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The canonical structure of the Liouville theory is investigated. We present two canonical
transformations which map the theory onto a free field theory. The first makes use of con-
forrnal invariance and relies on a Yang-Feldman solution to the field equation. The second
employs the inverse scattering method, which is uncommonly intricate, owing to the con-
formal invariance. We also analyze the quantized theory. Semiclassical arguments, sup-
plemented by a study of the exact effective potential, suggest that the theory has a confor-
mally invariant, continuous energy spectrum, bounded from below, but no translationally
invariant ground state.

I. INTRODUCTION

The Liouville model is a two-dimensional rela-
tivistic field theory, governed by the following
(Minkowski space) Lagrangian:

The quantity m, with dimensions of (mass}, is
taken to be positive, so the energy density

8'= —,4 + —,4 +m e
1 2 l

(1.5)

is manifestly positive. The solution (1.4) is form in-
variant against the replacement of the functions F
and G by their fractional transforms:

The field equation

(1.2)

m—F—+
2
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2

possesses a Backlund transformation connecting
every solution 4 to a solution of the two-
dimensional wave equation:

m tt(@+$0)/2

(1.3)

1
1

F'(x+)G'(x )4x= —ln
[1+ ,'m F(x+)G(x )—]

x'-=(x'+x')/v 2 .
(1.4)

We use units in which the velocity of light is 1, and
the action f d x W is dimensionless. Then the
field 4 also is dimensionless, as is P. Since it can be
removed from the classical theory by redefining 4,
we set P =1, in the first three sections of our paper.

Here Qgo ——0 and a is an arbitrary parameter. The
general solution to (1.2} can be constructed with the
help of (1.3}; it was given by Liouville in terms of
two arbitrary functions Fand G (Ref. 1):

yri+5e+0 . (1.6)

The Liouville model has arisen in many areas of
mathematics and physics. ' For particle physicists
the theory was important in the study of instantons
and solitons, and more recently in reformulations
of the dual string model. Although an explicit
solution of the Liouville equation is in hand, there
has been considerable study of its mathematical
structure. ' We contribute here to this literature by
presenting a canonical analysis of the model: we
exhibit two canonical transformations which map
the Liouville theory into a free field theory.

our first transformation, which is discussed in
Sec. II, uses conformal invariance of the Liouville
dynamics. We establish this symmetry and find an
infinite number of constants of motion. Because
they are of course expressible in terms of F and 6,
their Poisson bracket algebra may be used to deter-
mine that of F and G. This then suggests the form
for the transformation to noninteracting fields. The
argument is completed by verifying that the
transformation is indeed canonical. We shall be us-
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II. CONFORMAI STRUCTURE

Under a conformal transformation the space-time

coordinates x" change infinitesimally into

(2.1)

where f& is a two-dimensional conformal Killing

vector, i.e., it satisfies

8j',+B„f„—g„„Bf =0. (2.2)

Any function fl' solving this equation has a +
component depending only on x+, and a —com-

ponent depending on x

f+=f+(x+), f =f (x ) . (2.3)

The infinitesimal transformations obey a composi-
tion law,

f&f»g 1 =4 (2 4)

with f, g, and h conformal Killing vectors, the
latter given by the Lie bracket of the former two:

h"=f a.g" ga.f" . - (2.5)

ing the Yang-Feldman formalism for an interacting
field theory.

In our second transformation, presented in Sec.
III, we employ the inverse scattering method, al-

ready developed for this problem by Andreev. We
find that, owing to conformal invariance, the usual
scattering data provide only half the action-angle
variables for the system. The second half is identi-
fied and used to diagonalize the light-cone Hamil-
tonian. We construct all conserved quantities and

recover Andreev's charges as a subset. The confor-
mal constants of motion are related to those arising

from the inverse approach. The Marchenko equa-

tions are derived, allowing for a reconstruction of
the solution to the Liouville theory from the corn-

plete set of action-angle variables.
In Sec. IV, we use the above information to con-

clude that in the semiclassical approximation the

energy spectrum is that of a free theory, i.e., it is

continuous. This is consistent with conformal in-

variance. Moreover, on the basis of a formula for
the exact effective potential, we argue that the ener-

gy spectrum of the complete quantum field theory,
though bounded from below, does not possess a
translationally invariant lowest-energy (ground)

state.

As we shall presently demonstrate, the Liouville

equation shares with the free massless theory an in-

variance against these conformal transformations.

Consequently, the boundary-value problem associat-

ed with the differential equations of the two

theories written in terms of light-cone variables

(x +-,CI=2B+8 ) requires, for a complete specifica-

tion of a unique solution, fixing values of the field

for all x at fixed x+=xo+, supplemented by a
specification of the field for all x+ at fixed

x =xo. This determines the two arbitrary func-

tions that are present in the conformal transforma-

tion. As a further consequence, the canonical

light-cone formalism requires equal-x+ Poisson
brackets, supplemented by equal-x brackets.

To appreciate the conformal properties of the
Liouville theory, it is useful to contrast them with

those of the noninteracting theory. Also, we shall

need the free field formalism, since the Liouville

model will be expressed in those terms. We first re-

view these well-known results.

A. Free theory

The action for the free Lagrangian

W = —,B„JB"P (2.6)

is invariant against (infinitesimal) conformal
transformations, provided the field change is the
Lie derivative of the field,

f a y. (2.7)

take the familiar Bessel-Hagen form,

(2.9)

Since 8&„ is traceless and conserved when P
solves the wave equation,

P(x)=P+(x+)+P (x ), (2.10)

it follows that 8 depends only on x, and 8++
only on x+. Consequently, two sets of constants of
motion may be defined

Qf = f dx f (x )8 (x ), (2.11a)

Qf+ = f dx+f+(x+)0„(x+), g. lib)

Qf =Qf'+Qf

When a canonical formalism for the theory is

The conserved currents, expressed in terms of a
symmetric and traceless energy-momentum tensor,

(2.8)
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constructed in light-cone coordinates, which are na-
tural for the problem at hand, it is necessary to pos-
tulate both equal-x+ and equal-x Poisson brack-
ets:

Iy(x)*y(y)I I„+ „+=&e(x —y )

(2.12a)

qn ——2fdx 0 5

qn+=2 f dx+0+d+P+,

(2.19a)

(2.19b)

Here again two independent charges may be de-

fined:

jg(x),P(y) I ~

=—e(x+ —y+)

Equivalently, since P is a wave field, we have

IP (x ),P (y ) I
= —,~(x —y ),

(2.12b)

(2.13a)

One may combine the field translation symmetry
with the conformal symmetry. An especially in-

teresting choice for 0, in view of our later discus-

sion of the Liouville theory, is proportional to the
divergence of the conformal Killing vector, which

satisfies the wave equation. Thus, we consider the
following conserved quantities:

IP+(x+) P+(y+) J e(x+ y+) Qy =QI+ —
qadi

y
(2.20)

tP+(x), P (y) I =0 .

(2.13b)

(2.13c)

5A 58
5$ (z) 5$ (z')

All the usual properties hold: the brackets are
linear and antisymmetric in (A,B), and satisfy the
Jacobi identity.

The charges generate the transformation (2.7):

(2.15)

Moreover, the Poisson brackets of the charges (2.11)
reproduce the composition law (2.4), provided sur-

face integrals vanish (we shall always omit them):

I Qy' Qg'I = —Qa'-

IQI+ Qs I =o .

(2.16a)

(2.16b)

The massless, free theory also admits another
(trivial) symmetry: the field may be shifted by an
arbitrary wave field:

The Poisson brackets of two quantities A and B,
which are functionals of P +-, are defined by

IA, BI = —,
' f dzdz'e(z —z')

x -"
5y+(z) 5/+(z')

where y is an arbitrary constant. They generate an

inhomogeneous symmetry transformation on P:

I g, ,P I
=f.a.k+ 'a.f— (2.21)

y

Although the Poisson bracket algebra no longer

closes,

I Qy Qs I
= —Qs+, ~(f g»y'

b,(fg)= f dx (f d g gd f )—(2.22)

+ f dx+(f+5+'g+ g+5+3f+), —

J&—P~P~f (2.23)

with 9'" an improved, traceless energy-momentum

tensor, ' which differs from the canonical one (2.8)

by a superpotential:

O„„=8„+—(g„„Cl—B„B„)P
2

y

we may nevertheless adopt the transformation law

(2.21) as the realization of conformal transforma-
tions on the field P, because the additional term b

in (2.22) is independent of dynamical variables —it
is merely a center for the infinite-dimensional Lie
algebra of the two-dimensional conformal group.

Finally, let us observe that a current for the com-

bined transformation takes the Bessel-Hagen ex-

pl esslon

5$ =0,
on=0, n=n+(x+)+n-(x-).

The conserved current is

g =a~yn —ya~n .

(2.17)

(2.18)

=a„ya,y ,'g„„a.ya y '-a-„a„y . —-
(2.24)

(Jg differs from jg+j)I by a superpotential. ) It
follows that
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Qf = f dx +f -+-(x +-) a,y '-a, y
'-——a, 'y '-

y
-'

(2.25)

{4(x),4(y)I
~ + += —,e(x —y ),

I ~'(x) @(y)l l „-,—= —.e(x+ —y+)

(2.32a)

(2.32b)

B. Liouville theory

x+~y+(x+ ),
x ~y (x ), (2.26)

4(x+,x )~4(y+,y ) —ln(B+y+)(8 y ) .

