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A relativistic scattering theory is developed for a covariant constraint dynamics with

direct interparticle interactions. Both time-dependent and time-independent formulations

are presented, the latter being a generalization of the Lippmann-Schwinger equation. For
the two-body problem, we study the simple case of maximal symmetry which, equivalent-

ly, admits both single- and two-time formulations. The two-time formalism illustrates the

main features of the general case of N & 3 particles. Perturbation expansions are given

for the wave function and for the S matrix. Their structure is similar to those in quan-

tum field theory corresponding to skeleton diagrams.

I. INTRODUCTION [K„Kb] ~

mls ) =0 Va, b (1.3)

In a recent paper' (to be quoted as I) we formu-
lated a relativistic quantum dynamics including the
elements of a scattering theory which is in the
framework of a constraint Hamiltonian theory.
As a relativistic direct-interaction theory it stands
between nonrelativistic quantum mechanics and re-

lativistic field theory. As a theory with a finite
number of degrees of freedom it does not suffer
from some of the basic mathematical difficulties
that the infinite number of degrees of freedom im-

poses on quantum field theory; as a relativistic
theory it permits use in phenomenological studies
far beyond nonrelativistic quantum mechanics,
both in particle physics and in nuclear physics.

As shown in I the system of equations for N
particles

i
~
%s ) =K~

~
%s )

BTa

is a proper quantum version of classical constraint
Hamiltonian dynamics. Here

~
%s) is a state vec-

tor in the Schrodinger picture, K, (a = 1, . . . , X)
are the constrainor operators,

2 2&a=Pa +ma +~'a ~

and ~, are a set of evolution parameters. Equation
(1.2) has the ineaning of a mass shell in the pres-
ence of interaction.

The integrability condition for the system (1.1) is

lim ([r])=~g;„) . (1.4)

It was shown in I that this [r] limit is independent
of the order in which the va limits are taken
among the various r, (corresponding results are
valid for

~ f,„,) when [r]~+ ao ). It was also
shown how conditions for the existence of the
many-time wave operators can be obtained, and
that, if they exist, they are independent of the or-
der of the limits. The S operator and S matrix
were defined, and it was demonstrated that in case
a subset of the X particles is moved far away from
the others in a space-like direction, there is a clus-
ter decomposition and the S matrix factors.

The two-body problem can, under certain condi-
tions, be reduced to a single-time problem. No
such simplification seems to exist for the general
case of X)3 particles without making much

and it is assumed that K,
~
4s ) is a state which is

also in the manifold satisfying (1.1) and (1.3). The
classical analog of (1.3) is the first-class property
of the K, and the classical equations are indeed ob-
tained in the A'~0 limit as shown in I.

The system (1.1) characterizes a "many-time"
formulation with the set [r]=ri, . . . , r~ as the set
of evolution parameters for the N particles. The
development of a scattering theory requires an
asymptotic relation which is most conveniently
stated in the Dirac picture (interaction picture),
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stronger assumptions. Except for the fact that the
potential is required to satisfy the first-class con-
straint condition, the single-time form of the two-

body problem coincides with a problem that has
been studied previously in the framework of a
canonical formalism. In that work, it was pointed
out that a particular general functional form for
the potential could be chosen which would exactly
preserve the individual particle asymptotic masses.
This form is precisely the one required to satisfy
the first-class constraint conditions imposed in the
constraint Hamiltonian formalism. With this con-
dition, the two formalisms, with their apparently
very different perturbation expansions, are
equivalent.

In Sec. II we shall discuss the evolution of
interaction-picture states in the many-time formal-

ism, and in Sec. III we shall formulate the two-

body problem in both the two-time and the
equivalent single-time forms.

In Sec. IV, we shall give tine-dependent pertur-

bation expansions in both the single- and two-time

formulation of the two-body problem. The latter
exhibits a structure similar to that of the perturba-

tion expansion of quantum field theory. In Sec. V

a v.-independent analog of the Lippmann-
Schwinger equation and "closed form" solutions

will be given in terms of the T matrix. In Sec. VI
we treat the cases N & 3, and in Sec. VII we shall

make some concluding remarks.

II. TWO EQUIVALENT EVOLUTIONS

One can give a formal solution for the system

(1.1),

I
'4([r]) &

=Us([r] [o'])
~
+s([trl) & .

This follows by observing that the Heisenberg-

picture states
~

O'H ) which are [r] independent,

are mapped into the Schrodinger-picture states

I
'4([r])& by

I +s([r])&
= U([r])

I
+a &

where

(2.2)

(2.3)

the E, being the [r]-independent Schrodinger-
picture operators (1.2). Therefore,

I
+s([r])&

= U([r])
I
+a &

= U([r])U '([&])
I +s([o])& .

The evolution operator in (2.1) is thus

Us([r], [o])=U([r])U '([o']) .

