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Constraints in relativistic Hamiltonian mechanics
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We propose a new scheme for the use of constraints in setting up classical, Hamiltoni-
an, relativistic, interacting particle theories. We show that it possesses both Poincare in-
variance and invariance of world lines. We discuss the transition to the physical phase
space and the nonrelativistic limit.

INTRODUCTION

We present a new way of using constraints to set

up a theory of relativistic, interacting particles.
The method we propose is in some respects simpler
than the ones currently in use in the literature
while it achieves the same objectives. What one
expects of a nontrivial relativistic theory are (1) a
realization of the Poincare algebra by functions on
the physical phase space of the system, (2) invari-
ant world lines, and (3) particle interaction. While
these objectives are incompatible within the instant
form of dynamics, ' they can be achieved with a
more general framework. This new framework
uses the. theory of constraints developed by Dirac
and is explained in Refs. 3 and 4.

In Sec. I we briefiy review the material in Refs.
3 and 4 prior to setting forward our own ideas in
Sec. II. Then we discuss an example of an 1)I-

particle system. Section III discusses the transition
to the true physical phase space of the system. In
Sec. IV we take the nonrelativistic limit of the X-
particle system. Section V presents some formal
aspects of the scheme. Section VI is a concluding
discussion.

I. REVIE% OF PREVIOUS WORK

Komar starts with an 8N-dimensional phase
space I spanned by

(x,u)pep)) a =1). . . )S) p=0). . . ) 3

with basic Poisson brackets

{x.,Pb ] =~.bet.
{x,„,xb, I = {p,„,pb„] =0 .

[We use the metric g» ——diagonal (1, —1,—1,
—1).] The Poincare algebra is realized on this
space via the Poisson bracket by the ten generators

M»= g (x,q p,„—x„p,„) .
(1.2)

In order to define the system, Komar imposes &
constraints

E, =O,

which are first class,

{X.,zb] =0,
and Poincare invariant,

(1.3)

{G,K, I =0, (1.4)

where 6 stands for any of the 10 generators (1.2).
These K, by their vanishing define a 7g-dimen-
sional region in I". Further, as a consequence of
Eqs. (1.3), they foliate this space into a 6X-
parameter family of N-dimensional sheets in a
manner explained in Refs. 3 and 4. These sheets,
while they are a 6X-parameter family, are not yet
in correspondence with the states of motion of an
N-particle system. In order to define states of
motion and determine the particle world lines, one
has to choose a "connection between syntactic and
semantic observables. " Once this is done, the
phase-space trajectory and particle world lines are
well defined.

Sudarshan, Mukunda, and Goldberg point out
that it is inappropriate to identify Komar's sheets
with the phase-space trajectory of the system be-
cause a sheet does not determine a set of X world
lines. In order to arrive at a phase-space trajecto-
ry, they impose X—1 "time" constraints X,
a= 1, . . . , X—1, which serve to pick a one-
dimensional line on each sheet. After introducing
one more "labeling" constraint X~, which explicit-
ly depends on r (the evolution parameter), they
have a set, j', and X„of2X second-class con-
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straints. One can define a Dirac bracket with
respect to this set. It then transpires, as a result of
Eqs. (1.3) and (1 4), that the 10 functions (1.2)
satisfy the Poincare algebra with respect to the
Dirac bracket for any choice of the X's. These au-

thors also discuss a world-line condition (originally
developed in Ref. 6) for use in the present context.
Their discussion shows that one way to satisfy the
world-line condition is to have the N —1 ~-inde-

pendent time constraints X Poincare invariant.

the Dirac bracket defined by the 2N second-class
constraints:

(2.4)

One easily sees that if 6 and 6' are any two of the
Poincare generators,

(2.5)

Since, by Eq. (2.1), (G,&P;j and (&Pj,G'j are
nonzero only if i =j =2N, and then CfJ vanishes

by its antisymmetry. Thus we have

(2.6)

We will show that one can fulfill the require-

ments of Poincare invariance and the world-line
condition by a different set of conditions on the
constraints. We introduce 2N —1 constraints q;,
i =1, . . . , 2N —1, all on an equal footing. These
replace the E, 's and the 7 's of the previous sec-
tion. We require them to be Poincare invariant,

(2.1)

As before we need yet another labeling constraint
&P2N(r) explicitly depending on r. This last need
not be Poincare invariant. The set y;,
i =1, . . . , 2N, is assumed to form a second-class
set; i.e., the 2N &2N matrix

(v'i&q'j j

The generators (1.2) do satisfy the Poincare algebra
with respect to the Poisson bracket. From Eq.
(2.6} we see that they also do so with respect to the
Dirac bracket. Thus, the requirement of Poincare
invariance is fulfilled.