The Liouville theory is also conformally invari-

ant, as is seen from the fact that the explicit solu-
tion (1A) (with P= 1) is form invariant against the
transformation

IQg, @l=f 8 4+d f (2.33)

as well as the fact that the algebra (2.22) is satisfied:

le Qsl = Qs+—~(f g»

~f Qf +Qf
(2.34)

We now consider 8++(x+-) and substitute for 4
Liouville's solution (1.4). One finds

With (2.32), one verifies that QI generates the
transformation law (2.27),

The Lagrangian (1.1) changes by a total derivative
under the following infinitesimal transformation,
which we define to be the conformal transformation
of the Liouville field 4:

Fll
8++——3 (2.35a)

5g@=f d @+d f (2.27)
8 =3 (2.35b)

Thus, we see that while the free theory is separately
invariant against the usual conformal transforma-
tion, as well as against the field translation, in the
Liouville model the two must be combined, with y
set equal to 1 (this we do henceforth), to achieve the
symmetry transformation. Owing to conformal in-

variance we expect the conserved currents to be
given in terms of a traceless energy-momentum ten-
sor. This is indeed possible, but the canonical
Noether tensor must be improved. "

8„„=a„ea,e —g„„(-,'a.ea C —m e )

This shows yet again that 8++ depends only on
x+, and 8 only on x . Finally, we define

lnF'(x+) =P+(x+),
lnG'(x ) =P (x )

(2.36a)

(2.36b)

P(x) =P+(x+)+P (x ) . (2.37)

and recognize that in terms of P+-, 8&, takes the
free field form (2.24)

8„„=a„ya„y——,
'
g„,a.ya y+2(g„„o—a„a„)y,

+2(g„, —B„B„)4,

CYp
——2m e +224=0.

The current is

(2.28)

(2.29)

[The free field P, defined here, does not in general
coincide with $0, the one occurring in the Backlund
transformation (1.3); rather there is a nonlocal rela-
tion between the two:

(2.30) Py+ =I3y+ 21n a, 'eI'l"—-+ln ab

Again, two sets of charges may be defined, since
8 depends only on x, and 8++ only on x+
(Ref. 12):

Qy = f dx~f+-(x+-)8++(x+-)

= f dx f+(a,ea-, e-2a, 'e)—. (2.31)

Canonical Poisson brackets must be postulated
for equal x+ and equal x, owing to the conformal
invariance of the theory, just as in the free field
case,

13/0 —— PP +2 ln 8 —'e& + +ln
am ub

'

where a and b are arbitrary constants, and 8+ ' are
Green's functions. ]

Since the Poisson bracket algebra of constants of
motion is known, as is that of the (improved)
energy-momentum tensors' components, one may
infer an algebra for the arbitrary functions lnF' and
lnG'. Comparing (2.37) and (2.24), and recalling
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{2.12) and (2.13), suggests that we postulate canoni-
cal Poisson brackets:

tC(x), C'(y)} i„o 0——I4(x),4(y)} i, ,=0,

(x ),P (y )}= —,e(x —y ), (2.38a)
I 4(x),4(y) } ~ 0 0

——5(x ' —y ')
(2.42)

I P+(x+),P+(y+) }= , e(x—+ y+—), (2.38b)

I P+(x+ ),P (y ) I =0 . (2.38c)

It is clear that the general solution (1.4) may be
written in the form

is satisfied when 4 is given by (2.41) and P obeys
(2.38).

Equation (2.41) puts into evidence the very trans-
parent significance of our transformation. Observe
that the field equation (1.2) has a formal Yang-
Feldman solution:

4(x)=P(x)—m f d yG(x —y)e+'~' . {2.43)

2

e=y —21 1+ (a,-"~')(a -'.~ )

=P —21n 1+ C] 'e&
2

(2.39)

d 'f= f„dyf(y)— (2.40)

In both cases the transformation is canonical. It
may therefore be written as

2

4(x)=P(x)—21n 1+ f d yG(x —y)e~~~'

(2.41)
Clg =0

1

with G(x —y)= —,g(x+ —y+)g(x —y ) and ei-

ther g(z) =8(z) or g(z) =—8( —z). For both
Green's functions, one may also verify that the
equal-time algebra

The Green's functions will be specified presently.
One may view (2.39) as a transformation from the
old set of variables 4 to a new set p. We have al-
ready seen that this transformation makes the (im-
proved) 4-field's energy-momentum tensor take on
the free (improved) form. Consequently, the Liou-
ville Hamiltonian is mapped into the free Hamil-
tonian. It remains to verify that the transformation
is canonical, i.e., that the canonical algebra of the

P -+'s given in {2.38) ensures that the Poisson brack-
ets of the 4's are canonical, as in (2.32). To com-
pute the 4 equal-x+ and equal-x algebra from
that of the P's, we can use (2.14), but the Green's
functions occurring in (2.39) must be specified.

A straightforward calculation indicates that the
Green's functions should be of the Yang-Feldman
variety, so that we have the choice between

d 'f= f dyf(y)

and

Iterating this in powers of m produces

4(x)= P(x) —m f d yG(x —y)e~'~'

+m' f d'yG(x —y)e&'&'

X f d'zG(y —z)e&"+

(2.44)

which is the same power series as the one obtained

by expanding the logarithm in (2.41).

III. INVERSE SCATTERING ANALYSIS

In this section, we develop the inverse scattering
method for the Liouville system and we diagonalize
the Hamiltonian. We work again in light-cone
coordinates and Poisson brackets are defined as the
above light-cone brackets. ' In subsection A, we ex-
hibit the peculiarities of the inverse scattering pro-
cedure for the Liouville equation. We discuss
which boundary conditions must be specified so
that the direct and inverse scattering transforms are
well defined, and we state the form of the boundary
conditions that we shall use. In subsection B, we
show that, within the framework of the standard in-
verse scattering analysis, local Lax pairs cannot be
used to derive solutions for Liouville's equation.
Therefore, in subsection C, a nonlocal Lax pair is
constructed from the local pair; it allows a complete
reconstruction of solutions to the Liouville equa-
tion, as was shown in part by Andreev. Subsection
D is devoted to a derivation of general scattering
theory results needed for the subsequent discussion.
In subsection E, the Poisson brackets of the scatter-
ing data are computed and the action-angle vari-
ables identified. We diagonalize the Hamiltonian in
subection F and express the local conserved charges
in terms of the Liouville field 4 in subsection G.
These charges are found to be related to the ones
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constructed in Sec. II, as well as to the conserved
quantities found by Andreev. Finally, in subsec-
tion H, the Marchenko equations are derived allow-

ing for the reconstruction of the time-evolved fields.

A. Boundary conditions

The necessity of specifying both 4(xo+,x ), and
4(x+,xo ) as boundary conditions requires special
care when applying the inverse scattering procedure
to the Liouville system. That procedure makes a
fundamental distinction between time and space
coordinates. %e shall choose x+ as our "time"
coordinate, so that Poisson bracketing with the
light-cone Hamiltonian

p —= f gx+O = Jdx+[B+@(x+,xo )]

(3.1)

reproduces the correct x+ evolution, as seen from
(2.33).

The first step of the inverse method is to map the
initial data 4(xo,x ) onto the scattering data of a
linear problem. One also determines the Poisson
brackets amongst the scattering data. These results,
obtained at fixed time xo, are entirely independent
of the dynamical variables 4(x+,xo ) occurring in
P . Consequently, time evolution cannot be com-
puted using the Poisson brackets of the scattering
data alone, since the Hamiltonian is not expressed
in terms of these. %e need also the Poisson brack-
ets of the scattering data with the supplementary set
of dynamical variables contained in 4(x,x o ).

This is to be as contrasted with the case, e.g., of
the sine-Gordon theory, ' ' where the Hamiltoni-
an is expressed solely in terms of the scattering
data, so that time evolution, determined by Poisson
bracketing with the Hamiltonia, can be evaluated
from the Poisson brackets of the scattering data.
For the Liouville system, the time evolution of the
scattering data will depend functionally on
4(x+,xo ). Hence, direct and inverse scattering
procedures must be executed with 4(x+,xo ) speci-
fied. %e shall show that in this case, the Marchen-
ko equations are solved uniquely in terms of the
time-evolved scattering data and the given function
e(x+,x,-).

The important conclusion to be drawn from this
discussion is that all the action-angle variables in
the Liouville theory are not just, as is usually the
case, the scattering data [determined by
4 (x o,x )], but also a supplementary set of
action-arigle variables exists [determined by

(3.2a)

lim [4(x+,x ) —2+V„x —P „(x+)]=0,

(3.2b)

where P+„(x ) are limiting, asymptotic functions.
Consideration of the Liouville equation shows that
V„ is independent of x+ but P+„(x+) may vary
with x+. Of course both functions P+„(x+) can-
not be chosen arbitrarily; the differential equation
determines one from the other. We shall restrict
our investigation to functions P+ „obeying the fol-
lowing limit:

lim P+„(x+)=—~ .
[Z+ [~op

(3.2c)

We may view p+„(x+) [or p „(x+)]as addi-
tional data specifying 4 at fixed xo, viz. , at posi-
tive [or negative] infinity. This supplements the in-
itial data which specify 4 at fixed xo+ and which
are converted into scattering data by the linear
direct scattering problem.

The boundary conditions (3.2) have the further
property that the potential energy density m2e
vanishes in the limit ~x

~

~co.