(2.4)

(2.5)

The same evolution (2.1) can also be expressed in
the Dirac-picture states

~
[r]). These states are

mapped into the
~
%s) by

I'P ([ ])&=U ([ ]) I [ ]&

where

(2.6)

(2.7)

0 2 2
&a =Pa +ma (2.8)

X U, ([o]) f [o]& . (2 9)

It is convenient to introduce the operator Q([r])
by

Q([r])= U '([r])UO([r]) . (2.10)

The evolution (2.9) can then be written in the form

/
[r])=Q '([r])Q([cr])

/

[o.])
—=U([r] [o]) I [o]& . (2.11)

On the other hand, it was proven in I that the
evolution of the states

~
[r]) can be expressed by

The evolution (2.4) in the Dirac picture is therefore

I
[r]&=Uo '([r])U([r]» '([o])

~
[r])=U(,)(rioi)U, ,, . . . ,„(r2cr2) U . . . „,, (rrrojv)

~
[o]),

where

(2.12)

(2.13)
7 ~

&,z&,
~ ~ ~ z& (rjoj) = exp —i J '

Pj(oi +j—irj rj+ i
' ' r& )drj

J

and P, (a = 1, . . . , N) are the interaction functions in the Dirac picture. The subscript + indicates posi-
tive time ordering. It was further proven in I that the evolution (2.12) is independent of the order in which
the oj- are taken to the vz.

It follows that the two evolutions (2.11) and (2.12) must be equal.
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In the special case of X=2 this equality of evolutions reads
—iE, (~, —~, ) —~E,(~,—~, )

I
'Ti12) = Up(1 i12)e e Uo(oio2)

I
o iog)

exp i— yi(1.'irg)d1. 'i exp i— yy(o i')d1.$ I
cricr2) .

CT) + CT2 . + (2.14)

III. FORMULATION OF THE TYPO-BODY
PROBLEM

In this section, we shall treat a particularly sim-

ple class of two-body problems, namely those for
which 4& ——42—=4. In this case, there is a general
form of the potential which satisfies the first-class
constraint conditions. The results can be cast into
a simple form, and an interesting connection can
be made with the single-time formalism. In Sec.
VI, the general case is treated, since the two-body
subproblem of an X)3 body problem does not
necessarily admit a simplification of this type.

For 4& ——42, the first-class constraint condition
(1.3) becomes

Eiri+E2rp ———,(Ei +E2)(ri+r2)

+ —,(&i —J:2)(ri—r2)
o o

and E& —Ez commutes with 4, the interaction
operator in the Dirac picture is

iE
& r& sE2~2 —iE

& ~&
—iK2T2

jV )r2j=e e 4e e

(3.5)

t (K ) +K2)(v)+r2)/2 —s (E ) +E2 )(v)+v'~)/2=e 4e

I

tion of the commutator). We shall assume this
strong integrability condition to be valid in the fol-
lowing.

Since

[Xi—E2,4]
I

%'s) =0 . (3.1)
—=0«i+&2)

Moreover, since by Eq. (2.9),

(3.6)

[q.",ps] =ig "Tab (3.2)

and for 4 a function of q =qi —q2 by translation
invariance, pi and pq, the commutator in (3.1) is
(P&=p i +p2, the conserved center-of-mass
momentum, commutes with q)

With the help of the commutation relations [signa-
ture (—,+,+, + )]

—=
I ri+r2& (3.8)

and E) —L2 ——E ) —E2, the interaction-picture
states evolve according to

i(K ) +E2)(r)+r2)/2 —i(E) +K2)(w)+~2)/2
~

! ~]~2g =e e I+0~

[Ei —E2,4]=2Pq[p), 4]= 2P~[p~p, @]—

gpss
94
Bq"

(3.3)

In fact, it follows directly from the fundamental
equations (1.1) for the two-body case,

8 . 8
I
ritz) =i

I
ri&2

1 J 87"2
The expression (3.3) vanishes identically (on its
domain of definition) when 4 is a function of q
only in the combination

=0
I rir2& (3.9)

qI, =qI' —q I„II'r'I'. (3.4)

With this choice, (3.1) becomes an operator identi-
ty, i.e., valid for any

I
%') (in the domain of defini-

that (BIBri—BIBr2)
I
rir2) =0 i.e., that

I
rir2)

must be a function of xi+f2 alone.
The evolution Eq. (2.11) reads, for the two-body

case,

!

i(E&+E2)(v)+~2)/2 —i(E)+K2)(r)+r2)/2 i(E)+E2)(cr)+o2)/2 —i(E&+K2)(0')+cd)/21 I +'P2P =8 e e e
I oi+o2& (3.10)

For the alternative form Eq. (2.14), we

~2

exp i P(o i+r'2—)de0'2 . . +

note that a change of variables results in

cr)+7 2
exp i J P(r—')dr'

a)+ay +
where the sense of r ordering is the same in r=ri+r2 as in r2 (for ri fixed), and

