would be to introduce [A&(k) —A&(0)] since
the photon propagator is highly singular at k =0

(5.4)

where y(k) is any function satisfying y(0) = 1 [in
position space we ask y(x) to be real]. Under a
gauge transformation A& —+A&+ik&a(k),

S r(p, p A)~e 's 'r'exp ig f5 ka(k)T&

X Sr(p,p, A), (5.5)

where a(y) is a real space-time constant defined by

a(y)= f5 k a(k)y(k) . (5.6)

The usual matter field P(x) is obtained from a
"subtracted" new matter field 4r(x) by

P(x)= fd x S„(x,x,A)4&(x), (5.7)

so that local gauge transformations of P(x} are
now induced by the gauge transformation of A& in
the subtracted "cloud effect" and by a global gauge
transformation e's~'~' of the subtracted new matter
field. We do not want to interpret further this
property.

The matter part of the Lagrangian can be writ-
ten in terms of subtracted new matter fields as

fd4x W (x)=fd~p d p, @r(p)Kr(p,p,A)@r(p)

(5.8)

when the photon is massless. The only possibility
left to subtract the amplitude at k =0 is a subtrac-
tion over the shift operator T. We define

Sr(p,p, A)

=exp g f—5 k P&(p, k)A&(k)y(k) S(p,p,A),

Kr(p,p,A) =exp —g f5 k [P*„(p, k)+P„(p,k)]A—„(k)y(k) K(p,p,A) . (5.9)

The fact that the bracketed quantity is purely transverse is such that the transversality properties of the
classes of invariance are unchanged while their expressions will be subtracted at k =0. The Lagrangian (5.8)
written in terms of subtracted new matter fields is still invariant under the transformations

4r(x)—+e'~4r(x),

A„(x)+a„a(x),
(5.10)

where P and a(x} are defined in (3.10).
Let us now calculate the low-order subtracted classes of invariance

Vz(p,p', k) = Vz(p,p', k)5(p' p k)+ g„(p,p', k)y—(k)—(p m2)5(p' p), — — (5.11)

where g„(p, ',p)kis defined in (4.2):
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p~v
Vp„(p p', k],kp)= Vp (p p', k],kp)5(p' —p —k] —kp) — gp(p p', k])y(k])V (p p', k2)5(p' p——kg)+ I I

k (p p k]4 (p p k2)Y(kl )r(k2)(p ~ +(p p) (5.12)

etc. Similarly, the subtracted unitarity classes become

C~r(p p', k) =C„(pp', k)5(p' p —k—) —g„(p,p', k)y(k)5(p' —p),

C~r„(p,p', k],k2) = C„,( p, p', k], k2)5( p' —p —k] —k2) (5.13)

p+-++
k„(PP' k]))'(kl)C (PP k2+(P —P —k2)+ I,k)~k2

+gp(p, p', k] )g„(p,p', k2)y(k] )y(k2)5(p' —p) . (5.14)

The originality of these subtracted vertices is that their support is not only the usual energy-momentum con-
servation manifold but also all manifolds obtained from the original ones when any subset of photons mo-
menta are set equal to zero.

The subtracted classes are distributions in the set of external momenta. It is clear that when any set of
photons momenta tend to zero, these classes have a limit as a distribution in the remaining external momen-
ta.

The convolutions between subtracted classes of invariance through lateral matter lines can be described
from the generating functional:

Kr '(p', P,A)=exp g I 5 k g„(p,p', k)y(k)A&(k) K '(p', p,A) (5.15a)

for each in and out matter line, and from

det(S&S&) det(SSt) = [detK]
detK& detK

for matter and ghost loops. For instance, (3.27) becomes after subtraction
r

V&~„(p,p', k],k2) V&~(P, Q, k]) Vr(Q,P', k&) ]]]~v

(p —]]] )(p —]]]') (p' —m')(Q' —m')(p '—m') k] kz

(5.15b)

(5.16)

The convolutions [V ']r are distributions in the external momenta with the same properties as those stated
above for the elementary classes. At p =p' (forward amplitudes or convolutions along matter or ghost
loops), some 5'(0) appears in the expressions of the subtracted classes; these contributions disappear for
matter on the mass shell or by (5.15b) where we sum over all convolutions around a matter and a ghost
loop. These contributions may also disappear for matter off the mass shell and class by class if we choose
g„(p,p, k) =0, that is, for instance P&(p, k) =p&/k p. These special choices for P&(p, k) are responsible for
several simplifications; for instance

V(„}(p p, jk j ) = V(q}(p p, Ik j )

C(„}(pp, Ik j )=0 .