B. Local Lax pairs

Let us first concentrate on a local Lax pair de-
fined by the following 2)&2 matrix operators:

1I = —lCT28 — 2 IIO

2

B=(0,+icr~) e
fPl

8A,

(3.3a)

(3.3b)

Here II=8 4, the momentum canonically conju-
gate to 4, and the 0.; are Pauli matrices. If and
only if 4 satisfies the Liouville equation will the
system of equations

LP=A,g,
a, 1( =ay

(3.4a)

(3.4b)

be compatible. This fact may alternatively be ex-
pressed as the vanishing of the curvature functional

4'(x+,xo )].
It will become clear in subsection B that, in order

to apply the standard techniques of direct and in-
verse scattering, we must impose the following
boundary conditions:

lim [4(x+,x )+2+V„x —P+ „(x+)]=0,
Z -+ oo
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R[4]=[D+,D ]=—4o3(CI@+m e ) .

(3.5c)

The Lax pair (3.3) and (3.4) is by no means
unique; any gauge transformation of the covariant
derivatives in (3.5) will modify the connection and
change the curvature, but if 4 satisfies the Liouville
equation in one gauge, then it continues to do so in
all gauges. Different Lax pairs need not even be
gauge equivalent. For example, the following
derivatives, gauge inequivalent to (3.5a) and (3.5b),
produce a curvature which coincides with (3.5c):

D~ ——B~+ 4 e~~B"4o.

e„~k" ik„+ 2~2"+2~2 '
kI'kp ——m (3.6)

Because of its greater simplicity, we shall work only
with the first Lax pair (3.3) and (3.4).

Let us now justify that the boundary conditions
(3.2) are appropriate to the scattering problem
LP=Ag. This is most easily done by using a
second-order formulation, appropriate to the case
A,+0. The spinor

u =—(8 +-, II)w, (3.7a)

solves Lg=A, P provided w satisfies the second-
order equation

R [iI)] of a non-Abelian connection I'&[4], deter-
mined by the gauge-covariant derivatives

1
D =(i ——,IIo3—icr2iL=() —I" [4],

(3.5a)

2

D+ =d+ (o—i+io2) e =()~—I ~[(I)],m

8A,

(3.5b)

The above condition still leaves open the question
whether II tends towards the same limit as
x —++00 or whether the limits are opposite in
sign. The differential equation requires the opposite
limits: since the derivative term 8+8 4 vanishes
asymptotically, so also must e

This establishes the boundary conditions (3.2a)
and (3.2b), which also ensure that a normalizable
zero mode always exists for the equation Lg =A, P:

1
e 4/2

0 (3.8)

Condition (3.2c) is set for later convenience; see
below.

The time dependence of the scattering data is
determined by the evolution equation —the second
member of the pair in (3.4). However, since the ma-

trix

0 1
+(o') 0 0

is nilpotent,

(a)+io2)()+/=0 ~B+w =0, (3.9)

the scattering data contained in w is time indepen-
dent. This result may be further understood by
recognizing that according to the Liouville equation
()+ V=O; hence the combination of fields contained
in V does not evolve in time. ' Only the A, =O mode
can escape the above result, since the evolution
equation is not defined at A, =O, We conclude that
the Lax pair (3.3) and (3.4) is inadequate for con-
structing solutions'to the Liouville equation. We
now turn to a Lax pair that can reconstruct solu-
tions.

that the straightforward inverse scattering method
be applicable. Hence we shall assume that

II ~ 4V„)0.

( —8 ~+ V)w=)(.2w, (3.7b)
C. Nonlocal Lax pair

where V= —,II ——,(l II. [Henceforth, upper
(lower) components of spinors will be denoted by u

(U).] In order that (3.7b) define a "Schrodinger"
equation with scattering, we must demand that V
converge towards a finite asymptote as x ~+00.
Moreover, the values at x =+ 00 must be equal so

We must find a new operator 8 instead of 8, to
determine the time evolution of the zero-eigenvalue
data. This has already been done by Andreev, who
replaced 8 by a nonlocal 8, which is free of singu-
larities in A, :

2

gy(& —.g) e4(x+,x )/2 "
d+

—e@(x+,y )/2( I +~ )y(~
—.) )

8 00
(3.10)
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Lg =A,P,
d+0 =W'

(3.11a)

(3.11b)

is still the Liouville equation, provided that

f( —ao,'A, )exp[ 2
4(x+, —oo )]=0. Since the boun-

dary conditions (3.2) imply that (p(x+, + 00 ) = —ao,

(We shall not exhibit explicitly the x+ dependence
of f.) The compatibility condition on the system

this condition is automatically satisfied.
System (3.10) and (3.11) does not define a connec-

tion, since the operator 8 is nonlocal. In particular,
one cannot find a local gauge transformation taking
(3.10) and (3.11) into (3.3) and (3.4) or uice versa, not

even on the solution manifold. Nevertheless, (3.3}
and (3.4) are a consequence of (3.10) and (3.11)
when A,@0. To see this, suppose Lit/=A, g (k+0)
and B+Q =Bf Th. en

2

1(i(x p) J dy e [4(x p )+4(x 8 )l/2( 1 + (r )[ i + Q 11(x + y )]g(y p) (3.12a)

simplifies with the help of boundary condition (3.2) to give

8 g= (rr, +icr, )e gSk
(3.12b)

or 8+/ =8/. So the Lax pair (3.3) and (3.4) is equivalent to the pair (3.10) and (3.11) when i(,+0, but only the
nonlocal one is defined when A, =O.

D. Scattering analysis

Now that we have constructed the appropriate Lax pair, and settled upon definite boundary conditions, the
direct and inverse scattering analyses may be executed.

For every real value of A, such that A, & V„, the system Lofti= A,f has two independent eigenvectors. We de-
fine the spinors g+ and f+ by their behavior at x ~+ ao, while the spinors g and g have a prescribed
behavior at x —+ —00 ..

Q+(x;A, )~ . (s e'~, P~(x;A, )~ie'
—ikxye, x ~+ao,—le

(3.13a)

(x;A,)~ —ik — — —. 1 ik-. ,s e, f (x;A) + . ,s e—I,e' I,e (3.13b)

()(2 V )1/2 eis(2, )

k +i+ V„ (3.13c)

It is seen that for A, )V„barred quantities coin-
cide with complex conjugated ones. The function
k(A, ) is defined on a double-sheeted Riemann sur-
face with branch cuts ( —oo, —QV„), (gV„,ca).
On the upper sheet we have Imk ~ O.

The spinors f+ and tti+ are the Jost functions for
the equation L(ti=AQ Since (g,g, . ) are linearly
dependent on (gati+, P+), the former may be ex-
pressed in terms of the latter:

(x;A, ) =a(A, )f+(x;i(,)+b(A, )iti+(x;I,),
(3.14)

(x;A, ) =a'(A, )f+(x;A, )+b'(x)g+(x;A, ) .

I

The coefficients (2 (A, ) and b(i(, ) also depend on x+,
but this dependence is not exhibited. Using the
%ronskian

W( $1 ~ $2 )=Q 1 V2 —Q 2 V 1 (3.15)

which is x independent for solutions belonging to
the same eigenvalue, we derive the unitarity relation

f
a(A, )

f

'—
f
b(i(, )

f

'= 1, (3.16}

and express a and b in terms of the Jost functions:

W(1(,1(+ ) W($, 1(+ )
a(A, )=, b(A, ) =

W(Q+, Q+ ) W(g+, Q+ )
(3.17)



CLASSICAL AND QUANTAL LIOUVILLE FIELD THEORY

For A, & V„, where k becomes purely imaginary,
as well as in the full upper complex k plane, the
Jost functions P and g+ are defined by analytic
continuation. Analyticity of u (x;A, ) and

u+(x;A, ) in the upper-half k plane is seen to hold
directly from the second-order formulation (3.7),
provided that

f" d [-V(x+, -) V—,]= I" d ~-,'II ( +, -)——,'a II( +, -)—V„~ & (3.18)

The analytically continued Jost functions possess
asymptotes identical to (3.13), where 5 and k are
still given in terms of A, by (3.13c), but where k may
now vary throughout the complete upper-half com-
plex k plane.

Of course, a(A, ) may have zeros in the upper-half
k plane. We show in Appendix A that these zeros
are simple. However, for real A, , with A, & V„, the
unitarity relation

~

a(A, )
~

—
~

b(A, )
~

=1 implies
that a(A, )+0. From the second-order formulation
for the equation I.f =A,P, it is clear that the scatter-
ing problem can only have continuum and/or
bound states, but no resonances. Hence all the zeros
of a (A, ) must lie in the interval
—QV„&A, &QV„, and each zero corresponds to
a bound state. So, no breathers' are present
amongst the solutions of the Liouville equation;
only scattering (

~
A,

~
& Q V„) and soliton

(
~

A,
~

& Q V ) solutions, and superpositions thereof
can occur. This is to be contrasted with the non-
linear Schrodinger and sine-Gordon equations. '

The variables a (A, ), b(A, ), the positions g„of the
zeros in the upper-half k plane of a(A, ), and the nor-
malizations of the bound states

b(A„),
&n=. ~ia'(A„). (3.20}

are collectively called the scattering data. Here the
dash stands for differentiation with respect to k,

Furthermore, from Eq. (3.7) it is clear that the
functions (A/k)v (x;A, ) and (1/k)v+(x;A, ) are
also analytic in the upper half plane. The scattering
data a(A, } is now seen to be analytic in the upper-
half k plane. We shall prove in subsection G that
the analyticity of u, u+, (A, /k)v, and (A, /k)v+
suffices to derive the Marchenko equations. Equa-
tion (3.18) provides a sufficient, but by no means
necessary, condition for analyticity. Indeed, by
working with the first-order equation a weaker suf-
ficient condition can be established:

I dx
~

II(x+,x ) —2+V„e(x }~ & ao .