(3.11)
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1 i+ 2
exp —i P(rI +r2)dr~ —— exp —~ P(r')«

0') . . + . - ~&+~2 . . +'
Hence, in the usual terminology of interaction-picture evolution operators,

U~ ~ = U(%1+1»&1+%2) r Ucr t (r2o2) U(01++2&o 1+o2) (3.12)

and Eq. (2.14) then reads

I ri+r2} U(rl+r2~&l+r2) +(~1++»~1+&2)
I ~1+&2} (3.13)

We see from Eqs. (3.6)—(3.13) that the two
constraint Hamiltonian formalism reduces to a
single-~ theory, for which ~=~~+~2, and the fun-
damental equation in the Dirac picture is

the Schrodinger picture associated with the single-r
theory, is

i i%'s(r)}=[,P +p—+—,(m& +m2 )

l f' = 7 t
a~

(3.14) +@j
~
mls(r)} (3.18)

K = , (K&+K—2)=Ko+4,

where

(3.15)

The evolution operator for this equivalent single-~

theory is

and in the (space-time) coordinate representation,
for which P~ —i8/BQ and p~ —i8/Bq, where

1

Q = —,(q&+q2), we obtain

i g,(q, Q)=[ , P +p +——,(yg) +pyz22)

p 1K'—= —,(K', +K,') . (3.16) (3.19)

We emphasize, however, that this particular
choice of r, for which the two-time equations (3.9)
reduce in a simple way to an equivalent single-time

theory, does not necessarily parametrize the actual
physical motion of the system. As pointed out in I
(and in, for example, Ref. 5 for the classical case),
it is possible to choose a "gauge" which specifies

r~ and r2 in terms of a single parameter r (not
necessarily coinciding with the above choice), thus '

determining the actual evolution of the system. As
argued in I, however, the wave operators and S
matrix are independent of this choice, and are,
therefore, given as well by computations based on
Eq. (3.14).

Equations of the type (3.14) have been studimi

previously in the framework of a canonical
single-r formalism. Starting with Eq. (3.14), with
4 an arbitrary (sufficiently well-behaved) Lorentz-
invariant function of q~& —q~2, there is no a priori
guarantee that the individual particle masses are
conserved in a collision. It was pointed out by
Horwitz and I.avie, however, that when 4 is a
function of q~~ —q~2 only through dependence on
q~z, the individual particle masses will be exactly
conserved. This follows from the fact that in the
form (3.15) the evolution operator can be written in
terms of total and relative momenta, P& and

(3.17)

and relative coordinates alone. Equation (3.14), in

Taking the Fourier transform with respect to
Q,P takes on a numerical value (in the function 4&

as well), and Eq. (3.19) becomes

i g,(q,P)=[ ,P +P + —,(m~ —+m2 )

+4]$2(q,P) . (3.20)

p2 p&2 Q,P

where A=p~ —p &

——p —p' is the momentum
transfer, and we have used the fact that P" is abso-
lutely conserved. Since p =p' asymptotically, the
individual particle masses will be conserved if
A.P =O. This can be guaranteed by the choice
4=@(qj,P,P), since the matrix element

(P
~

4 ~P'} (Fourier transformation) of a potential
of this form contains the factor 5(h P).

The condition that the individual particle masses
are precisely conserved (asymptotically) in a

The operator p commutes with the S matrix of
this reduced motion problem. We now note that
the differences between initial and final masses are
given by

P i' PI
' =( , P +P—)' ( , P'—+P')'——

p2 p&2+ Q,P
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single-v canonical relativistic scattering theory
makes this theory equivalent to a two-time rela-
tivistic constraint Hamiltonian scattering theory.

We wish now to discuss briefly the structure of
the hierarchy of wave operators (introduced in I
for the N-body problem) for the special case of
N =2 when Eq. (3.1) is valid as an operator identi-

ty. In I, it was shown that the X-body wave
operator, defined by

was required that

II@e
' '@IIdri & oo (3.24)

and as a second step (the last one needed for the
two-body problem),

I II(EzQi+' —Q'+'E', )e
'

'"1(IIdrz& ~,
(3.25)

[W]~—00 b

(3.21)

is independent of the order of taking the limits in
the ~, . For the two-body problem and the case
4i ——42=4 one obtains

~ (K]+K2)(&]+&2)/2 —& (K] +K2)(&1+&2)/20+—— lim e e
00

where

~(]) ~, EK]7 ] —EK]'7]
Q+ = 11IIl 8 8

'7]~—00

—aCO]z]
Replacing e ' '

by

—i(K] +K2)r]/2 —i(K ]
—K2)1.]/2e e

(3.26)

(3.22}

coinciding precisely with the single-time wave
operator for the problem defined by Eqs. (3.15) and
(3.16). The condition for the existence of this wave
operator is