In that case all convolutions around matter or ghost loops are distributions of the external photons momenta
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(each 5 contains at least two-photon momenta) and have a limit as a distribution in the remaining photon
momenta when any subset of photon momenta tend to zero [provided this remaining is not empty to avoid
another 54(0)]. Anyhow, these complications are completely eliminated when we sum over all classes
around a matter and a ghost loop since by (.:.15b) we must refind the vertices Q(&) (k;) defined in (2.17)
which have for only support the surface (gk;) =0, and which satisfy the property (2.23b).

When we perform the convolutions of the subtracted classes through lateral photons lines which join
them, the above properties ensure the infrared convergence at nonexceptional momenta (no partial sum of
external momenta equal to zero). The resulting subtracted Green's functions are infrared convergent and are
distributions in the external momenta. Again their support is not only the surface of energy-momentum
conservation. These Green's functions have a limit as distributions when the photon momenta tends to zero
at nonexceptional matter momenta. It is convenient to relate the subtracted Green's functions to the non-

subtracted Green's functions of Sec. III which have for support only the surface of energy-momentum con-
servation; of course the Green s functions of Sec. III are infrared divergent and to establish this relation, we
find it more rigorous to introduce a mass ]M to the photon propagator (2.3). We use

—l 9pkv+riPp A,k +Y/
+/sv(kt 9) . g+v + 2 kgkvk' p, '+—ie k ri (k ri)

(5.17)

which is not a propagator obtained from a Lagrangian, so that ]u plays the role of an infrared cutoff; it is
important to note that such a cutoff does not destroy the classes of invariance since the photon lines are al-

ways lateral interaction lines. Let us note that from the Lagrangian for massive photons we would have ob-

tained a propagator of the type

k„k
(k2 2) P~ 2gpv—

such a propagator generates a nonrenormalizable field theory with the usual matter field but we obtain a re-

normalizable one with the new matter field and we may define an S matrix from it.
From the functional

i —ff Eir p',p, i—8 . .— l, . 8

external +p in-out
photon s matter

lines

X detE& p,p', —i
ax

Jacr i —exp ——f d4k X„(k)n.„„(k)X„(—k)y ax 2 X=o
(5.18)

which generates the subtracted Green's functions Gzr . . .
& (k], . . . ,k]v) (where we

tion only the external photons), and from (5.15) we obtain

Gq~, . . . q (k], . . .,kN)= Gq . . .q (k], . . .,k]v)+g f 5 k Hp(Ip p'[, k)y(k)G~„,
2

f 54k 5~k'H„( jp,p'J, k)H„, ( Ip,p'J, k')y(k)y(k')

distinguish in the nota-

. . .„(k,k], . . .,k]v)

Gppp p (k k k] k~)+ (5.19)

In (5.19), the Green's functions G contain, of course, disconnected photon lines and external propagators
(not amputated); the quantity H„ is defined as

H„(Ip,p'], k)= g g„(p;,p, k}
m-out
matter
lines

(5.20}

and 8& is zero if there is no in-out matter line.
The subtracted Green's functions appear as linear combinations of the nonsubtracted ones with a larger or
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equal number of external photons. If we consider y(k) [y(0)=1] as a distribution decreasing rapidly around
k =0, Eq. (5.19) can be interpreted as the introduction of virtual soft photons attached to the external mat-
ter [how soft being described by y(k)]. Let us give a graphical description of Eq. (5.19). If we describe a
Green's function G in terms of a sum of convolutions of vertices V„, . . .„„(p,p', k), . . .,k„) and

Q& . . . & (k), . . .,k„), in addition to the usual graphs (Fig. 20), we must add all the graphs obtained from

the previous ones by taking away from the vertice V ' (and not Q) successively all the photon lines and by
attaching them to all external matter lines (Fig. 21).