We come to the requirement of world-line in-

variance. Notice that the Poisson bracket of xa&
with the generators (1.2) coincides with its geo-
metrical change under Poincare transformations.
The world-line condition (WLC) (Refs. 1, 4, and 6)
demands that the canonical transformation proper-

ty of xa& via the Dirac bracket should coincide
with its geometrical one apart from a translation
of each particle (by possibly different amounts)

along its world line. It reads

(xa~, G j *=(xaq, G j+ (xaqH j5ar,

is invertible. Let us denote its inverse by CfJ.
The equations of motion are generated by a

Hamiltonian H =v;y; via the Poisson brackets,

dXgp
=(xap&H j = (xap&&pi jui &

dT

~PaIjj = {pail&H j = (pai»%'i jvi .
(2.2)

i2 = 1, . . . , N, (no g on a) . (2.7)

Here we have replaced the geometric transforma-
tion of xa& by (xa&, G j in accordance with the
above remark. If there exist numbers 5ar for each
of the 10 generators (1.2) such that Eq. (2.7) is
satisfied, then the theory has objective world lines.
In the present formalism we see that the WLC is
in fact satisfied,

The requirement that 0 preserves the constraints
in v uniquely fixes v;,

dpi Bpi + (q'& &V'j j Uj =0
d7 OS

(Xai»G j —(Xail&G j (Xail&ti j Cij ( Pj &G j

(Xai»G j (Xai»ki j Ci2N {02N, G j

= (x,„,G j

BfJ B(IPSE@
V r &rr&&r& Cr ~ p&sv' Cr m a r

l Ij g l2N

(2.3)
(q2N, G j

—
B&P2N /Br

(2.8}

Once the physical system is fixed by choice of the
constraints, its phase-space trajectory and particle
world lines are determined from Eqs. (2.2) and
(2.3).

We need to check now that the 10 generators
(1.2} satisfy the Poincare algebra with respect to

From here one sees that the uniform choice

5a~= ', all a(V2N, G j
(2.9)

satisfies Eq. (2.7). The WLC, as developed in
Refs. 1, 4, and 6, permits a translation of each par-
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ticle independently along its world line. Thus,
points on two world lines which are "simultane-
ous" with respect to r in one frame need not be so
in another. In the present formalism, since 5,~
does not depend on a, the notion of simultaneity is
not changed by a change of frame. Thus we have
here an invariant notion of simultaneity as well as
invariant world lines.

Notice that we do not assume that the K, 's are
first class or even that their brackets vanish modu-

lo all the constraints. While we do give up these
Komar-Todorov equations (1.3), we need to assume

that Eqs. (2.1) are fulfilled. Thus we have a dif-
ferent set of conditions on the constraints from
those used in the Komar-Todorov formalism.

We next discuss an example of an N-particle sys-

tem using this framework. This system can be

thought of as having "instantaneous interaction" in

its rest frame. The constraints that define our sys-

tem are

2 2
Ka =pa —ma —Va,

(2.10)

where P& Pz/P, and——P =(P&P&)'~ V, are N.

Poincare-invariant functions constructed from the
x variables alone. By taking the differences of the
7a's one sees that all but one of them are Poincare
invariant and ~ independent. So, the constraints

(2.10) describe a system which does satisfy Poin-

care invariance and world-line invariance.
We remark that the Ka's are not required to

form a first-class set and so the system falls out-

side the scope of the Komar-Todorov formalism.
In fact,

aVb BV.
{g,gb j =F b

—2p „—2pb„+0 . (2.11)
a b ab ay~ p g&

One works out the remaining Poisson brackets as

{X„Xbj =0,
(2.12)

The Hamiltonian of the system is given by

H = q);—C,J = g (u,E, +co,X, ),Btpj.

87

1
u, = — and c0, = g

b 4P. .ZPb. P"

The equations of motion are given by Eqs. (2.2).

III. TRANSITIGN TO THE
PHYSICAL PHASE SPACE

(3.1)

(The r derivative here denotes that the u~ are held

constant during the differentiation. ) Then, as

proved in Ref. 7, there exists a function P of
these variables so that the ~ derivatives of these
variables as computed from Eqs. (2.2) are given in

Hamiltonian form with respect to the Dirac brack-

et,

dQ~' ={u,A j*. (3.2)

For convenience in setting up the theory we have
started with an 8N-dimensional phase space and

imposed constraints to reduce the degrees of free-
dom. Once the theory is set up we wish to find
the physical phase space of the system with 6N di-

mensions. On this space we expect the equations
of motion to assume Hamiltonian form with

respect to the Dirac bracket. In order to do this
we need to find 6N independent functions u~,
ca=1, . . . , 6N, on the original phase space with

the property that their Dirac brackets are ~ in-

dependent,

{E„gbj = —2p, P5,b,
so that

Fab

HV V»jl= 2 .P

and

—2p, -P5,b

Thus the u 's span the true physical phase space.

