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I study the field theory of a scalar field w with solely cubic interactions in three
dimensions—(w ). I insist that the o field represents the density of a fluid, so © must al-
ways be >0. If there are long-range couplings in the fluid such that the inverse w propaga-
tor is linear rather than quadratic in momentum, then (w?); theory is asymptotically free.
The asymptotic freedom of (w?3); theory is closely related to the existence of a nonzero,
ultraviolet-stable fixed point in large-N (¢ % 3 theory. There are also analogies between the
asymptotic freedom of fluids (in three and six dimensions) and that of non-Abelian gauge

fields (in four dimensions).

I. INTRODUCTION

A profound triumph of the renormalization
group is the explanation of scaling in hadronic pro-
cesses at high energies. Scaling is understood to re-
flect the underlying asymptotic freedom of the
strong interactions. In four dimensions, the restric-
tion of asymptotic freedom leads immediately to a
theory of SU(3) non-Abelian gluons with a few light
fermions—quantum chromodynamics (QCD),.!

Most field theories are infrared free? Four-
dimensional quantum electrodynamics with any
number of scalars or fermions—scalar or fermion
(QED), — provides a familiar example. In these
models, infrared freedom can be viewed as quantum
diamagnetism, as the response of fluctuations in the
physical vacuum to a constant background magnet-
ic field.?

A partial understanding of asymptotic freedom in
(QCD), can be gained from the theory of massless
vector fields (having anomalous magnetic moments
with g =2) coupled to photons—vector (QED),.}
Unlike scalar (QED),, vector (QED), is asymptoti-
cally free, where the change in sign is due solely to
the fact that the vector fields carry anomalous mag-
netic moments. Hence the asymptotic freedom of
vector (QED),, and so (QCD),,” can be looked upon
as a result of quantum paramagnetism.

It is also helpful to develop analogies to simpler
asymptotically free theories,* such as those involv-
ing only scalar fields with at best global, instead of
local, symmetries. The classic instance of such a
theory is the nonlinear & model.”> However, even
though asymptotic freedom is determined by calcu-
lation in perturbation theory, the diagrams of the
nonlinear & model and (QCD), bear no obvious re-
lation to each other.
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An asymptotically free theory of scalars for
which the diagrams of perturbation theory literally
look like those of (QCD), is provided by (¢
theory, the field theory of a single field with cubic
interactions in six dimensions.® Nevertheless, (¢ )¢
theory has rightly been dismissed as a toy of pertur-
bation theory, since if ¢ can assume negative values,
then even classically there is not stable ground state.

A crucial observation of this paper is that (¢>)g
theory can be transformed into a reputable field
theory, (w3)s, by stipulating that it characterize an
effective theory of fluids in six demensions. This is
accomplished simply by replacing ¢
(p =— 00—+ ) by w, where w, as the density of
the fluid, is by definition positive semidefinite.’
This transmutation, albeit elementary, is by no
means devoid of physical content, as the considera-
tions of Secs. IT and IV will show. There is at least
no need to study perturbative (w?)s theory: order
by order in the cubic coupling constant, the
renormalization-group functions of (¢°)s and (w3)g
theories are identical.

The model I study here will not be (w?3)¢ theory
but a three-dimensional theory which is in some
sense the square root of (w°)s, (@*);. The essential
difference between them is that while the inverse o
propagator in momentum space of (w°) theory is
the familiar p?, in (w®); it is p,® as could arise from
long-range couplings in the w fluid. Aside from de-
tailed numerical differences as in the coefficients of
perturbation theory, qualitatively (0°); and (w3)g
theories should be very similar.

In the next section, I derive (w?3); theory from a
large-N tricritical field theory, (¢°);. Previously, I
have shown that large-N (¢°); theory, albeit in-
frared free, has a nonzero ultraviolet-stable fixed
point calculable in perturbation theory.’ Large-N
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(@°); theory provides the only example of such a
field theory to date.!® It will be seen that the ex-
istence of an ultraviolet-stable fixed point in large-N
@ 6)3 theory is an immediate consequence of asymp-
totic freedom in (w?); theory. This insight provided
the original motivation for the present study. The
explanation for the above (admittedly indirect) in-
troduction, and the thrust of this work, lies in my
belief that the renormalizable fluids (w3); and (w3)g
are of fundamental interest in their own right.