Figure 20 is part of Gz{q); Fig. 21(a) is part of

f &'k)&'k24p)(pl&kl)l(kl Wp2(pl& k2)l (k2)Gp)y~(kl k&2&'V) &

Fig. 21(b) is part of

f 5 kl ~ k44p)(P1&kl )Y(k1)41&~(p)& k2)j (k2)4)&3(pl & k3)j (k3)

g)l& (p2 kg)1 (kg)Gp p p p (k) k2 k3 kg g)

etc. When we sum over all possible ways of attaching the photon lines to the external matter lines, the vari-
ous functions f& recombine into the transversal quantities g& and 8&.

Conversely, if we wish to express the nonsubtracted Green's functions in terms of the subtracted ones, we
use the functional (5.18) without the letter y, and (5.15) in the inverse way. We obtain a relation of the type
(5.19) with the interchange G~G and y(k)~ —y(k). It is then interesting to investigate where the infrared
divergences of 6 are when the photon mass p ~0. Since all G~ are infrared convergent and have a finite
limit in the sense of distribution when the momenta of external photons tend to zero, the only infrared
divergences come from the integrals f d k 8&( Ip,p'], k) Gzr(k). .. ) and more exactly from the photon
disconnected parts of the Green's function. It is important to note that these disconnected parts have the
same expressions in the subtracted and the nonsubtracted Green's functions. In fact, the photon disconnect-
ed parts with matter loops are infrared convergent by (2.23b) so that the only infrared-divergent contribu-
tions at p =0 come from graphs an example of which is given in Fig. 22. It is easy to see that in the corre-
sponding sum (5.19) the bare photon propagators exponentiate [see also (5.15) and (5.18)].

Consequently we have

G„' . . .„(k„.. .,k~)= G„'r . .„(k),. . .,.k)v) —g f 5 k8q{IP,P'I, k)y(k)G„'qr, . . . q (k,k), . . ,k ))v.
n

Q 8q(Ip p'I, —k;)y( —k;)6'r. . . „- . . .„(k),. . .,k&, . . .,k~)+. . .

(5.21)Xexp — 'g, f, , 8„(IPp'], k)8„(IP,P'], —k)
~
y(k) ~'

2(2~) k IJ, +i@-
where the Green's functions G' simply means that the bare photon propagators are omitted. In (5.21), we
see explicitly under what form will come the infrared divergences of 6 ' when p —+0, and how G ' becomes
large when some external momenta k;~0. The combination of 6'~ in the square brackets above has for
support the usual energy-momentum conservation surface.

B. On (matter) mass-shell Green's functions P)

The purpose of this subsection is not to define a
S matrix for the subtracted matter field 4r (some
speculations about such a definition are stated in
the Conclusion). Here we wish to explain the or-
ganization of the infrared divergences for the S
matrix of the theory (4,4,Az), that is, for the
usual S matrix of the theory (P,&)I&t,A„).

As long as the photon mass p is different from FIG. 20. A graph contributing to G~(q).
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Pi

Pi Pi

I

i) qp
II

rK Pi

P P P P

a)
FIG. 21. Two graphs contributing to Gz(q).

zero, the equivalence theorem stated in Sec. III is
rigorously valid (provided that the ultraviolet

divergences are subtracted away). Equations (3.39)
and (3.41) and their generalization to all Green's

functions can be used. It could be proved that the
subtracted longitudinal classes of invariance
summed up into quantities which contain and des-

troy the exponential term in (5.21) so that the usu-

al P(x) Green's functions are infrared finite at
IM =0 when the matter is off the mass shell.

When the matter is on the mass shell, two dif-
ferent things happen.

(a) At p; =p =m, the longitudinal classes
(and their exponential infrared part) cancel by ul-

traviolet renormalization and amputation (see Sec.
III). We are left with a structure of the type
(5.21).

(b) At p; =p/ =m the quantity in square
brackets in (5.21), which is a combination of G 'r

Green's functions, develops new infrared singulari-
ties at p =0. We now study these new singulari-
ties and show their exponentiation.

The argument which proves that the classes of
invariance have a finite limit in the sense of distri-
bution when the photon momenta tend to zero is
still valid at p =p' =m . On the other hand, the
convolutions of classes through lateral matter lines

destroy this argument since at p =p' =m the
matter propagators are singular when k~0. From
naive power counting, it may be shown that the
only convolution of classes which develop infrared

lim Vz(p,p', k)
k~o

-2pp —Sp(p, k)2p kiO(k)-O(k),

(5.22)
-2ppiS„"(p', k)2p' kiO(k)—-O(k),

which requires

lim S„(p,k) = lim g&(p, k)—Pp
k o k o pk

(5.23)

problems are the convolutions of one-external-
photon class V&r (Fig. 23): The propagators 1, 2,
and 3 behave successively at small k; as (k, p)
[(k&ikz).p] ', and [(k~ik2+k3).p] '; when we
perform the convolutions of two matter lines (Fig.
23) through lateral massless photons we develop a
logarithmic infrared divergence when k& —+0, then
another such divergence when k& ——0, k2 —+0, etc.