(3.23)

for all 1( in some dense set. In I, however, a dif-
ferent approach was followed. As a first step in
determining the existence of the wave operator, it

in (3.24), one sees that this condition is the same as
that of (3.23). Furthermore,

EzQ+ —Q+ Ez ——(Ez —Ei )Q+ —Q+ (Ez Ei)—(i) (1) 0 (1) (1) 0 0

+XiQ+ —0+K),(i) (i)

vanishes in (3.25), since Q'+' intertwines Ei, Ei,
and Ez Ei comm—utes with Q'+', a functional of

Condition (3.25) is therefore identically, and
trivially, satisfied. The second step in the forma-
tion of Q+ is unnecessary, in fact, since

0+ —— lim e(i) . t(K]+K2 ~] 2 &(K] K2 rl 2 —I(K]—K2)w]/2 —&(K]+K2)r]/2
8

'7]~—00
(3.27)

In the next section we shall review briefly the structure of the perturbation expansion for the calculation
of Q+ and the S matrix in the single-time formalism based on Eq. (3.14). However, as a prototype illus-
trating many of the properties of the general N-body case, we shall also work out a perturbation expansion
in the two-time description of the two-body problem. To do this, consider again the Eqs. (3.9}. Differen-
tiating the first with respect to rz, one finds the second-order equation

where

a2

O'T&87 2

lk«i'} I ritz & f = I ld(ritz»Ez]+(t ] I
ritz &

a 0

'T2

(3.28)

=(l0 Ei 1+0')
I ritz& = V(ritz)

I ~i'�& . (3.29)

(3.30)

The last equality follows from the strong integrability condition. In fact, V(ri, rz) = V(xi+a). Formally
integrating Eq. (3.28) twice, we obtain the integral equation

T r2

I
ritz& =

I ~i'&+ I ritz& —
I
~i~z&—

a]

This equation can also be obtained from the integral form of Eq. (3.14),



26 SCATTERING IN CONSTRAINT RELATIVISTIC QUANTUM. . . 3457

I
r &

=
I
a &

—i f dr'y(r')
I

r'
& (3.3 1)

(3.32)

if we take first r=r(+r2, o =(r)+a2, then r=r)+cT2, cT =cT(+0'2 and subtract the second from the first:
T] +T2 1+ 2

I rl+r2& —
I r] +Hp& =

I cT(+r2& —
I
(Tl+(r2& —i dr'P(r )

I
r &

—f dr(P(r')
I
r &~)+T2 CT)+CT2

T T

=
I ~)+r2& —

I ~)+~2& f drl dr2(, [4(rl+r2)
I
ri+r2 &) .

CT ) CT2
2

in

and we therefore obtain the integral equation

(3.33)

I rir2& =
I 4(.&

T T2—f dr'i f dr2V(r'ir2}
I
rIrg& .

(3.34}
I

As we shall see, the forms of the perturbation ex-

pansion for Eqs. {3.30) and {3.31}are quite dif-
ferent, the former having a structure close to that
of quantum field theory.

To relate
I r(rq& to the in state, we take the lim-

it o(,o2~ —ao in Eq. (3.30). For every finite

~~, v.2, we have the relations

I

—~r, &=
I
r, —m &=

I

—~, —~ &

IV. TIME-DEPENDENT PERTURBATION
SOLUTIONS FOR THE TWO-BODY PROBLEM

Ir&=
I @,„& i f —y(r )

I
r &dr'.

Iteration yields the series

(4.1)

The S matrix for two-body scattering can be ob-
tained from the integral form (3.31) of the single-r
equation (3.14). We shall first briefiy review the
structure of the perturbation expansion obtained
from this equation, and then study the structure
of the corresponding expansion in the two-time
form. The perturbative equivalence of these two
expansions is demonstrated in the Appendix.

Since
I
o & I l{j;„& for 0~—ao, Eq. (3.31}be-

comes

I
r& =

I 0;„&—i f 0{r')
I
0;„&dr'+( i) f —dr' f dr"it)(r'}it)(r"}10' &+ (4.2)

The last integration in each term of the expansion contains the absolutely convergent integral assuring the

existence of the wave operator. We may therefore insert a factor exp(er("'), and take @~0+ after the in-

tegrations (this limit is implicit in all of the formulas which follow). The nth term in the expansion of
g(p),p2', r), the momentum-space representation of

I
r &, is

Pn —t)
)(p p 'r) —( i) f dr(i) f dr(2). . . f d ( )(dp( }(dp(l) } (dpi i))(d (N i)

}

&&(dp) '{dp2 )(p)P2 I
«r"'}

I
p'i "p2"

&

)&( "' '"
I y( (~))

I

'2' (~)
&

&«p'" "P'" "I« '"') Iplpl& ""A.(p'pl)

The last integral, over r'"', is, using Eq. (3.6},

Pn —1)

f «'""xp —,[{p'i" ")'+(p~" "}'—pi' —»' —ie)""' 4I" 'P2" "I+lp)P2&e,.{p)p~)