The subject of Sec. III is perturbative (w?),
theory, that of Sec. IV possible nonperturbative
behavior. I suggest in Sec. IV that o fluids provide
the first examples of asymptotically free scalars
that exhibit nonzero infrared-stable fixed points in
strong coupling (for a dimensionless coupling con-
stant). I conclude with an elementary discussion of
asymptotic freedom in o fluids.

II. LARGE-N ($°); AND (»?); THEORIES

The mechanics for the following derivation of
(?); theory is straightforward and not even origi-
nal,!! so I shall be brief. Let the field ¢(X)
transform as a scalar under Euclidean rotations,
and as an isovector under a global symmetry of
O(N) isospin. In 3—e€ dimensions, the generic re-
normalized Lagrangian density .# ; is of the form

+2Z,8($72+37Za MY . 2.1)

A must be positive for a stable ground state to exist,
but m? and g can be of either sign. I regularize the
renormalization constants (the Z’s) by minimal sub-
traction in € ~!; I also insist that the dimensional
parameters m? and g be renormalized multiplica-
tively.!? A tricritical phase diagram is obtained by
varying m? and g. Of particular interest are the
critical ray m?=0, g >0, which is a line of second-
order transitions; the tricritical point m2=g=0;
and a line of first-order transitions for m?>0,
g <0. Implicitly, I assume the phase is one of un-
broken O(N) symmetry.
Given the partition function of ¢, Pg,"

Pg(m%g,,N)= [ _+:d$ (x)exp

—[a%kz; ]
2.2)

(d =3—¢), I introduce unity into Py as

1~ fowdw(f) f_+:da(f)exp ——fddff’] ,
o 2
=ia w—WqS (2.3)

This trick allows for the elimination of the isovec-
tor ¢ in favor of two isoscalars @ and . The re-
sulting theory of @ and » contains a nonlocal a in-
teraction, which generates an infinite series of local
terms. In an expansion around infinite N this non-
local interaction can be approximated by the. two-
point function of @. The integration over a can
then be carried out to yield a partition function of w
alone, P,. The result is that to leading order in
N ~! about infinite N,

Ps(m>,g, 05+ o) =P, (A%, 1), 2.4)
where
P,(m%g,N) = fowda)(f)exp —fddxi’a,]
(2.5)

(d =3—¢), with
L= %w(Z,,,p1+€+Zg§)co +Z,, 0 + %—leaﬂ ,

(2.6)

M*=N'"?m?, g=Ng, A=N3"\, Q.7

where Z,, is the @ wave-function renormalization.!*

The correspondence between large-N ($°); and
(@3)3, theories, as expressed by Eq. (2.4), holds only
if the phase of .75 is one of unbroken symmetry."?
I consider the entire phase diagram of .#,,, with 7>
and & of arbitrary sign, for its intrinsic interest. My
discussion of (w?); theory is predicated upon the
parameters %, g and A approaching finite,
nonzero values independent of N as N— + w0, 0 in
particular I must take g~N ! and A~N"32, 1
emphasize that the identity of Eq. (2.4) holds only
to leading order in N ~!; at higher orders in N1,
fluctuations in a cannot be integrated out easily and
need to be included explicitly.

(w3); represents an effective theory for some sort
of fluid because of the constraint (X)>0 in the
measure of P,, as follows immediately from the de-
finition of @ ~@>. The restriction to w >0 does of
course imply that the discrete symmetry v — —w is
not a symmetry of the theory. Consequently, since
no symmetry prohibits it, the term of .#, linear in
o, ~rﬁ2w, does not represent a constant external
source in @, but merely another dimensional cou-
pling, like the term for the  “mass,” ~gw?2. In ad-
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dition, because of the constraint o >0, if 7 %540,
g>0, even for the “trivial” noninteracting theory
(A=0), there is no general method by which to cal-
culate P,.'° Fortunately, if 7°=0, § >0, perturba-
tive calculations in A can proceed by ignoring the
constraint in @. This allows for the calculation of
the renormalization-group functions in the next sec-
tion.