{u,uIij ~ gives its symplectic structure and 4 is
the Hamiltonian function. While the functions u~
and A do exist, finding them can in practice be

quite cumbersome. For the system discussed
above, we will show that the physical phase space
is spanned by the 6N variables

5,b
2p, P

(3.3)v
3 ap Opia ~ Rap Opvpa ~ Pp ~

where O„„=g„,—P„P . To see this, notice that

C,q
—— —5,b

2p, .P 4P .P Pb.P

(2.13)
{f—Pj =o

where f is any of the 6N variables (3.3). Also

(3 4)
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BEaIK„—PJ =0=
8'7 (3.5)

vanishing brackets are

(4.3)

Now,

=tf HI

The generators Po, P;, K; =Mo;, and

J;= —,e;JkMJk satisfy the Poincare algebra on I. via
the Poisson bracket. In the nonrelativistic limit
this algebra reduces to that of the Galilei group in
a manner explained in Ref. 8. We mention that
some of the generators need to be redefined in or-
der that they remain fimte in the limit, namely,

(3.6)

Thus —P generates the ~ evolution of the 6E vari-
ables (3.3) via the Dirac bracket. The variables
(3.3) are the ua's and A = P. P c—an be ex-

pressed in terms of ihe u 's by use of the con-
straints (2.10}. One can easily reverse the argu-
ments of Ref. 7 and show from Eq. (3.6) that the
variables (3.3) have r-independent Dirac brackets.

IV. NONRELATIVISTIC LIMIT
OF THE N-PARTICLE SYSTEM

P;=gp„,
a

h=ge, ,

Ki = g (tapai iria»ai } ~

(4.4)

~i g &ij'k»aj'Pak

h =c(PO Mc), —

where M =g, ma. The generators can now be ex-

pressed in terms of the 8% variables (4.2), and after
the limit c~ Oo is taken, they assume the form

%e want to discuss here how one takes the non-

relativistic limit of the system set out in Sec. II.
That it should reduce in this limit to the familiar
Hamiltonian mechanics is a useful check on the
relativistic theory. Our method is to take the limit
c~ Qo in the 8%-dimensional phase space. %e dis-
cuss how the Poincare group action and the con-
straints behave in this limit. Then we show that
the resulting formalism coincides with nonrelativis-
tic mechanics. One by-product of this procedure is
that one sees the familiar nonrelativistic mechanics
cast in the language of the constraint formalism.
This leads to a better understanding of the con-
straint formalism of relativistic mechanics.

We start with the 8N-dimensional phase space I
with coordinates

These provide a realization [via the Poisson brack-
ets (4.3)] of the Galilei group with a neutral ele-
ment M.

We now discuss the constraints. We start with
the X, 's. After rewriting r as cr, these are

ga =P Xa —Cv .

In the limit of c—+ ao, we have to leading order in
c, after division by c (we use the same symbol X,
to denote the new constraint so obtained),

(4.5}

So, modulo the 7, 's we have t, =~ and we recover
the "instant form" of dynamics. Coming now to
the K, 's, we have (with some convenient redefini-
tions)

»ap (Cta~»ai )i pap ~pai (4.1) Ea =pa ~a c —2ma Va
2 2 2 (4.6)

2
ta ~ xai ~ pai ~ and ea =Ea —

Ala c (4.2)

are kept finite. %e use these as coordinates on I
since they remain finite in the limit. Their non-

(c is restored for the duration of this section. ) In
the limit c~ Qo, we must ensure that

Expressed in terms of the variables (4.2),

+a ~a 2 a a paipai ~a c

ea—2ma V, +—,
c

(4.7)

so that its nonrelativistic limit is (after division by
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(4.8)

Now V, must be constructed entirely in terms of
position differences in view of Poincare invariance
of the relativistic theory. It is easily seen that
modulo the X, equations the time differences van-
ish the V, is expressed in terms of spatial position
differences only.

Equations (4.3}—(4.5} and (4.8) describe a nonre-
lativistic constraint formalism. We work out the
relevant Poisson brackets:

So,

ECa

IK„—hj =0=

BXaIX„—h J
=—1=

(4.13)

So,

and

IX„XbI =0,
I K„XbI =—5,b,

uai ~Vb fbi ~Va
K. Kbl=;—;=F.b .

ma ~X~ ~b ~Lb

Fab ~ab

(Im ~&I)= 5,

(4.9)

h=g ""+gv. . (4.14)

From the fact that If,X, I =0 and the form of the

C;z matrix (4.10), one sees that

So z evolution on the physical phase space is gen-
erated via the Dirac bracket by —h and the A of
the previous section is —h. Expressing h in terms
of the variables (4.12) by use of the constraints
(4.8) gives

Ixai ~PBj I I +ai ~Pbj I ~ab 8ij (4.15}

&ab

—5b Fb (4.10)
Equations (4.13)—(4.15) completely reproduce the
nonrelativistic theory for a position-dependent po-
tential V.