We now prove the exponentiation of these diver-

gences and show that they do not cancel the ex-
ponential of (5.21) but rearrange to give the well-

known Bloch-Nordsieck (BN) and Yennie-
Frautschi-Suura ' (YFS) infrared-divergent ex-

ponential.
The S matrix for the usual P(x) matter field is

of course independent of the transformation

S(p,p,A) defined in (3.18). It turns out that there
exists a subclass of these transformations which
satisfy the following properties:

lim V&(p,p', k)
k~o " p2=m2

I

I

I

I

)i k)
I

I

I)

II
I

II

I

I

I

II
I

I

I

II
I

FIG. 22. The infrared-divergent contributions. FIG. 23. The on-matter-shell infrared divergence.
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With this special choice for g&(p, k), V&(p,p', k) as
well as V&r(p,p', k) tend not only towards a finite
limit but towards zero when k —+0 and only one
matter momentum is on the mass shell. This
choice makes the quantity in square brackets in
(5.21) finite, so that for this choice all the infrared

divergences at IM =0 are in the exponential term
with, in that case, 8„(Ip,p'I, k) constrained by the
condition (5.23).

Our conclusion is that the S matrix for the usual
P(x) theory may be written as

S». . .„~(k,, . . .,k~)= Sf~. . . „.~(k». . . kI„),+8„(tp,p I,
IT I'

&& ST „- . . . „(k),. . .,kI, . . ., k~)+

Xe I —,I2(2') k p+—ie (5.24)

where

—g I 5 k 8„(Ip,p'I, k)y(k)Gqq~, . . .q„(k,k), . . .,kN)+ (5.25)

In (5.25), the asterisk means ultraviolet renormalized on the mass shell and amputated. The exponential in
(5.24) is not unique since the only constraint is (S.23) and y(0) =1; at small k, they all coincide with the BN
and YFS exponential. All quantities S& are infrared finite at p =0 and exist in the sense of distribution
when the external photons have their momenta ~0. The expansion (S.24) has a finite number of terms and
the expansion (5.25) has an infinite number of terms but only a finite number of terms at each order of per-
turbation.

VI. INFRARED FINITE QUANTITIES

In this section, outgoing particles have momentum defined in the outgoing direction. Given a physical
process with n and r incoming matter and photon particles, and n' and r' outgoing matter and photon parti-
cles, the differential cross section corresponding to this process with outgoing photons at a given energy e,'
is given by

I )fc I I=S(i l(I') pI»I &&2 &i @S(i )( ') pI »I I&i &i)I'''
5e& - . . 5e,'

(6.1)

where the direct product means summation over polarization and integration over phase space restricted to
the energies e'& - . . e,'. The transversality properties of S makes the sum over 2, 3, or 4 polarizations equal.
Because of the presence of the exponential term in the amplitude S,S 8S* contains the following factor:

8 (p,p') =exp g d k
, I 8„(Ip,p'I, k)8„(Ip,p'I, —k)

~
y(k)

~

—exp — 1—g in@

(2 )' 2ko III~o (2m) tanh u

which is zero by infrared divergence, while the remaining part of S SS is infrared finite for any family of
positive e;; in (6.2), p =p' =m and p.p'=m coshu. The effect of the infrared divergence is that the pro-
babilities for the above physical processes are simply zero.
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A. Differential cross sections with summation
over outgoing soft photons (Bloch-Nordsieck4)