I turn now to a discussion of the phase diagram
for the o fluid. It is not obvious, but because I
choose A~N ~3/2, the  phase diagram has no rela-
tion to the usual tricritical phase diagram for .# ;.
This will be explained at the end of Sec. III.

I begin with a discussion of .#,, in the classical
limit, as determined by minimizing .¥, at zero
momentum. In other words, this classical phase di-
agram is that of mean field theory, where all fluc-
tuations in w are suppressed.

Classically, the @ phase diagram consists of two
phases. In one, there is condensation, with a vacu-
um expectation value {(w )40, while the other is a
gaseous phase, with (w)=0. Separating these
phases are a line of first-order transitions (77 %> 0,
£<0) and a line of liquid-gas coexistence (72=0,
g>0), which meet at m>=g=0 in a critical point
for the w fluid. Thus a tricritical point in %5 has
apparently become a critical point in ., .

Since the classical phase diagram is found from
£, at zero momentum, precisely the same diagram
applies for (w3) theory.!”

The classical diagram is quite misleading in one
respect. Once fluctuations in @ are included, the
- true (@) will always be nonzero; there is always
some “condensation.” As for any fluid, the only
place in the phase diagram where it is possible to
meaningfully distinguish between the liquid and
gaseous phases is right on the first-order line, where
the two are simultaneously in coexistence.

What I do take from classical analysis to be a
feature of the true theory is that there is a line of
first-order transitions ending in some point. This is
considered at length in Sec. IV.

Before considering how quantum fluctuations af-
fect the » fluid in general, I consider the only in-
stance which can be treated analytically, which is
perturbation theory in A.

III. PERTURBATIVE (0?3); THEORY

In this section I calculate the renormalization-
group functions for the £, of Eq. (2.6) to leading
and next to leading order in A. I avoid the compli-
cations inherent in fluids'® by concentrating on the

critical theory, 72=g=0. I renormalize the theory
as in Sec. II, noting that with dimensional regulari-
zation, the renormalization-group functions will
change if the Laplacian in 3—e dimensions p'*€ is
replaced by p. I use the former because of the direct
identification with large-N (¢°); theory which then
follows.
To .#,, I add the source term

Ly=7J 12 0% . (3.1)

In three dimensions, the renormalization-group
functions are given by
~ —1

S P

In

=—b113—b2X5+ Tty (3.2a)

=C1X2+62X4+ ttt (32b)

=d A +d At - (3.2¢)

Calculation yields
1

bi=3, by=5(7?+6),

1

C1=O, Cr=7%> (3.2d)
di=5, dy==(m>+18).

The leading term in the 3 function b, is given by
a single diagram, Fig. 1(a). The second term b, re-
ceives contributions from several diagrams, Figs.
1(b)—1(e). The diagrams for y , are similar to
those of Figs. 1(a)—1(d). The terms in b, and d,
proportional to ~? arise exclusively from dia-
grams like that of Fig. 1(c). The leading term in ¥,
vanishes, with the only contribution to ¢, from the
diagram of Fig. 1(e). Under changes in the renor-
malization procedure A—A’'+O((A)?), the only
value of Eq. (3.2d) which is affected is d,.

The diagrams of Fig. 1 are almost identical to
those of (w>)¢ theory. The greatest difference is
that fewer diagrams contribute in (o3); theory to
Z,; e.g., ¢;0 in (*)g theory .5

Since the B function is negative to leading order,
(@3); theory is asymptotically free. That is, the ef-
fective coupling A(p) vanishes in the ultraviolet lim-
1t
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(a) /A\
A
A
A

(e)

FIQ‘; 1. Contributions to Z, at ~0() [Fig. 1(a)] and
~O(A") [Figs. l(b)—-l(d)l.4 The first nonzero contribu-
tion to Z,, occurs at ~O(A") [Fig. 1(e)].