(4.3)

(n —l)2
2 expI (i/2)[(p~)" ") +(pz" "

) —p', ' —pz ie)r j —(„ i) („ i)

pi + p2 —p'i —p2 ie— (4.4)

The exponential factor exp[ —,i [(p'i" ') +(p2" ') —(p')" ') —{pz" ") ]r'" "I from the second to last

term cancels (p'i" ") +(p2" ") in the exponent of (4.4) and replaces them by (p'i" '}~+(p2" }2. The
process can then be continued, with the result
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1('"'(pip2 , r)'=( —2)"f (dp'1")(dp2"). . . (dp'1" ")(dp2" ")(dp'1 )(dp2)e

&&PiP2I@IPi P2 &&Pi P2 l@IPi P2 &
. .

&Pi P2 'I+IPip2&

1 1

Pl +P2 Pl P2 i~ (Pi } +(P2 } P 1 P2

(P'1" ")'+(P2" ")'—Pl' —P2' —i~
(4.S)

To obtain the S matrix, we must take the limit r~+ oo. By a well-known relation, one finds that the last
integration yields a 5 function:

lim
exp[ —,i (pi'+P2 p 1 p2 )r]

=2~1&(Pi'+P2' —P'i' —P2'} .
p) +p2 —p )

—pp —l6'
(4.6)

The S matrix is, therefore, given by

&P1P2 I
S

I pip2 & ='54(pi P i @4(P—2 P2 )+2'+(pi'+P2' p i
—p—2

X +(-2)"f (dp', "}(dp',") ~ ~ ~ (dp', "-")(dp',"-"}

&n —1) (n —l) 1
&&P P2 I Iplp2& „, , (1),

Pi + P2 P 1 P—2—
1

~ ~ ~

(P i" )'+(P2" ")' P'1' P2—' i~— — (4.7)

The structure of Eqs. (4.5} and (4.7) is essentially different from that found in the perturbation expansions
of quantum field theory with gauge field interactions. The two-body intermediate-state propagators in Eqs.
(4.7} are of the form

l(pi" }'+(P2")'—Pi' —P2' —i~] '

and not of the product form

[(PI"}'—Pi' —1&] '[(P2 } P2 —i~] '

(4.8)

(4.9}

associated with the usual Feynman rules. The 5 function accompanying the scattering part of the S matrix,
moreover, conserves the sum of the squared masses of the particles, so that the conservation of individual
particle masses is a dynamical question. As pointed out in Sec. III, the choice 4=4(qz) satisfying the
first-class constraint requirements, assures (if the wave operators exist in the usual sense), in fact, that indi-
vidual particle masses are precisely conserved.

We now turn to a discussion of the expansion in the two-time formalism, based on Eq. (3.34). Iteration
yields the series

7I 72

l
rir2& =

I Pin& —f dr'1 f dr2V(r'irZ}
I

i(jin&

I I
7 r2 'r

2~( —1) f dr'1 f dr2 f dri' f de'V(rir2)v(ri'r2')
~
f;„&+ (4.10)

The last integral in each term is similar in form to the absolutely convergent integral, assuring the existence
of the wave operator, discussed in Sec. IV of I. As before, we may therefore insert factors
exp[E111 ] exp[e2r2"'] in the last integration of the nth term of the series, and take ei, @2~0+ after carrying
out the integration. The nth term in the expansion of g(pip2', rir2), the momentum representation of

~
11T2&, 1S
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g'"'(p p r r )= ( —1)" dr"' dr' '.

&(n —1) (n —1)

xf ' d"'f drI2"' f (dpi")(dp12") (dp'I" ")(dp2' ")(dpi )(dp2)
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x&
I

y(7-"'7-'")
I

"' "')& "' '"
I

y'(1-'"7'")
I

"' "'& ~ ~ ~

e ~(") e~')

(4.11)

The integrations in rI"' and r2"' each produce a propagator factor; in place of the single propagator obtained
in Eq. (4.4), the last integral in (4.11) contains the product of two propagators. The el, e2 factors recur in
the exponential in the upper limit for the r'I" ",rz" "integrations, and replacement of (pl" "),(p2" ")
by (p'I" '),(p2" ') occurs as in the calculation leading to Eq. (4.5). Carrying out the sequence of integra-
tions, we find

It('"'(PI»2,'~Ir2)= f (dpi")(dp2"). (dpi" ")(dp2" ")(dp', )(dp', )e'

(~2 ~ 2 )+2 1 1
Xe

Pi —P i —i&i P2 —P &
—~~2

~ ~ ~

(P I } —P I
—I el

(. 11, , 2 . &PIP21I'I p'"P'"&&P'"P"'
I
I'I p"'P"'&1

P2 —P2 —i&2

«P " '»2" "I vl»I»l&A. (pl»i). (4.12)

In the limit rl, r2 —+ ao, we may again use the relation (4.6) to obtain

&PI»2IS IPI»2& ~(PI Pl}S (P2 P2) (2~)'5(PI Pl +(»2 »2

x . + f (dp"')(dp"') (dp'" ")(dp'" ")

1 1
(&) 2 2 ~ (i) 2

(PI } PI ~1 (P2 ) P2 e2

1 1

(PI ) PI eI (P2 } »2 I&2

(4.13)

This expansion may be represented in terms of
Feynman diagrams.