The usual interpretation of the above result is the following: experimentally, the detectors of particles
have a certain energy resolution he which is characteristic of each detector and which makes them unable to
distinguish particles of energy e from particles of energy @+be T.his experimental fact meets no theoretical
difficulty when the limit be~0 exists, which is usually the case for massive particles. For zero-mass parti-
cles, since e can be null, we may have an infinite number of final particles of total energy & Ae which are
not detected. We note that in (6.1) the infrared finite part of S 8S* becomes large when the ej ~0. In ad-
dition to the presence of r' photons of energy ej +(be/2) (this be gives no problem), we may have an infin-
ite number of undetected "soft" photons of total energy & be. Consequently, the expression (6.1) should in-

clude an infinite sum over outgoing soft photons.
From the structure of the S matrix as described in (5.24), it is easy to see that the quantity in square

brackets, which represents the infrared-finite part of the perturbation, can be expanded according to the
function 8 relative to any subset of external photons. For instance, this quantity can be expanded relative to
s external soft photons as

$

S,tk J
=S', lk J

— g 0„(tpp'I, +k;)y(k;)S', , Ikj~;I+ .
(2n. )

(6.3)

(6.4)

which we write

where S&»Ikj I is the square brackets of (5.24) for the process (6.1) with s outgoing soft photons of momen-
tum kJ, while So, I kj I in the corresponding quantity which has a limit when the k,

' ~0. The above expan-
sion is finite for a given finite number of soft photons. If we calculate (6.1) for any finite number of soft
photons, from (6.3), we obtain a polynomial in the logarithmic infrared divergence so that, as already men-

tioned, the exponential (6.2) makes the probability of such a process equal to zero. But, if we sum the pro-
babilities to have one, two, n soft photons, up to an infinite number of photons with total energy & Ae, we

may obtain a finite result. We now prove this result. We first define a generating functional for soft pho-
tons of total energy & b,E,

S (J,be)= y, I d k;d k„e bE yk;—S „(k„.. ., k„)g J(k;),
n=0 i=1 i=1

+ e'&~' —lgkp
$0(J,b,e)= . I dy . So(Je ') .

2l K —~ g —l'g
(6.5)

So(Je ') is a short notation for (6.4) where J(k)—+J(k)e ' and be=+ oo. The summation over final
soft photons should be described by the so-called efficiency operator ' which tells the ability of the ap-
paratus to absorb the various final states. To compensate the infrared divergences, we must admit that the
efficiency operator tends to the unit operator when applied over states of soft photons with energy tending
to zero (the apparatus absorb totally the photons of energy zero). For simplicity, we shall here suppose that
the efficiency operator is equal to I over the soft-photon subspace.

Consequently, the quantity (6.1) after summation over the final soft photons can be obtained from

dk
So bE 8So,be exp 2nzi—(k)z.2(k)

Z az 2k1 2 0
z) ——z2 ——0

In this section 5 k means d k/(2m ); we have taken into account the summation over the polarizations

(g,.e„'e',= —g&„). Now, the decomposition (6.3) shows that

(6.6)

So(Je ')=exp — I d k 8„(Ipp'J, k)y(+k)J(k)e ' So(Je '),
(2m )

(6.7)

where the generating functional S0 has no more singularity in the momentum of the soft final photons.
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Finally, taking into account (6.1), (6.2), and (6.5)—(6.7), we find the infrared-finite probability

r

5'cr 1 + +, e"y y '~', 8 —iyk, , 8 y'k,
dp dy' . , So e ' SSO e

5e', . 5e„', 4' —~ —~ (y i q—)(y'+i r)) Bz
&

Bzz
QE

d k ' 'k
Xexp —2m f z, (k).z2(k) — 8( jp,p'j, +k)y (+k)e 'z, (k)

2k 0 (2n. )

, &(Ip,p'j, k)y(+k)e 'z, (k)
(2m. )'

i zi ——z2 ——0

«xp —g f 8„(Ip,p'j, +k)
~

y(k) i'5'k

0

&& i~i(Ipp'j k)+~1—(Ip p'j+k)e " "
] ' (6 &)

The derivatives 5/Bz; generate an infrared-convergent expansion; the integrations over dy and dy are easily
performed in perturbation. This completes the proof of the infrared existence of the Bloch-Nordsieck pro-
babilities.

B. The Kinoshita-Lee-Nauenberg probabilities'5

The first question we want to solve here is the following: it is clear that the initial state is also experi-
mentally known up to some soft photons; suppose that in the infrared-convergent Bloch-Nordsieck formal-
ism presented in A, we change the initial state into the same initial state + one soft photon: Is the proba-
bility going to diverge when the momentum of the soft photon tends to zero?' Gf course such a result
would not be understandable. We are going to prove that this is not the case and, more generally, if the ini-
tial state contains any number of soft photons (with total energy (b,e to be nondetectable), then the proba-
bility remains finite when these initial photons become softer and softer.