=

Tp) ~ 1 b2 In[in(p/p)]
p>>u 2biIn(p/p)  4b3 In*(p/u)

+0(n"2%p/u)), (3.3)

with u the mass scale at which the value of A(u) is
fixed. Similarly, the scaling behavior of the o field
and insertions of the operator w? in the ultraviolet
limit is determined by y,, and v .

Equation (3.3) exemplifies a general property of »
fluids which holds in both three and six dimensions.
Classically, A must be positive to ensure stability of
the ground state. This is true for the quantum
theory as well, as can be established by using

asymptotic freedom. Perturbation theory, however,
is an expansion in A%, and so is insensitive to the
sign of A.

Replacing A% by N3A? [Eq. (2.7)] in B/A and the
7 yields part of the renormalization-group functions
for large-N ($°); theory. This allows the values of
by, ¢1, and d; to be checked by comparison with
known results in (§°); theory®, where B/A—B/A,
Vo—>16;2, and yw2—+y($2)2.18 To a given order in
A%, for arbitrary N a term ~N 3)2 is the first term
of a polynomial in N. For example, ¢; =0 implies
that there are no terms ~N3A? in y,,, although
there are terms ~N?A%, ~NA2 and ~A2%

Unlike the o fluid, perturbative (¢°); theory is an
expansion in A, not A2. This explains the otherwise
mysterious property of large-N (¢°); theory that the
domignant diagrams occur only at every other order
in A.

More interesting observations are also attendant.
About zero coupling, ($°); theory is infrared free,
where the leading term in B8 is ~ +NA? for large N.
The leading term and the term represented by b,
~ —N?3)3, balance to produce an ultraviolet-stable
fixed point A, ~N ~2.°

In short, the only way in which the asymptotical-
ly free theory (w3); can be derived from large-N
(@°); theory, which starts out in small coupling as
infrared free, is if there is a fixed point A}, which
changes the slope of the B function. (w?); theory is
asymptotically free because the fixed point A}, be-
comes on the scale of A (~AN *3/?) of order N~1/2,
which is zero at infinite N.

The existence of A}, explains why the phase dia-
gram of (w?); theory has no relation to the usual
tricritical phase diagram of large-N (¢°); theory.
There are at least two distinct theories of large-N
(#°); theory: one where 0 <A <A}, and one with
Any <A. These are distinct theories since A}, as a
fixed point with finite slope, can only be reached in
the limit of infinitely large momentum. The theory
probed by previous N ~! expansions of (¢°),,!! with
A~N"2<A%, is infrared free, while the theory
probed by (w3);, with A~N ~3/25 A%, is not.

IV. NONPERTURBATIVE BEHAVIOR

The question of nonperturbative structure in o
fluids can be succinctly stated. Following the clas-
sical analysis, I assume the o phase diagram con-
sists of a line of first-order transitions ending in a
point P. The question is then, is the point P a true
critical point: e.g., is the correlation length at P
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really infinite? Solely because of asymptotic free-
dom, if P is a critical point, there must be an
infrared-stable fixed point A}, in the B function at
strong coupling. This occurs in strong coupling be-
cause the value of A5, like the values of the
anomalous dimensions at A}, are a priori of order
one.

The existence of A} in & fluids would be remark-
able on two counts. First of all, all other theories
with infrared-stable fixed points, such as (¢*)s, are
at dimensions below their critical dimensionality
d.>. When d=d,, these theories are invariably in-
frared free, so there are at least calculable infrared-
stable fixed points in d, —e dimensions, ~O(e) for
€<<1. As € increases, the fixed point moves
smoothly into strong coupling. Secondly, in all oth-
er examples of asymptotically free theories of
scalars®®»*® and fermions™® (at d =d,), there is
never anything like A}, and correlation lengths are
always finite.!” For example, consider fermions
with four-point interactions in two dimensions.*
As the “bare” mass is adjusted to vanish, a critical
point is not approached, contrary to a classical
analysis. Rather, the theory conspires to generate a
mass, and so a finite correlation length,
dynamically.’® »