(3.19)

and A,„=A,(g„). We shall show in subsection H that
the above defined list of scattering data, together
with the specification of P+„(x ) (see subsection
A), suffices to reconstruct uniquely the solution of
the Liouville equation.

The time evolution of the scattering data has
been derived by Andreev only in the case where
P+„(x+)= Bx+ an—d P „(x+)=Bx+.We need
the time-evolved data for arbitrary P+„.

It has already been remarked, on the basis of the
Lax pair (3.3) and (3.4), that the function w in (3.7)
is time independent. Hence the scattering data a (k)
and b (A,) also do not depend on time for A,@0. This
remains true for the Lax pair (3.10) and (3.11) in
view of the equivalence of both pairs for A.+0, as
can also be seen explicitly from (3.10} when the
orthogonality of the Jost functions
f(x;0) ( &xe ) and g(x;A, ), A+0, is taken into
account. So we are left with a possible time depen-
dence only in the data of the bound state at A, =O.
The object of interest for the inverse scattering
method is

( +) b(Ox+}
i (a0; x)+

Here we have explicitly indicated the time depen-
dence of a', b, and co, which we shall now deter-
mine.

Because a is analytic in the upper-half k plane,
we can represent it by Cauchy's theorem:

+) dk' a(A(k');x ) (3 21)
c 2+i k' —k

The curve C lies in the upper-half complex k plane,
and encircles the point A, =O. The right-hand side is
time independent since A,(k') is nonzero. Conse-

quently, the left-hand side also is time independent;
so we conclude that a(A, ;x+) for all A, , including
zero, does not depend on x+, and henceforth we
omit the x+ argument of a.

In order to determine the time dependence of
b (0;x+},we relate the Jost functions at A, =O to the
Liouville field 4 according to (3.8) (unlike a, b is
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1

(x 0)=N(x+) e0 (3.22)

Here X(x+ ) is an x+-dependent normalization. At
X=0, g and lit+ are proportional:

(x;0)=b (0;x + )g+ (x;0) .

ll + is defined so that [see (3.13)]

—(V )'~'x-
f+(x;0) ~ 0 e

Z ~oo

(3.23a)

(3.23b)

not an analytic function, hence it can retain a time
dependence at A, =O):

Imposing the boundary condition, stated in (3.2c),
that/+„(x+)~ —oo as ~x+

~

~oo, wehave

IP,co(x+) j =c}+co(x+). (3.29b)

o 3(P+(x;A, ) }~ =g+ (x;—A, *),
cr3(f~ (x;A, ) ) ~ =g+ (x;—A, *)

(3.30a)

(3.30b)

The next ingredient needed for the inverse
scattering technique is the complex-conjugated
scattering data. From I-g =A,P, we see that
L cr3$ = —A,cr3$. Using the asymptotic behavior of
the functions P, and the fact that
(k(A, ))*=—k( —1,*),' we find

Hence we have

b(0;x+)=E(x+)e +"(x+ )/2

The time-evolution equation then implies

(3.24)

so that, we get from (3.17)

(a (k)}*=a( —k*),
(b(A, )}*=b(—A, ") .

(3.31a)

We use Eq. (3.23a) to express u in terms of u+,
and then Eq. (AS) to evaluate the integral over u
in terms of the scattering data (U+ vanishes at
A, =0):

8+b(0;x+)= —a'(0)e +"(x+)

2

Since a'(0) does not depend on x+, we find

c =—3 e
1

0 +2

(3.25b)

(3.26)

which generalizes Andreev's result. We have now
derived the time dependence of all the scattering
data as a functional of P+„.

The time dependence of the scattering data can
be checked by calculating the Poisson bracket with
the Hamiltonian

P = J dx+(c}+/+„(x+)) (3.27)

[This is the x -independent formula (3.1), with the
integrand evaluated at x =ac.] The brackets be-
tween p+„'s with different arguments are deduced
from those of 4 by letting & —++ Do:

j P+ „(x+),P+ „(y+) j = —,e(x+ —y+ ) .

(3.28)

Using this bracket and Hamiltonian P, we derive
the time dependence of eo.

IP,coj = —,c}+ '(e +"{P,P+„j) . (3.29a)

8+b(0;x+)= e +" dx u (x;0)1 4 (x+)

4b (0;x+)

(3.25a)

For real A, and A, & V„, multiplication of a and b

by the same x -independent phase factor merely
amounts to a redefinition of the asymptotic
behavior of the Jost functions. It will turn out to be
convenient in what follows to choose
Imb(QV„) =0 so that

Imb( —QV„)=0. (3.31b)

Finally, we need the dispersion relation between
arg(A, ) and ln

~

a (A, ) ~:

arga (g ) = ——f- dl
1 ln

~
a(A, (l))

l —k(g)
x k(g)

(3.32)

where a (A,(g„)) =0 and Imp„& 0.

E. Poisson brackets of the scattering data

Using light-cone Poisson brackets for the field 4
at equal x+, we shall show that the quantities p(A, )

and co (A, ) are canonically conjugate,

I p(g), co(g') j =5(A, —A, '), k, l, '& Q V„,
(3.33)

where p(A, ) =(S/~&)»
~
a(~)

~

and ~(~)=argb (~).
In formula (3.33), we have restricted A, and A,

' to be
larger than gV„, because the canonical variables
can be chosen to have positive argument. This
presents no loss of generality since p and m are odd
functions of their argument in view of (3.31). Simi-
lar conjugate pairs result from the variables associ-
ated with the zeros of a (A, }. Of course, the bracket
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of a canonical variable with itself vanishes .The
method used here was devised by Zakharov and
Manakov" and was applied by them to the non-
linear Schrodinger and Kortweg-de Vries equations.

We shall use a form for the light-cone Poisson
brackets at equal x+ which differs from (2.32):

r

5A
~

58
5II(x ) 5II(x )

58
~

5A

5II(x -) 51I(x-)

(3.34)

(In what follows the time dependence of 4& and II
will be suppressed. ) Expression (3.34) is equivalent
to the definition (2.32), but is more convement here,
because only II occurs in the equation Lg=A, g.
The field 4 is a dependent variable at fixed x+ and
can be eliminated. Since the data are given by Jost
functions, we shall need their functional derivatives
with respect to II, which we now determine.

The equation 1./ =AD may alternatively be writ-
ten as

f+(x;&)=$0(x;A)+ f dy IC(x,y;A) —,II(y )cr3$+(y;g),

where

$0(x;A, ) =0,
E(x,y; A, ) =5(x —y )

with

IC(x,y;A, ) =0, x py

This may also be expressed as a Volterra series,

(3.35a)

(3.35b)

(3.35c)

P+ (x;A, ) =fo(x;A, ) + g f„(x;A.),
n=1

where

4n(x i )= f dy 1 f dy2 ' ' ' f dy It(x y i i~) ~ Il(y Po3 ' ' ' +(yn:1 ~yn i~)
&n —l

X —,Il (y„)o'$0(y„;&),

(3.36a)

(3.36b)

From Eq. (3.36) it is easy to see that the Jost func-
tions g+(x;A, ) and p+(x;A, ), which were de-
fined by their asymptotic behavior at x =+oo,
are independent of II when x &y

5$+ (x;A, ) 5$~ (x;A, ) =0, e&0.
5II(x —~) 5II(x —e)

(3.37a) or, in the limit e—+0,

X —,II(y )o 3
5II(x +e)

5P+ (x;)I,) = E(x,x + e;A) —,o3$+(x +e;A)
5II(x +@)

+ f dy K(x,y;A)

Similarly,

5$ (x;)(.)
5II(x +@)

5$ (x;I) =0, e&0.
5II(x +a)

(3.37b)

5$+ (x;A, ) = ——,o3 +(x;A, ) .
5II(x + 0)

Similarly,

5$+(x;A, )—= ——,o3 +(x;A, )
51I (x +0)

(3.38a)

(3.38b)

Using Eqs. (3.35) and (3.37) we get and
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5$ (x;A)
, o—3$ (x;A, ) . (3.38c) 5

5a(A) ~
[ (A) (A)

511(x—
) 2i cos5(A, )

These suffice to compute the functional derivatives
of the scattering data a (A, ),b (k) with respect to II:

—u (A, )u+(A, )],

5a(A) 1
[ u (A, )v+(I, )

51I(x ) 4i cos5 A,

+v (A, )u+ (A, )], (3.39a)

5b{A ) , —A,

[ (g) (g)
511(x ) 2i cos5(A, }

(3.40a)

[u (&)v (&)
511(x

—
) 4i cos5(k)

+ v (A, )u+ (A, )] . (3.39b)

(We have suppressed the x dependence in the Jost
functions. ) Using the equation Lg =A/, we derive

—u (A, )u+(A, )] .
(3.40b)

With these formulas, we can express all Poisson
brackets between scattering data in terms of Jost
functions alone.