The structure of Eqs. (4.12} and (4.13) is similar
to that found in the perturbation expansions of
quantum field theory, involving a product of pro-
pagators of the form (4.9).

Equations (4.7) and (4.13) for the S matrix have
been derived in two different ways from the same
initial equations, and they must therefore be equal.
The equivalence of the two expressions is demon-

I

strated explicitly, in each order of perturbation
theory, in the Appendix.

It is noteworthy that the comparison of Eq.
(4.13) with quantum field theory leads to the con-
clusion that the fundamental four-point function
(playing the role of two vertices and a propagator
for the carrier of interaction} is here characterized

by V and not 4, contrary to what might have been
conjectured.

We further remark that the diagrams associated
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with (4.13) are topologically ladder diagrams even
though, e.g. , in the space-time picture t (rI ) & t(rl')
can occur together with t(72) & t(rz') T.opological-
ly crossed diagrams can arise by iteration of an
equation constructed from a suitable linear com-
bination of the equations obtained by all semi-
infinite limits of Eq. (3.30) excluding only the rec-
tangle with the outstate

I
~ ~ ) =

I g,„,) in one
corner. These possibilities will not be discussed
here.

V. TIME-INDEPENDENT SOLUTION
FOR THE T%0-BODY PROBLEM

In this section, we shall derive the analog of the
I.ippmann-Schwinger equation for the single-time
and two-time versions of the two-body constraint
dynamics. The result is formally similar to the
nonrelativistic case in the single-time theory. For
the two-time version, we obtain a generalization
that can be extended to the many-body case.

Let us consider the scattering equation (4.1) in
the Schrodinger picture. The substitution

Ir & = Uto(r)
I
~s(r) &

=e'~ 'I qs(r)

where K =(K~ +K2)/2 and r=r~+r2 transforms
(4.1) to

I
q's(&) &

= Uo(r)
I 1(

i I d—r'e' ' '4I 4 (r'}) .
(5.2)

This equation will serve as the starting point for
the derivation of the relativistic Lippmann-
Schwinger equation in the single-time version of
the two-body theory. Since that is an equation for
"continuum eigenfunctions, "we shall assume that
the in states are sharp (generalized eigenstates ),
i.e.,

K,
'

I y;„(k,k, ) ) =(k +m )
I ym(k, k, ) &

(i =1,2) . (5.3)

Although this makes the calculation forrnal, one
can justify the results rigorously. 9

The sharp in states imply sharp Heisenberg
states,

K Iq'a'*'«ikz)&=(k +m ) Iq'-"(k k )&

(5.4)

as follows from the intertwining properties of the
wave operators (see I),

K~
I

VH-+'(k)kp}) =K~0+
I f;„(k)k2))

=n+KoI y,„(k,k, }&

=(k +m )
I
q tt'-'(k, k, ) & .

(5.5)

Because of (2.2), the scattering equation (5.2) can
be written in the Heisenberg picture as

—i(k& +m& +k2 +m2 )~l&, r k i % '(k1 +~~ + 2 +e
~

I}t'in ~

if d 'e'r—' '4e ' ' ' ' Iq'(kk)&
When one brings the exponentials on the left over to the right-hand side, one can introduce s =~' —~ as a
new variable in the integral, which now extends from —oo to 0. The condition of asymptotically outgoing
waves is included in the standard fashion by factors e" and the limit e—+0+. The result is

I
%H+'(kikz)) =

I g;„(k)kp))—, 4
I
%H+'(k)kp)) .

K , (k) +k2 +—m—, +m~ ) ie—
(5.7)

V~ —00

The derivative of Uo '(r)U(r) is

This relativistic form of the Lippmann-Schwinger equation can also be derived by postponing the assump-
tion of continuum eigenstates to the very end. Consider '

Iy,„)=n+n+Iy,„)= hm Uo(r)-'U(r)IqH'+') .

d
[Uo(r) 'U(r)]= ie' 4e-

d7

and integrating between O,r we obtain
1, p

Uo '(r) U(r) 1= i e' ——4e ' dr' .
0

(5.8)

(5.9)
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We now act with this result on
I

%H+'& and take the limit r~ —co to obtain

I

)p(+)&
I y & f d eiK 8@ iKr'

I

(p(+)&

In the limit that
I f;„& becomes sharp in E),E2, one obtains precisely the expression (5.6).