Why should o fluids provide the exception to the
rule? Because they are the only model with two-
dimensional parameters such that there is a line of
first-order transitions ending in a point. As P is ap-
proached, it is expected that the latent heat across
the first-order line will vanish, with the free energy
at P scaling in a manner determined by A,

To emphasize the naturalness of P as a critical
point, I note that it does not appear possible for the
line of first-order transitions to end in a point
which is itself first order. Purely on topological
grounds, for this to happen the value of () at P,
(wp ), would have to depend on 6, where 0 is an an-
gle characterizing the direction by which P is ap-
proached. Since P is a point of phase transition,
this infinity of values in {wp) must all have equal
free energy. By continuity, the 6 dependence of
(@) would have to hold not only at P, but along
the entire line of first-order transitions. Putting
aside how unphysical this all is, it is not even obvi-
ous that there exists any function with the desired
properties which would be required of the free ener-
gy-

One possibility is that the theory is simply ill-
defined in some region of the phase diagram which
includes point P. However, I see no reason why or
how this could occur.

The study of the complete phase diagram in o
fluids appears possible only by such means as
Monte Carlo simulations. In this, the study of
(@?)¢ theory may be preferable to that of (w3);
theory, since although there are twice as many di-
mensions, it is easier to transcribe the short-range
interactions of (w?)s theory onto a lattice. Even so,
the numerical study of » fluids will be tedious, as
two parameters will need to be varied in order to
map out the phase diagram.

If A}, does exist, there will be signs of it in the ul-
traviolet as well as in the infrared limit. Consider
startmg at an arbitrary point in the phase diagram.
If A< k,r, A will asymptote to zero in the ultraviolet
limit; if A > A}, then whatever form the ultraviolet
limit takes, it will not look like A—0. This sugges-
tion is a bit glib, since the object of interest is not
strong-coupling (w*); theory at a finite lattice spac-
ing, but in the continuum limit.

The implications of A}, for large-N (¢°); theory
are clear. Besides the infrared-stable origin and
At ~N"2, A} becomes an infrared-stable fixed
point Af,~N 32, There would then be three dis-
tinct theories of largeN (4%;: O<A<Al,
A4y <A <Af, and Af, <A, where the first two have
well-defined infrared and ultraviolet limits.

The existence of a nonzero A}, also has important
implications for the fixed-point structure of large-N
(@°); theory below three dimensions. When
d=3—¢, € << 1, there are at least three fixed points:
the origin is ultraviolet stable on dimensional
grounds, an infrared-stable fixed point Af.(€)~e€,
and an ultraviolet-stable fixed point
Abo(€)~A%,—Afu(€). I noticed in Ref. 9 that there
is an €, ~N ~2 at which Afy(€;)=A% (€. ), while for
€ > €., both disappear. Thus, if Af,~N ~3/? does ex-
ist in three dimensions, then below 3—e¢, dimen-
sions only the infrared-stable fixed point related to
A, would control the infrared limit. Since €, may
very well be <1 for all N>0,° when N=0 and 1
the existence of nonclassical tricritical points in two
dimensions may merely be the shadow of a nonzero
Al (for N =0 and 1) in three dimensions.

V. ASYMPTOTIC FREEDOM IN » FLUIDS

Why is it that o fluids are asymptotically free,
while other linear field theories of scalars — like
(@°); and (§*); — are not? Let A be the dimension-
less coupling for either (¢°); or (§*), theories.
Bearing in mind that perturbation theory derives
from expanding exp(—.#), the perturbative expan-
sion is actually one in —A. The concomitant expec-
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tation that quantities calculated in perturbation
theory alternate in sign is usually found to be true
at lowest orders (no claims are made at high orders
in A). In particular, for all N the 3 function is posi-
tive at ~A2%, negative at ~A3, and so on. Heuristi-
cally, then, (¢°); and (§*), theories are infrared free
as they involve expansions in —A(B~ +A%+ -+ );
o fluids are asymptotically free as expansions in
FAHB~ =M -0,

The analogy between perturbation theory in @
fluids and (QCD), is evident, and shall not be bela-
bored — the cubic @ coupling directly mimics the
coupling of three gluons. There is no analogy to
four-gluon interactions, but these “merely” result
from the local gauge symmetry anyway.