As a consequence we may sum in the initial state over an infinite number of nondetectable soft photons
according to any normalized density matrix and we do obtain an infrared-convergent probability usually
called the Kinoshita-Lee-Nauenberg probability. This statement is the generalization to quantum electro-
dynamics of the Lee-Nauenberg theorem of quantum mechanics (in the case of massive matter and massless
photons).

Let us consider the functional So(J) which is introduced in (6.7) and which has no singularity with the
soft final photons; we denoted by So„ the coefficient of this functional which describes n final soft photons
and no initial soft photons. %e suppose now that the initial state contains one soft photon of momentum s;
depending whether this soft photon interacts in a connected way with the system or not, we may write

Si„(s,kl, . . . ,k„)——Si„'(s;ki, . . .,k„)—g So„' i(ki, . . .,kq, . . .,k„)2so/2m5 (s —k;)
i=1

and, if we wish to introduce the quantities with no singularity in the initial soft photon,

{6.9)

Si„'(s;k|, . . .,k„)=Si'„(s;kt, . . .,k„)— z 0(Ip p'j —s)y( s)Son{k—] ~ kn) .(2'�)' (6.10)

The minus sign in (6.9) is due to the negative norm of the polarization vectors. From (6.9) and (6.10), we
obtain for the functional S& (s,J):

SI (S,J)=SI'(S,J)— g , &(Ip,p'j, —s)y( —s)+2so S,'(J) .J(+s)
(2m) 2' (6.11)
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After insertion of (6.11) in (6.8), we obtain an infrared-finite result of the type {6.8) where So (8) So has been

changed into

—yk „Q iy'k „() —yk, Q y'k
SI' s, e (8)SI' s, e +S)' s, e (8)sp e A(pp y y s,z()

Zl az2 Zl aZ2

T

—yk „Q y'k
+So e (8)SI' s, e ' A(p, p', y,y', s,z2)

Ozl BZ2

—jk, () 'k

Zl BZ2
(6.12a)

where

2s05 (0);(), y),,X — '
e '+A{p,p', y,y', s,z) )A'{p,p',y', y, s,z2}

2m
(6.12b)

~ p

A (p p', y,y', s,z) =z(s)e ' —
2 8(Ip p'I, —s)+8(Ip,p'j, s)e ' y(s} .

(2m)
(6.12c)

In (6.12), the small-s limit exists and this proves the finite amount of the one-initial-soft-photon correction.

The quantity 5 (0) is due to the way we have evaluated the probabilities in (6.6); for disconnected single
i(y —y )s,

photons we should introduce normalized wave packets and replace [2sp5 (0)/2n. je by a finite func-

tion of (y —y') equal to one at y =y'. This result can be extended to any number of initial soft photons.

Equation (6.11) becomes g, o J(+s;)
S„'(s„.. .,s„,J)= g g( —}'g,e(Ip,p'I, —s, )y( —s, )+2s,' ' S„"„(s„„

(6.13)

The 1/s; factor developed by the function 8 is always canceled when J{+s;)is transformed into

(()/Bz)(+s;) and applied to the functional (6.8).
Consequently, there is no need to sum over initial soft photons to obtain infrared convergence in QED al-

though such a sum with a normalized density matrix may be performed without developing any divergences.
Recent results seem to indicate that the sum over initial soft gluons is necessary in QCD.

C. Amplitudes between coherent states

It is not the purpose of this subsection to develop a theory of coherent states; this has been done largely in

the literature and we refer to it. ' It is known that the coherent states which lead to infrared-finite ampli-

tudes do not belong to the Fock space constructed from free matter and photon fields because the norm of
these states in this space is infrared singular. In a rigorous way, we should introduce coherent states in a
Fock space of massive photon fields so that their norm remain finite; we should calculate amplitudes be-

tween such coherent states via the interactions of massive photons and matter, and at the end of all calcula-

tions let the photon mass tend to zero and verify the existence of such amplitudes. Here, we intend simply

to explain the combinatoric which leads to infrared-finite amplitudes.
Coherent states may be described in the usual Fock space by