The scattering integral equation in the two-time version, Eq. (3.34), can be treated in a way parallel to the
single-time analysis given above. In the Schrodinger picture, Eq. (3.34) becomes

(5.10)

(5.11)

l(k +m 1 k +
I

k )

—i(ki +mi )ri —i(k2 +m2 2 i s. (k k ) &=e e

i, , 2, , iKi(~( —r2) iK2(r2 r2)V— i(ki—+mi )ri i(k2 +—m2 )-2,
qv

~ ~ ~

~e

'r T2

Iq's(&i&2)&=Uo(&(&2) Ii)'j' &
—f «'( f '

dree ' ' 'e ' ' 'v Iq's(&i&z)&

Again, taking the in state to be sharp in E)gC2, we find that Eq. (5.11) can be written in the Heisenberg pic-
ture as

When one brings the exponentials on the left over to the right-hand side, one can introduce s i r') ———r(,
$2 =t2 —t2 as new variables in the integrals, which now extend from —00 to 0. %e include the outgoing
wave condition with the factors e ' ' (i =1,2) and the limit e; ~0+. The result is now

I
q'H (klk2) & I An(klk2) &+ o, , o, , V

I
PH (klk2) & ~

(ki +mi ) ie) E2 (k2 +m2 )
(5.12)

Equations (5.6) and (5.12) for the Heisenberg state are equivalent. To show this, we first remark, from the
definition (3.29) for V, that

v
I
)IiH+'(k)k2) & =([4,E) ]+iP)

I
%~+'(k(k2) & =(iI2E) E)rP)

I
%H+—'(k)k2) &

= —[Ei —(ki +mi )]4
I
'PH+'(kik2) &,

and therefore Eq. (5.12) reduces to

Iq'H «(k2)&= IAn«)k2)& — (), , O'Iq'H «ik2)&
E2 (k2 +m—2 ) ie2—

To show that Eqs. (5.6) and (5.13) are equivalent, it suffices to prove the validity of the relation

[Ei —(ki +mi )]4
I
q'~+'(kik2)&=[E2 —(k2 +m2 )]4

I
+Jr+'(k)k2) &,

(5.13)

(5.14)

in which case the denominator of the second term in (5.6) becomes identical to that of (5.13). The relation
(5.14) follows directly from the first-class constraint condition (3.3):

[Ei —E2,4]
I
VH(k)k2)&=IE( —E2 —[(ki +mi ) —(k2 +m2 )]]4

I
)IiH(kik2)&=0. (5.15)

(5.16)

Integrating this equation, we obtain the identity

IK2~2 —iK2V2 iK &7'& —iK&V
& ~ ~r & I i ~r i i 1, , 2, , iK2V2 iK &W& ~ —IK&~& —iKgT2

e e +e e —1=UP (t~t2) U(t]t2)+ dt& dt28 8 V8 8
0 0

(5.17)

With this result, we have shown that (5.6) and (5.12) are equivalent. However, Eq. (5.12) is in a form which
as we shall see in later sections, can be generalized to the 1V-body problem, whereas (5.6) is, in the frame-
work of constraint Hamiltonian dynamics, special to the two-body case.

It is instructive to show that the generalized form (5.12) of the Lippmann-Schwinger equation can also be
derived by postponing the assumption of "continuum eigenstates" to the very end. To do this, we rewrite
Eq. (5.7) in terms of ri, r2, and consider the second derivative:

A2

at a"
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(S.18)

We now act with this result on
~

]I]'H~') and take the limit r], r2~ —oo to obtain

~%H+')= ~P;„)—f de f dr'2e ' 'e ' 'Ve ' 'e ''~%H+') .

In the limit that
~ g;„) becomes sharp in K],K2, one obtains the expression (5.12).

By taking the adjoint of the equations leading to Eqs. (5.10) and (5.18), one observes an interesting "duali-
ty": the equations remain valid under the interchanges

K;mK;, VmV, 4m —4, ~1i];„)m~'PH) . (5.19}

Thus, one obtains instead of (5.10),

~
%H ) =

~ g;„)—i f e' ~4e 'x ~dr'
~ p;„)

and, instead of (5.18),

~y&+ f d f' d
""""V'-""—

When
~
1(];„)becomes sharp, these reduce to the "dual" to the Lippmann-Schwinger equations:

~

O~]+'(k]k, })=
~
1(,„(k]k,)) — . . . , , e

~ 1(,„(k]k,))
1

K ——,(k] +m, +k2 +m2 )—ie

and

~

%H+'(k]kq)) =
~
Q;„(k]k2))— 1

V
~
1(];„(k]kg)) .