In light of the above remarks, what is surprising
is not the asymptotic freedom of (QCD),, but the

infrared freedom of scalar and fermion (QED),.
After all, with gauge coupling g, each involves ex-
pansions in g2, with B functions that begin at ~g>.
To answer this, the example of vector (QED), must
be appealed to. In this way o fluids and vector
(QED), provide a complementary understanding of
asymptotic freedom in (QCD),.
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terest in choosing A ~N —3/2,

12For a discussion of the virtues of this procedure, and
references to the d =3 tricritical literature, see R. D.
Pisarski, Phys. Lett. 85A, 356 (1981); 86A, 497(E)
(1981).

13The extension of the results in Sec. II from the vacuum
to vacuum functional P; to the analogous quantity in
the presence of external sources is direct, and taken for
granted in Sec. III.

14Formally, Z,, =(Z$)2 is obtained. However, if a source
term ~ $2132¢2 is introduced into £, Z,, should be

related to Z$2, not Zz. This is confirmed by direct cal-

culation (see Ref. 18).
15When the phase of .#’; is of broken symmetry, Eq. (2.3)

is useless. With $2#¢12+ﬁ2((¢1 Y=£0,{7 )=0), in-
stead of to ¢~ the appropriate transformation is to the
two scalar variables ¢, — () and 7. This transfor-
mation has no direct relevance to the o fluid.

16In zero space-time dimensions, where the measure of

Eq. (2.5) is over a single point, P, for arbitrary r’r‘zz,
g>0, and A=0 is related to the integral representation
of the error function. Thus, even for A=0, >0, the
P, of Eq. (2.5) can be taken as a functional generaliza-
tion of the error function.

17The phase diagram for fluids below six dimensions

[Mw?)4, with the Laplacian equal to p? for all d]
should be analogous to that for d =6 down to four di-
mensions. Most notably, if there is a critical point in
six dimensions, it probably persists for 4 <d <6.
Everything changes dramatically in four dimensions,
since for d <4, a (positive) w* coupling must be includ-
ed as a renormalizable interaction; likewise, > and »°®
couplings must be added when d <3. Although the
possible dimensionality of the phase diagram increases
(e.g., unlike d >4, when d <4 X can be of either sign),
it still has the same general form—if two parameters
are varied, there is a line of first-order transitions end-
ing in a critical point. For d <4, however, the critical
point is controlled by the w* instead of the w? cou-
pling, while the existence of the critical point is hardly
exceptional. Indeed, when d <4, as the w* term stabi-
lizes the ground state regardless of the positivity of w,
it is probably sheer perversity to use a field  instead
of ¢. This is not only due to the technical difficulties
in treating o fluids versus ¢ fluids (Ref. 16). More to
the point, for real fluids in three dimensions the effects
of fluctuations are almost always small. The only ex-
ceptions are near critical or tricritical points. In both
instances, whether or not an o or a ¢ field is used, the
universality class of both theories, including correc-
tions to scaling, are surely the same. This compromise
provides a natural unification in the uses of » and ¢
fluids: only when d >4 is it necessary to use an @
field.

18Graphically, it can be proven that with X fixed as

N— o, to all orders in A—but only leading order in
N-'—Zz=1 and Yo=1675 For the definitions of

143 and ¥ g2 See Ref. 9.

19This is usually but not universally true in (QCD),: there

are atypical examples which are asymptotically free
with a g in weak coupling (W. Caswell, Ref. 1). How-
ever, there is surely no (QCD), with a g¥ in strong cou-

pling.