I.et us start by computing Ia(A, ),b(A, )j. One
may establish the following equality:

5a (A } 5
5b (g ) g 5b(g) 5a(A)

g 511(x-
) 5II(x -

)
+

& 511(x- ) 51I(x-
)

5 [u (A, )u+(A, )v (g)v+(g)+u (g)u+(g)v (A, )v+(A, )] . (3.41)
1

cos5 A. cos5

This is derived by inserting in the left-hand side expressions (3.39) and (3 40), and then using the equation
LP=Ag After ad.ding multiples of [5a (1)ISII][5b(g)/511],we can reexpress, in terms of a's and b's alone,
the appropriate combination occurring for Ia (A, ),b (g ) j, when this Poisson bracket is evaluated from its defin-
ition (3.34). Collecting all terms we obtain

Ia(A), b(g)j= J dx 5
2 2 [u (A)u+(A)v (g)v+(g)

16 g2 g2 cos5 A, cos5

+u (g)u+(f)v (A, )v+(I,)]

+ 2 2

1 g2+A2 5a(A, ) 5b(g)
5II(x-) 511(x-) (3.42a)

and defining

ta(&),b(g) j+ = -[u (A, )u+(A, )v (g}v+(g)16 g2 —g2 cos5 A, cos5
I

+ u (g)u+(g)v (A, )v+(X)]

we have

1 g +A, 5a(A, ) 5b(g)
4 g —A, 5II(x ) 5II(x )

-x =A

(3.42b)

Ia(A), b(g) j = lim [[a(A),b(g) jp —[a(A),b(g) j p] . (3.42c)



26 CLASSICAL AND QUANTAL LIOUVILLE FIELD THEORY 3529

To evaluate the limits, we use the identity

iAx
lim =in5(x)

A~+ oo X

as well as the relations (3.14) between the Jost functions:

(3.43)

16 —g " k (A, )k (g)

mi V„ xi V„+ " a(k)a(g)5{k(g))+ "
b(k)b(g)5(k(X))

a (g)b (A)5{k (A, ) —k (g )),
8k A,

Ia(A), b(g)I „= ——
2 2+ 2 2 V„a(A)b(g)g2g2 1 g2+ g2

(3.44a)

mi V„ mi V„
a(A)a*(g)5{k(g))+ b(g)b~(A)5(k(A, ))

A2
b~(A, )a~(g)5(k(A, )+k(g)) .

8k(A, )

The relation (3.31) between complex conjugates reduces the above to

{a(A),b(g)j = — + a(A)b(g)
1 1 A, k(g) g k(A, )

8g' g' kA,

miV„" a(k)[a(g)+a( —g)]5{k(g))

(3.44b)

[a(g)b(A)5(k(A) —k(g)) —b( —A, )a( —g)5(k(A)+k(g))] .
8k (A, )

This expression implies

Iln
~

a(A) ~,b(g) J
= iAb(g)[5—(A, —g) —5(A, +g)j

(3.45)

(3.46a)

or, for A, and g greater than Q V„,

tin
~
a(A, ) ~,argb(g)I =—A5(A, —g) . (3.46b)

8

Equation (3.46b) leads to the result quoted at the
beginning of this subsection, Eq. (3.33).

Next, we find the brackets of in~a(A, )
~

and

argb(g) with themselves. An identity similar to
(3.41) is used to compute the bracket Ia(A, ),a(g)I,
and it is found to vanish:

A (A, ) =a (A, )+b (A, ),
B(A,)=a(A, ) —b(A, ) .

(3.48a)

The calculation of IA (A, ),8(g) I is then identical to
that of I a (A, ),b (g ) J, provided the substitutions

l

(3.46a). Similarly, the bracket Ib(A, ),b(g)) can be
computed from yet another generalization of (3.41);
but there is a simpler route. Let us compute
IA ( A, ),B(g ) I where

Ia(A, ),a(g)I =0 . (3 47) 0+ 0'+ =0+ —0+
(3.48b)

This then implies the vanishing of the bracket be-
tween the canonical variables in ~a(A, )

~

—a fact
which also follows directly from (3.16), (3.31a), and are made. The result of this calculation is that
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j argb (A), a, rgb (g ) ] =0 . (3.49) IV(P+, g ) ——,5II(u+U +u+u )
~

=0 .

Equations (3.46b), (3.47), and (3.49) hold for
A, & V„, which defines the independent canonical
variables. We must still compute the Poisson
brackets of the canonical variables associated with
the zeros of a(A, ).

We have proven (in Appendix A} that the zeros
A,„=A,(g„) of a(A, ) are simple when A, is real. At
the zeros, g+ and g are linearly dependent:

(3.55b)

Hence we have

a '(A,„)d(„IV(g+, P ~ )

——,5II(u~v +u+u )
~

=0

and

(A,„)=b (A,„)f~(A,„)

5b (A.„}
[ u (A,„)u+(A,„)5II(x ) 4i cos5(A,„) " +

(3.50)
5II(x ) 4ia'(A„)co, s5(A,„)

X [ u (x;A.„)U+(x;A,„)

+U (A,„)u+(A,„)]i

(3.51)

Conjugate to g„ is c„, defined in (3.20). We now
determine how g„varies under a variation 5II of II.
To do so, we use the equation Lg =A,P:

a u', ——,'[II(x-)~(5II}5(x——z)]u

= (A,„+d A,„)U'+,

(3.52)

+U (x;iL„)u+(x;A,„)].

5a(z)
511(x ) z=x„5II(x )

(3.57)

It is then straightforward to derive the brackets

jg„a (&) I
= j g„,b (A, ) I = jc„a(A, ) ] =0,

(3.56)

This is seen to be the continuation of (3.39a), with
the help of the formal identity

—a U', ——,'[II(x-)+(511)5(x-—z)]u',

=(A.„+dk,„)u+ .

jg„,g J
= jc„,c ] = jc„,b(A, )]=0,

jg„,c I =0, num .

(3.58)

Since the zeros of a(A, ) are simple, the functions
(A,„+dA,„) and P+(A,„+dA,„) are linearly in-

dependent and the solution of (3.52) must be of the
orm

C, P+(A,„+dl,„,x ), x &z,
( A

yg +d A
yg yx )

(3.53)

Finally, adapting the calculation of the bracket
ja (A, ),b(g}] to the case of A,

z ~ V„we find

j A,„,c„I =——,A,„c„. (3.59)

Consequently, the canonical variables are

p(A)= in~a(A) ~, co(A)=argb(A),
8

gran,

A, & QV„, (3.60)

1

u+ ——,5IIu+ —u

1

u+ + —,5IIU+ —v
=0, x =z (3.55a)

or

Equation (3.52) is compatible with (3.53) o»y if C~
and Cz match at x =z:

1

Ci(u+ ——,5IIu+ )—Czu =0,
(3.54)

1

C&(U+ + —,5IIU+ ) —Czu =0,
which has a solution provided

P„=ink,„, R„=—81nc„, n+0 .

The only nonvanishing brackets are jp(A, ),co(A, ')j
=5(A, —A, ') and jP„,R~) =5„~ when n+0 In ad-.
dition, we have jgo, inc„] =0 for all n, so that go
commutes with all canonical variables and conse-
quently has no time dependence. It can therefore be
regarded as a c number. The same is not true how-
ever for co. Although co commutes with the canon-
ical variables a (A, ), b (A, ), c„,and g„, it does have a
nontrivial time evolution, because it does not com-
mute with the additional canonical variables which
we now construct.
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At this point, we can fully appreciate the discus-

sion in subsection A of the boundary conditions on
the Lax pair. The scattering data a(A, ), b(A, ), g„,
and c„(n &0) do not suffice in characterizing the
most general solution to the system. The function
(()+„(x+) must also be specified. Phrased dif-
ferently: the scattering data are only half of the
dynamical variables and the other half is precisely
spanned by P+ „(x+).

Although we have I P+ „(x+),tI)+ „{y+)j
, e(x—+ y+—), this is not yet in the form ap-

propriate to action-angle variables. Separation is
however easily achieved by Fourier transforming

P+„(x+):

Here again, do commutes with everything in the
Poisson bracket algebra and has no time depen-
dence, so that it can be regarded as a c number and
not as a dynamical variable. Thus (3.62) becomes

td, d j = Id', d„' j =0,

t dg, dg j = i5(—k —k'), k, k' & 0 .

(3.63a)

(3.63b)

dI', dI„—SFI, ——argdq, k & 0 (3.64)

It is now readily seen that 9'i, and SF'„defined
below, are action-angle variables:

P+„(x+)= f e' . (3.61)
2m 2[k [

Since P+„ is required to be real, dj*, =d I„' it is

then straightforward to check that

satisfying the Poisson brackets

[9i 9I'j = ISIS 98~'j =0 (3.65a)

Id@,dI, j = Idi'„di, j =0, (3.62a) I HI„A'I, j =5(k —k') . (3.65b!

ik 1 1
jdi„di', j =—— . + . 5(k —k'),

2 k +is k —ie

k, k'&0. (3.62b)

I

Using the expression for P+„(x+) in terms of
the action-angle variables 9'I, and 9P~, we find the
dependence of co on Hi and SF',

c,(x+)= f dy+a+ (x+-y+)exp—f Q&qcos(9Pq+ky+)—1 dk
v'~k

(3.66)

Equations (3.60} and (3.64} comprise all the action-

angle variables and we can diagonalize the Hamil-

tonian.