N g exp J
final

matter
particles

&t(l)(k) Pf(p) g pt(j)(k }
~
0)

pk hard
photon

{6.14}

In (6.14), X is a normalization factor which is finite as long as the photons are massive. We could have
used coherent states of photons (without matter} since the states with a finite number of photons can be
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written as an expansion of coherent states of photons'; for simplicity we prefer to split the momentum
space of photons into a soft part 0 containing k =0 and a hard part. Let us calculate ¹

g 5k Pi

2 Jn 2ko, . p;k
(6.15)

We now compute the S matrix between two states (6.14). The S matrix between matter and hard photons
will be denoted by 8'~ (p,p')Soo while the S matrix between matter, hard photons, n& initial soft photons,
and n2 final soft photons is denoted by 8' (p,p')S„„(k~,. . ,k„,;k. I, . . .,k„', ). Of course S„,„contains
the possibility of having soft disconnected photons and must be decomposed into connected parts according
to soft photons. So,

(g/2m }"+
( —)

nfmt

dk„dk)
2ko 2ko'

5k oo gn+m

, n.m.
7

S„(kj,ki' }

S„' (kj,ki') . (6.16)

Moreover, S„'~ still contains singularity in the soft-photon momentum which can be exponentiated: (6.16)
becomes

5k
g Jn2k,

' ~ pk
I

+

+ g &(Ip,p'I, +k)y(+k)
p;k

00
gal

+alt

e(Ip p'I —k))( —k) g ( —)-, S„(k,,k;},
71, Pf = 1

(6.17)

where S„'~(kj,k/ ) has no singularity in the soft-photon momentum. When we collect the exponential terms
in X; and N~, in 8(p,p'), and in (6.17), we see that the point k =0 does not generate anymore infrared
singularities for massless photons. This result remains valid if the coherent states are defined from any
function f&(p, k) such that lim~ of&(p, k)-p„/p k.

VII. CGNCI. USIGN

In this work, we have presented a new organiza-
tion of the perturbation expansion for Abelian

gauge fields interacting with scalar rnatter. The
introduction of classes of invariance helped us to
understand the symmetry properties, the gauge-
dependent and -independent parts of the theory, in
a detailed manner which is not transparent from
the Ward-Takahashi identities over Green's func-
tions. Moreover, as an application of this struc-
ture, we have been able to understand better the or-
ganization of the infrared divergence and its con-
nection to gauge invariance. The above considera-
tions permit us easily to prove the infrared ex-
istence for arbitrary processes, of the Bloch-
Nordsieck and the Kinoshita-Lee-Nauenberg prob-
abilities, and of the transition amplitudes between
coherent states.

Apart from the problem of defining the ultravio-
let renormalization and of the problem of describ-

ing spinor electrodynamics in terms of classes of
invariance, it seems to us that more investigation
should be performed on the interpretation of the
new matter field 4r(x). The infrared existence of
the corresponding S matrix might indicate that
physical processes should be described in terms of
the new matter field 4r(x). The physical system
which is usually described by a Lagrangian invari-
ant under local gauge transformations of matter
and photon fields (in a coupled way) cannot
asymptotically reduce itself to an "in" or "out"
system of free matter fields which are known to
exhibit only global gauge invariance, and of free
photon fields which still exhibit local gauge invari-
ance; the infrared divergences reflect this impossi-
bility. When the system is described in terms of
the new subtracted matter fields each interacting
field exhibits already its asymptotic symmetry in a
completely decoupled way. Once the Green's func-
tions have been shown to exist (subtracted S
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transformation), the absence of infrared diver-

gences in the corresponding S matrix indicate that
the Lehmann-Symanzik-Zimmermann formalism
for the reduction formulas can be applied. Conse-

quently, the matter part of the Fock space should
be built not from the in and out asymptotic (()(x}
field but from the in and out asymptotic new sub-

tracted 4&(x) field. Finally, coherent states in the

usual matter-field Fock space is an attempt of
mapping the new matter states of the new Fock
space upon the usual Pock space (as expected this

mapping is singular).
It is in this spirit that we now consider the case

of non-Abelian field theory. The main difference

there is that the gluon field plays simultaneously

the role of zero-mass matter field as well as the

role of radiative-photon field. As a consequence

the S transformations which define new matter
fields must certainly act upon the gluon field as
well. We expect (and this is supported by the con-
struction of lowest-order classes of invariance) that
the generalization of the present approach to QCD
can be performed and this will be the subject of
our next investigation.
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