H = ipiCij ———g (u, K, +e0,X,), (4.11)
BiPJ'

Bv V. FORMAL ASPECTS

deeding only on Galilei-invariant functions of
the spatial position variables.

Notice also that the physical phase space in this
case is the nonrelativistic phase space we are used
to dealing with. This space is spanned by the 6N
variables

+ai ~ Pai ~ (4.12}

The function h in Eqs. (4.4) satisfies the relations

If, —hI =0

[where f is any of the 6N variables (4.12}]and

where u, =1 and co, =gb F~b One easily checks

that Eqs. (2.2) give the nonrelativistic equations of
motion for x„and p„ that describe a collection of
particles interacting via a potential

I%i iPj I (5.1)

has maximal rank all over M. This means that

this matrix has only one independent null eigenvec-

tor "
I Pl& PJ I ~j (5.2)

H =ujyj is the unique first-class combination of
the ip s. Its flow is tangential to M." One can
define equivalence classes on M by declaring two

points to be equivalent if they can be joined by a
curve whose tangent is along the flow of H. Thus
M splits up into a 6N-parameter family of one-

In this section we discuss some formal aspects of
the scheme presented. The 2N —1 constraints y;,
i =1, . . . , 2N —1 define a (6N+ 1)-dimensional

region of I . We call this hypersurface M. We

need to assume as a condition on the y s that the

2N —1)&2N —1 matrix
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I= I g pg~dX~~ (5.3)

with respect to variations that lie in M. This is
reminiscent of Maupertuis s principle in mechan-
ics. ' Since M, by Eqs. (2.1) is Poincare invariant
and the action (5.3) is also Poincare invariant, the
Poincare invariance of the resulting equations of
motion is manifest.

As stated above, the formalism makes no refer-
ence to any evolution parameter. The phase-space
trajectory and the particle world lines are well de-
fined with only the 2X —I y s given. If we wish
to introduce an evolution parameter, we can do so
in a number of ways and this constitutes the
reparametrization invariance of the theory. Once a
definite choice of evolution parameter is made via
a definite choice of q2~(r), H, previously undeter-
mined up to a multiplicative factor, becomes com-
pletely determined. This reparametrization invari-
ance is to be expected of a relativistic theory and is
an indication of the fact that ~ is without physical
significance.

dimensional curves or trajectories. These trajec-
tories can be directly identified with the states of
motion of the system since they are one-dimen-
sional objects and form a 6N-parameter family.
The foliation of M into trajectories is similar to the
foliation of the 7N-dimensional surface (in the
Komar approach) into sheets of dimension N. The
difference is that here the sheets are one-dimen-
sional objects and we need no analog of Eqs. (1.3)
to ensure integrability. The space of equivalence
classes is a 6%-dimensional space and represents in
this context the frozen phase space of Bergmann
and Komar. This is also known as the space of in-
itial conditions or the space of constants of
motion.

We mention that the equations of motion (2.2)
can be compactly stated in the form of an action
principle. IfpI and p2 are two points of M, a
solution to Eqs. (2.2) that passes through them is
an extremum of the action

have combined Poincare invariance, world-line in-

variance, and particle interaction. As an illustra-

tion, we discussed an explicit system of N relativis-

tic particles in interaction. We assumed for sim-
plicity that the interaction potentials V depend

only on position variables. Such an assumption
would be incompatible with the first-class condi-
tions in the Komar-Todorov formalism. In our
approach potentials depending only on position
variables are quite acceptable. Qf course,
momentum-dependent potentials too can be con-
sidered, but we do not do so here.

We then showed how one transits to the 6X-
dimensional physical phase space of the system.
This involves a suitable choice of variables. We
have also exhibited the Hamiltonian A which gen-

erates ~ evolution on this phase space via the Dirac
bracket. Finally, we showed that the system has a
sensible nonrelativistic limit.

The essential difference between this and similar
efforts is that we do not assume that the mass-shell

conditions are first class. The requirement that the

K, 's are first class constitutes a set of quadratic
differential conditions on the interaction potentials.
Since we dispense with these conditions we are able
to choose the interaction potentials with more lib-

erty. The resulting simplicity is labor saving in
practical applications. Also, in dealing with other
conceptual issues in relativistic particle interactions
like separability, the need for many-body forces,
quantization, etc., the formalism described above
may prove useful. Concerning separability we find
that with the methods discussed above we are able
to make some progress. The application of these
ideas to the construction of separable interactions
is discussed elsewhere. ' Thus, the method we pro-
pose may contribute towards resolving important
physical problems in relativistic particle mechanics.
In view of this and of the relative simplicity of our
assumptions we feel that we have presented a vi-

able alternative to the Komar-Todorov formalism.
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