F. Diagonalization of the Hamiltonian

We have already done all the work here: the
Fourier transformation (3.61), that leads to the
canonical pairs di„di, also diagonalizes the Hamil-

tonian (3.1),

P = f dkkdi', dp= f dkk9'g . (3.67)

The Hamiltonian is completely independent of the
scattering data a(A, ), b(A, ), g„, and c„(n &0). This
situation should again be contrasted with the case
of the sine-Gordon theory where the Hamiltonian is

entirely expressed in terms of the scattering
data. ' ' Clearly then, for the Liouville theory,
the above scattering data are conserved quantities.
We shall now derive their explicit formulas in terms

of the field 4.

G. Conserved charges

—u+(A, )U (lI, )]

and the asymptotic form of u+ and U+,

[iu {x,A, )e' ' ' —U (x,A, )]e'

(3.68)

—+ 2i cos5(A, )a (A, ) . (3.69}

The combination o =ie' u —v satisfies the equa-

tion
8 o+ikcr

a
—,II —A, sin5

1= —,IIo.+A,o sin5

8 u+iko.
II —2A, sin5

(3.70}

As usual, the local conserved charges are found

by expanding lna(A, ) in a power series in 1/k. '4'6

This is done using the relation

a(A, )= [u (A, }v+(A,)
1

2i cos5 A,
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Defining ~ such that o=2ie'e ' cos5, we have
r—china(A, ) as x —++00. The differential equa-
tions satisfied by r reads

8
(a r)' —2ik(a r)+(11—2/V„)a

II —2 V„

to exist and converge a condition stronger than
(3.19) is required:

y y II y +2 V„ey &Oo . 3.'75

The expansion is defined by

= —,II —V„. ( 3.71) r(x;k)= g (2ik)"F„(x ),
n=0

(3.76a)

Upon expanding

r„(x )r(x, k)= g (2ik)"

we find the recursion relation for the r„'s,

8 'T~

(II+2+V„)a II+2+V„

(3.72a)

and the F„s satisfy a recursion relation which fol-
lows from (3.71):

7~[II+2(V'„)' ']a
II+2+V„

+ g (a ~„)(a ~„.)—a ~„,=o,
m=0

n & 1, (3.76b)
+ g (a r„)(a r„.) —a r„„=o,

n & 1, (3.72b)

CO

ina(A, )= g
, (2ik)"

The first few charges read

r& ————, j dx (II —4V„),

(3.73)

rz ——2V
(3.74)

r3 ——„I dx [(II —4V„) +4(a 11) ],

a fi ————,(II —4V„) .

The charges r„= f dx (a r„) are conserved
and

'0 70(11+2+V„)a +(a r-, }2
II+2 V„

= ~(II —4V„) . (3.76c}

This expansion gives rise to a set of nonlocal con-
served quantities. The Ricatti equation (3.76c) can
be reduced to a linear equation, which however does
not seem to have a general, closed-form, solution
for arbitrary II.

In addition to a(A, ),b(A, ) also is conserved. In
general b (A, ) is not analytic everywhere, but suppose
it is analytic at ko. Then defining

(u +ie su )e '~ =s (x,k)
2i cos5

(3.77)

r4 ——4V s (x,k) ~ b (k),

The charge r& is clearly proportional to the finite
part of Q, defined in (2.31), and the higher charges
r3, r5, etc., are related to higher powers of 8++. '

Note that, although 8 ~z„are total derivatives of
combinations of the field 4, the even charges do not
vanish but are c numbers. Furthermore, a change
of V„rearranges the conserved charges in linear
combinations with coefficients proportional to the
length of the system. Also, note that all charges are
finite.

Nonlocal charges are usually found by expanding
lna(A, } in a Taylor series at A, =O. Here however,
due to lack in analyticity of lna (A, ) at A, =o, we can-
not expand that function in a Laurent series, but we
can expand 1na(A, (k}) around k =0. For the series

where k is in the region of analyticity. The quanti-
ty s is determined by an equation analogous to
(3.70):

a s — a s= —,(II —4V„)s .
11+2 V„

(3;78)

Upon expanding s (x,k) about the point ko,

s(x;k)= g s„(x )[2i(k —ko)]",
n=0

(3.79)

we see now that every s„must obey (3.78) separate-
ly. Since the linear equation (3.78) has only two in-

dependent solutions, of which one is e ', we con-
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elude that the whole set of conserved quantities
b(A, ) in fact collapses to just one additional, in-

dependent conserved charge. This additional con-
served charge is a nonlocal functional of the field
II, but we have not been able to express it in closed
orm.

Next, we derive the most general conserved quan-
tity built out of the action-angle variables 9'k, Rk.
For S( Rk, SFk ) to be conserved, we must have

K2 (x;y) = F—(x +y)

+ f ds K2(x;s)F(y+s), x &y,

K~(x;y)=K2(x;y)=0, x ~y .

(3.84b)

(3.84c)

From the leading term of an expansion for g+ in
1/k, it can be deduced that

IP,SI = f dkk (3.80)
II(x )=—QV„—2[K,(x;x )

+K,(x —;x-)] . (3.85)

In order that also all Poisson brackets with IP,S I

vanish, it is necessary and sufficient that the in-

tegrand vanish. Hence S(9k, Ak) =Sp(&k) is the
most general conserved quantity built on 9'k and

In conclusion, the most general conserved quanti-

ty is of the type

Using (3.31), (A8), and the fact that g„ is purely im-

aginary, we see that F is real, so that E& and EC2 are
real; the function II is then real. The equation sa-
tisfied by K~ is

K;(x;y) = F(x +y)—
—e f ds K;(x;s)F(y +s),

P'=P'[a (A, ),b (A, ),g„,c„,9'k]

for n+0, A, & Q V„, and k p 0.

(3.81) e, =1, e2= —1 (3.86)

for x &y. Formally, in operator notation, this reads
E =—F—REF and is solved by the series

H. The Marchenko equations and inverse scattering K= —F+eF —e F + (3.87)

Knowing the scattering data at a time x+, we can
construct the scattering potential at that time.
Since u+(x;A, ) is analytic in the upper-half k
plane (see subsection C) we can define kernels K;,
i =1,2, such that

u ~(x;A, )e '~ —1

00

dsK&(x 's}e' " " ' (3.82a)
x

and

—v+(x, A)e ' +i
dO

=i dsK2(x;s)e ' ' " '. (3.82b)
X

Upon defining

F(x)= f dk e'~+ g c„e "1 b (k) gk, ig„x

2m a (k)

provided the magnitudes of F 's eigenvalues are less
than 1. F is diagonal in the momentum representa-
tion and

~
[b (k)/a (k) ] ~

& 1 for real k. When a (k)
has zeros in the upper half plane, the series (3.87} is
not absolutely convergent in general, but equation
(3.86) can be solved uniquely by continuing the
solution in the variables c„. Hence (3.86) is unique-

ly solvable for II in terms of dk as well as the
scattering data b(k)/a(k) (for real k), c„and g„
(which is purely imaginary). The most general solu-

tion to the Liouville equation is then

a(x+;x )= fey a (x —y )11(x+,y

+CO(x+), (3.88)

and 40(x+) is determined as a functional of the
dk's with the help of (3.2). The solution we obtain
here is of the general type (1.4).

—(v„)'/'x
+eo[dk dk le (3.83)

IV. QUANTUM THEORY
the Marchenko equations can be deduced using the
fact that u+ and (A, /k)v+ are analytic in the upper
half plane':

K i (x;y ) = F(x+y)—
—f dsK&(x;s)F(y+s), x &y,

(3.84a)

There are no apparent obstacles to a canonical
equal-time or light-cone quantization of the Liou-
ville theory where Poisson brackets are replaced by
comm utators. Of course, a solution requires

developing calculational techniques, approximate
ones, if need be. We shall now describe the results
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of different approaches to this problem. While
various difficulties are encountered, it is possible to
make a plausible conjecture about the complete
theory.

A. Semiclassical quantization

The canonical transformations, constructed in
Secs. II and III, allow for a semiclassical analysis.
The canonical variables obtained from both
transform ations appear unconstrained, as in a
canonical massless free field. [There does exist a
constraint on P, as defined in (2.36) and (2.37): the
form invariance (1.6} should be respected; however,
this does not seem to limit the canonical nature of
the action-angle variables. ] Consequently, semiclas-
sical quantization yields a continuous spectrum, as
in a free field theory, consistent with the conformal
invariance of the theory.

B. Quantum inverse scattering method

(I/p)@ appearing when (mi/p )e~ is expanded in
powers of p. This tadpole cannot be removed by a
shift in the field, since shifting 4 only redefines m .

Perturbation theory in m is ultraviolet finite
after mass renormalization (for P &4m), but is
severely infrared divergent. These divergences are
to be expected, since m is dimensionful. Moreover,
a power series in m cannot be uniformly defined,
since by shifting 4 by lnm, m may be removed
from the theory.

We interpret these failures of perturbative com-
putations of vacuum amplitudes as evidence that
the theory possesses no ground state. This conjec-
ture is further substantiated by the following con-
siderations.

D. Effective potential and nonexistence
of a ground state

In this subsection, we show that no translational-
ly invariant ground state exists. This can already be
surmised from the quantum equation of motion

For the sine-Gordon theory, Sklyanin, Takhtad-
zhyan, and Faddeev have proposed a quantum in-
verse method, enabling them to construct the exact
S matrix (except in the soliton sector) as well as the
quantal conservation laws. Also they diagonalize
the Hamiltonian. In attempting to apply this pro-
cedure to the Liouville theory, the following obsta-
cles are encountered.

For Lax pair (3.10) and (3.11), defined in light-
cone coordinates, the fields 4 and II are promoted
to quantum operators obeying light-cone commuta-
tion relations. Following Ref. 23, we first concen-
trate on the quantum version of the I. operator, and
construct the similarity matrix R(A, ,p). By using
light-cone commutators, we unfortunately lose the
crucial property of ultralocality and the quantum
inverse method no longer applies.

If we insist upon formulating Lax pair (3.10) and

(3.11} in t,x coordinates, with 4 and 4 obeying
equal-time commutators, we find that both equa-
tions of the corresponding Lax pair are nonlocal.
Again, the method is not defined in this case.

In conclusion, we have not succeeded in applying
the quantum inverse method to the Liouville theory.

C. Perturbation theory

Perturbation theory in P for vacuum matrix ele-

ments is clearly vitiated by the term linear in

U4+ e~ =—0. (4.1)

If the theory possesses a translationally invariant,
normalizable ground state

~
0), then

(0
i UP i

0) =0, so that

(4.2)

which violates the formal positivity of the exponen-
tial. This suggests that no translationally invariant
ground state exists.

%e now confirm this by using the effective po-
tential, which can be evaluated in the loop expan-
sion. Here we need not select a ground state initial-
ly,' no infrared divergences appear and a well-
defined expression is obtained. In tree approxima-
tion, the effective potential is just the classical po-
tential (m /P )e~, which has no minimum (except
at 4= —ao). Quantum corrections do not modify
this conclusion.

The exact effective potential has been computed
by Goldstone, using a simple argument that relies
on the fact that a shift in the field 4 is equivalent
to a redefinition of the only dimensionful parameter
in the theory, m, which can in turn be compensat-
ed for by normal reordering. Goldstone's result for
the complete effective potential is



CLASSICAL AND QUANTAL LIOUVILLE FIELD THEORY 3535

2

v(p, e)= ", ", p '=p-'+, p.
p' '

82r

Here m, is the renormalized mass.

(4.3)
We have checked this formula in the loop expan-

sion and find, to the two-loop, O(A ) approxima-
tion,

'2
m2 g 2 A2 1 g 2

V(P, C )= e~ 1+ ln —PC+1P' 82r m' 2 8m.

2
A

ln —P4 +C +O(A ), C=3.05208.
Ptl

where A is an ultraviolet cutoff. After renormal-
izing the bare mass m, we see that to O(A' ) (4.4)
agrees with (4.3).

Consequently, the effective potential is monoton-
ic, and no translationally invariant ground state ex-
ists. The spectrum has a greatest lower bound—
zero—which however is not attainted by any eigen-
state. In Appendix 8, we show that the Liouville
theory, in one fewer dimension has a continuous
spectrum but no ground state. This quantum
mechanical model can also be considered as the
high-temperature limit of the field theory.

Upon combining the semiclassical results with
the effective potential analysis, we are led to con-
clude that the energy spectrum, consistent with con-
formal invariance, is continuous, bounded from
below by an unattained, vanishing, greatest lower
bound. Evidently this peculiar behavior does not
violate any known quantum-mechanical principles;
it reflects the physical fact that the lowest-energy
classical configuration requires a [negatively] infi-
nite value for the dynamical variable. It may hap-
pen that the effective potential vanishes for some
definite values of P; presumably for small generic P
this does not occur. Also there remains the possi-

(4 4)

I

bility, about which we have nothing to say, that a
translationally noninvariant ground state exists.

V. ADDED NOTP

There has now appeared an investigation by Curt-
right and Thorn of the quantized Liouville model
on a finite spatial interval, with periodic boundary
conditions. While we do not agree with their asser-
tions concerning properties of the ground state-
no such state exists —their analysis of the conformal
algebra (2.34) may be used to the same end for the
infinite-space theory. They show that the quantum
algebra closes, viz. , various commutator anomalies
merely redefine parameters. We present here a
derivation of the corresponding result for the full
Minkowski-space theory. Our method initially does
not employ normal ordering as Curtright and
Thorn do, and we make explicit an assumption
which underlies their approach.

An equal-tine quantization is adopted, and the
time variable is henceforth suppressed. The confor-
mal algebra (2.34) will be valid if and only if non-
vanishing components of the (conformally im-
proved) energy-momentum tensor, 8++ and 8
satisfy the following commutation relations:

[8++(x),8++(y) ]=2(8++(x)+8++(y) )5'(x —y ) —c5'"(x —y ), (Nla)

. -[8 (x),8 (y) j = —2(8 (x)+8 (y))5'(x —y)+c5"'(x —y), (Nlb)

1
~

g ++[8 (x),8 (y)]=0. (Nlc)

The triple-differentiated 5 function multiplies a c
number. We discuss only the first commutator; the
remaining two behave in an entirely similar way.

The classical formula for 8++ is given by (2.28):

e„=a,ca e ——a, 'c

(11+@ ')' ——(ll +4')'+2 P p2

Here II is the equal-time canonical momentum 4.
Quantal anomalies arise, as always, from singulari-
ties in products of operators at the same point.
This problem afflicts the first and third terms in the
last line of (N2). To proceed, we shall assume that
the singularities are no worse than in free field
theory, and that no singularities are associated with
the coincidence of time variables.
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In particular, upon defining the dimension-1
combination,

(N3)

we extract the short-distance singularity in the
product A (x)A (y):

A (x }A(y) +A (y)A (x )=- 2k'
n (x —y)

+A (x-)A(y):

+A(y)A(x}: .

The colons do not signify normal ordering, rather
I

they merely indicate a product in which the
coincident-point limit can be taken. The c number

singularity has dimension 2, and is governed by the
constant a.

Next we consider the field exponential. In the

free theory it is multiplicatively renormalizable;

hence we assert that here too the combination

rn e~ is finite, since the (infinite} renormalization

may be absorbed in the bare mass m, to give the re-

normalized mass M:

m e~=M:e~: . (N5)

Finally, we shall encounter the product of the ex-

ponential with A. Again dimensional analysis sug-

gests the appropriate expression:

rn [A(x)e~'~'+e~ep'"'A(x)]= M:eI'@'i'+M [A(x)e~@'~' +:e~. '~'A(x):] .—RPb

n (x —y)

The dimension-1 singularity is governed by the constant b.
The quantum formula which replaces (N2) is

2, M:8 =—,:A:——A'+:e"-:+const.
I3'

(N6)

(N7)

We have inserted an as yet undetermined parameter y, which in the free theory is arbitrary and in the classical

Liouville theory is P; for the quantum Liouville theory, it will be fixed presently. Also, we have allowed a c

number constant in (N7), which is necessary for the closure of the algebra.

To evaluate the commutators (Nl), we need

Ci(x,y)—:. —,:A (x):——A'(x)+const, —,:A (y):——A'(y)+const1 i 2 2 1 2 2

iR '
y y

(NSa)

Cq(x,y)—= . —,:A (x):——A'(x)+const, —:e~~: —(x++y) .1 i 2 2 M
l

(NSb)

Since the commutator of two operators is insensitive to additions of c numbers to the operators, we may use

(N4) and (NS) to rewrite (NS):

C, (x,y)= —,A (x)——A'(x), —,A (y) ——A'(y)1 1 2 2 ~ 1 2 2
iA', '

y
'

y
(N9a)

Ci(x,y)= . —,A (x)——A'(x), e~'i' —(x~y) .I & 2 2, Pl

if&
'

y
' Pi

Use of the canonical commutator

1 [4(x),II(y)]=5(x —y )

yields
8

C, (x,y)= A(x)A(y)+A(y)A(x) ——A'(x}——A'(y} ~'(x —y)—
y y y'

2

Cz(x,y) = — [A(x)e~ '~'+ep '~'A(x) —A(y)e~ '"' —e '"'A(y)]~(x —y }
2

( & '"'+e~ ' ')5'(x —y) .2m

Pr

(N9b)

(N10)

(Nl la)

(Nl lb)
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Next one wants to set x equal to y in operators multiplying 5 functions; however, before doing so,the singulari-

ty at x =y must be extracted. We have, according to (N4), (N5), and (N6),

C)(x,y) = 2' 4, 4, , 8
+:A(x)A(y):+:A(y)A(x}:——A'(x) ——A'(y) 5'(x —y) — 5"'(x —y)

(x —. y ) y y y'

= 2 2:A (x):——A'(x)+ —,:A (y):——A'(y) 5'(x —y)
1 2 2, 1 2 2

y
' r

2%a 85'(x —y ) — 5'"(x —y ),
m(x —y) y'

T

(N12a)

M
C2(x,y) =—

2
:A(x)e~'«':+:ep '«'A(x): —:A(y)e~("':—:ep'"'A(y}:

QRb fgnbP .e p4(«). P ep4(x).
(x —y.) m(x —y)

(. p@(x).+.ep4(«). )5~(x y)
2M

Py

=M (:e~'"' +e .p'«' ) . 5'(x —y)+2, Ab
5(x —y)

Py 2n (x —y)

Finally, the following properties of one-dimensional 5 functions

5(x) = —5'(x),

(N12b)

(N13a)

5 (x) 5 (x) 5g(
6

(a is an arbitrary constant) give the result

C, (x,y)= 2 —A (x) ——A'(x) — + —,:A (y):——A'(y) — 5'(x —y)2 2, kxa i z 2, kxa

y 2~ '
y 2" .

(N13b)

+ 5"'(x —y),y' 3K
(N14a)

C, (x yi= —""— "" (:eP~'"'.+:eP~"'.)5 (x —y) .2M ~ fi& b

p' y 4~
(N14b}

l 1 A b—+
y p 4n

(N15)

Since M~:ep: commutes with itself, (Nla} is seen to
follow with

The commutator anomaly in C( is the familiar

Schwinger term of the free theory. The anomaly in

Cz, characteristic of the Liouville theory, was iden-

tified by Curtright and Thorn. For the conformal
algebra, to close, the bracketed term of (N14b} must

equal 1; this will be true if y is given by

1 Aae=8 + (N16)

provided y is evaluated by (N15), and the undeter-
mined constant in (N7) is identified with

fiaa/2n, which —is the un. determined constant oc-
curring in (N14a).

It is important to appreciate that we have not
really answered the question whether the conformal
algebra is truly realized in the quantum theory. To
effect the above derivation, we had to assume a free
field form for singularities in operator products.
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This assumption is difficult to assess for the Liou-
ville theory. On the one hand, it is known that per-
turbation theory for the two-dimensional exponen-
tial interaction with an additional mass term is ren-
dered ultraviolet finite by normal ordering. This
leaves operator product singularities in their free
field form. On the other hand, in the Liouville
theory (without an additional mass term) perturba-
tion theory is ill defined owing to infrared diver-
gences, and it is not clear whether the perturbative
(massive) results are relevant. While in conformally
noninvariant theories it is plausible that ultraviolet
behavior should be independent of infrared
behavior, in the conformally invariant Liouville
theory it may well be impossible to separate ultra-
violet and infrared behavior. In the absence of ex-
plicit calculation, the argument remains incomplete.

Let us now present a normal-ordering analysis,
following Curtright and Thorn. The result is con-
sistent with the above, and provides an evaluation
of the constants a and b in (N4) and (N6). But the
fundamental question about short-distance singular-
ities is not addressed, since normal ordering presup-
poses their free field form. Moreover, a new ques-
tion arises: is it possible to define in the Liouville-
theory Hilbert space a Fock space with respect to
which normal ordering is performed?

The canonical commutation relation (N10) is
realized by the following expansions for (I) and II.

@ (+)+g)(—)

' 1/2

'(x)= f dk e
—ikxa t(k)

= e(+)(x) (N17b)

rr =rr'+'+rr'-',

II(+)(x)=—i f dk
4m

' 1/2

eikxa(k)

(Nl ga)

e ikxa—t( k)

T

= II(+)(x) (N18b)

[a(k},a(k'}]=0=[a (k),a (k')],

[a(k),a (k')]=5(k —k') .

(N19)

Here co(k) is an arbitrary positive, even function of
k. While co(k) would be (k +p, )'« if normal or-
dering is performed with reference to a free field
with mass (M, we shall not need this formula.
Nevertheless we shall assume conventional large-k
behavior for a)(k}:

e(+)(x)= f dk
4m.a) (k)

ikxa(k)

(N17a)

co(k) — ik i
.

Normal ordering is defined with respect to co:

(N20)

dk k
A(x)A(y)+A(y)A(x)=()'i f +co(k) cosk(x —y)+2(x)A(y):

~

+A(y)A(x):
~

277 co k
(N21)

m2eg+(x) m&exp ~ [(p(+)(x) @(—)(x)] ePe' '(x)eye(+)(x)
2

=m exp ()iP:e~ '"':~ =M e~ '"',
~

dk
8~~(k)

m (A(x)e~ '«'+e~ '«'A(x))= M ( A(x)ei '«':
~

+:ei@'«'A(x):
~
„)

CPM„2:e~~(«):
~

„—dk k
sink(x —y) .2' a)(k)

Next we isolate the singularity at x =y in the integrals occurring in (N21) and (N23), by using (N20):

(N22)
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f +~(k) cosk(x —y)= f +e~(k) —2~k
~

cosk(x y—) —— z,dk k' 2 1

2ir co(k) 2' co(k) ir {x—y)i
(N24)

f sink(x —y) = f —e(k) sink(x —y)+dk k . dk k 1

2m co(k) 2ir co(k) m (x —y)
(N25)

A comparison with (N4) and (N6) gives the (co-independent) definitions

:A(x}A(y):+:A(y)A(x):=:A(x}A(y):
~
„+:A(y)A(x):

~

+g k —k 2cosk x
2nco(k}

M A(x)e~@'i' +:e.~' 'A{x) =M:A(x)e~ 'i':
~

~+:e~ '~'A( x):
~ „

(N26)

CPM—:e~ 'i'.
~ „f e(k) s—ink(x —y) .2' co(k)

(N27)

The singularity in the operator products is indeed as in free field theory, and both constants a and b are

evaluated at unity. Moreover, (N22) shows that for any co, m e~ =M:e~: is a positive operator:

me~ =M e~ =M e~ e~ (N28)

The commutators with fields may also be given:

—[:0 (x):,C (y)]=[II(x)+e'(x)]5(x—y) ——5'(x —y),
y

M—[ 8++(x) II(y)]=+[II(x)+4'(x)]5(x—y) — e~+'"'5(x —y)+ —$"(x—y)

(N29a)

(N29b)

P= ——, f dx[:8++(x):—:0" (x):] (N30b)

while the Heisenberg equation of motion reads

[Pi', [P,e]]—=ae—

M p@ (N31)

Note that the conformal algebra is consistent
with results established in the main body of this pa-
per. According to (N31) no normalizable energy-
momentum eigenstate exists, since (M /P):e~: is a
positive operator. Since f dx e'&"8++(x) act as
raising and lowering operators for H and P, the en-

ergy and momentum spectra are continuous.
The normal ordering procedure that we have

adopted for evaluating equal-time commutators

This shows that the Harniltonian and momentum

operators are

H = , f dx [:8++—(x):+:8 (x):], (N30a)

I

produces c-number quantum anomalies which are
twice those given by Curtright and Thorn (after
differences between our notation and theirs is taken
into account). This discrepancey comes about from
different ways of regulating products of distribu-

tions, as in (N13). Indeed, in the free field theory, if
one uses the Bjorken-Johnson-Low (BJL) definition
of the equal-time commutator, ' the magnitude of
the quantum correction to the center in Ci is —, of
what we give here. Similarly the O(A) correction
to Cz can be evaluated in the free field theory; again

1

—, of the present number is found.

Of course, in the absence of a dynamical calcula-
tion, the BJL procedure cannot be used for the
Liouville theory; fortunately, the closure of the con-
formal algebra does not depend on numerical values
of the quantum corrections, provided they are c
numbers. Nevertheless, this highlights once again
the convention dependence of regulator methods
and the uncertainty about the applicability of
canonical free field techniques to an interacting
theory.

Finally let us observe that the conformal syrnme-

try should allow mapping the theory from Min-
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kowski space to other spaces, where alternate quant-
ization schemes can be carried out. Especially in-

teresting is O(2) XO(2) which is the maximal com-

pact subgroup of O(2,2), the restricted conformal

group of the model. [Similar techniques have been

employed for the point magnetic monopole, which
is O(2, 1) invariant, and for the Yang-Mills theory,
which is O(4,2) invariant on the classical level.

dx (u+u +v+v ) .—L

(A3b)

The Wronskians vanish as L~ oo, so it follows that

W(g+, f )=—f dx (u+u +v+v )
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APPENDIX A

Here we show that the zeros of the scattering
data a(A, ) in the upper-half k plane are simple. We
consider

(A 1)

We have omitted the A, dependence of the Jost func-
tions. Using the equation LP =A,g, we find

Using the explicit expression of the Wronskian

~(f+,f+ )=2ikll,
we finally obtain

a'(A, )= a(A, )
d
k

=——b(iL) f dx (u+ +v+ ) .

(A7)

When
~

A,
~

&g V„and A, is real, k must be purely
imaginary and the Jost functions g are real. Furth-
ermore b(A, )+0, since by virtue of a(A, )=0, we
would find P (A, ) =0, if also b(A, ) =0. This is con-
tradictory. Hence a(A, )=0 implies a'(A, )+0. So all
the zeros on the real axis are simple.

d 1 00

a(X)= dx (u+u +v+v )
wf+, Q )

+ ', W (y, ,q, ), (AS)
~(4+ 0-) d

p'(p, f )2 dA,

but the second term is proportional to a(A, ) and
must vanish when a (A, ) =0. Furthermore

(x,A, ) =b(A, )g+ (x,A, ) and

a(A, )= f dx (u+ +v+ ) .
~(4+ 0+)

(A6)

= —(u+u +v+v ), (A2a)
APPENDIX B: ONE-DIMENSIONAL

LIOUVILLE THEORY

so that

The quantum-mechanical Liouville theory is de-
fined by the Hamiltonian

L=—f dx (u~u +v+v ),
(A3a)

2 N10——@2+ e@
2 (Bl)

The corresponding Schrodinger equation yields a
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ga(q)= sinhir
~

v
~p.

' 1/2
2V 2m

Ap

2+2E
Tip

where E„ is a modified Bessel function. 34 We see
that no zero-energy state exists, which reflects the
fact that the equation

continuous spectrum with (continuum energy-
normalized) wave functions

d m+ — e@ fo(q) =0
dq& pt

(B3)

has the solutions Io((2&2m /Pip )e +r ) and

Ito((2~2m/Ap )e@~ ) both of which are unbound-

ed for large
~ q ~. Furthermore, it is clear from

(B2) that the spectrum is continuous and that E=0
is a greatest lower bound. ' Note that the wave

function has no expansion in powers of m, since

E, is not analytic at the origin.
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