K] —(k] +m] ) —ie] K2 (k2 —+m2 ) ie2—

(5.20)

(5.21)

(5.22)

(5.23)

We shall now verify that Eqs. (5.6), (5.12), (5.22}, and (S.23) are the scattering wave solutions of the spec-
tral conditions (generalized time-independent Schrodinger eigenfunction equations} on

~

]I]H+'(k]k2)) and

~
f]„(k]k2)). Operating on Eq. (5.12) with K] —(k] +m] ), we obtain

[K]—(k] +m] )]
~

%H+'(k]k2)) =-
0 V ~]l]H+'(k]k~))

K2 —(k~ +m~ )—ie2

(@Kg—Kz@)
~

VIr+'(k]kz) )
K2 —(kq +m2 ) —]e2

= —e
~

q]+](k,k, ) &,

from which we obtain the spectral condition

[K]—(k] +m] )] ~%'H+](k]kg)) =0.
Similarly, operating on (S.23} with K] —(k] +m] ), we obtain

(5.24)

[K]—(k] +m] )] ~%'II+'(k]k2)) =[K]—(k] +m] )] ~])'j;„(k]kp))— 2
—V

~
p;„(k]k2))

K2 (k2 +m2 —) ie2—
=c]

~
]ip]„(k]k2})——

g 2 (K2e —OKER) ~
]/r]„(k]k2)) =0 .

Kz —(kz +m2 )—ie2

Operating on Eq. (5.6} with K] —(k] +m] ), we find

[K]—(k]'+m, ')]
~
qH '(k, k, ))=—[K', —(k, '+m, ')]. . . , , , a

~

qH+'(k]k, )) .
K —

2 (k] +m] +k2 +m2 ) —ie

With the help of the relation (5.14}, this reduces to (5.24). Finally, operating on (5.22) with
K]—(k] +m] ), we obtain
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[Ei—(ki +m] )]
~

%a+ (k]k~)&=4
~
f;„(k]k~)&—[Ei —(ki +m] )]

- 4
~
g;„(k]k2) & .1

E —, (k—] +m] +k2 +mz ) i—e
With the help of a relation similar to (5.15), i.e.,

[E] E2~@] I An(klk2)& [(E]—E2)@—~'«i —E2)] I A.«]k2)&

= I[E]—(k] +m] )]—[Ez—(k2 +mz )]I
~
g;„(k]k2)&

the numerator and denominator in the second term of (5.25) cancel, and we again obtai]i (5.24). These argu-
ments can be repeated for Ez —(k2 +mz ), and we therefore see that the Lippmann-Schwinger equations we
have obtained are solutions of the spectral conditions with appropriate asymptotic behavior.

For sufficiently weak potentials, Eq. (5.6) and (5.12) admit a perturbation solution for
~

illa+'(k]k2) &. We
give the expansion (Born series) of Eq. (5.12) explicitly. Let

G, (k, )=[E,—(k, —+m, ) ie, ]—'=(p, +k, ie, )— (5.26)

(5.28)

In a manner similar to nonrelativistic scattering theory, " one can also obtain expressions for the T ma-

trix. Let us first consider the single-time version of the theory. Consider the difference, from Eq. (5.6),

Then, an iteration of Eq. (5.12) yields

~]lla+'(k]k~)&=[1+Gi(ki )Gg(k2 )V+Gi(ki )Gg(k2 )VG](ki )G2(k2 )V+ ] ~li]„(k]k2)& . (5.27)

A similar expansion exists for
~

0'a '(k']k2 ) &. The S matrix can then be found as

&k', k,' ~S
~
k, k, &=&qa] '(k', k', )

~

q]+](k,k, )& .

Iq'H (klk2)& I
+a (klk2)&=— 1

E , (k]—+—]n] +k2 4-m2 ) ie—
~

]]'jo(k]kp) &,
1

E ,
' (k]'+—m—]'+k, '+ m, ')+]~

(5.29)

(5.30)

from which we obtain the two equivalent relations

&4o(k]kz) IS I
fo(k]k2)&=&q'a (kik2) Iq'a (kik2)&

where we have called the free sharp wave function
~
Po(k]k2)& and used the fact that

~

]ila '(k]k2) & differs
from

~

]pa+'(k]k2) & only in the sign of e. Formally we may write (5.29) as

~

'Pa (k]k2) &
—

~
]Pa (k]k2) &

=—21n5(E —
~ (k] +m] +kg +m2 ))4

~
yo(k]kp) &,

=5 (ki —ki)5 (k2 —k2)

—2~]5( —,«i'+k2 kl k2 ))&No(k]k2)
I @l q'a (kik2)&

=5 (k'i —ki)5 (k2 —k2)

2']r]5(
g (kl +k2 k 1 k2 ))&+H '«ik2 )

I
@

I fo«]k2) &

Defining the T matrix by the relation

S=1—2~iT,

we obtain

&]]o(k]k2) I
T

I fo(k]k2)&=5( 2 (ki +kz ki k2 ))&Po(kik2) I
@

I
q'a+ (kik2)&

=5(—,(ki +k2 —ki —kp ))&%a '(kik2)
~

4 ~]]'jo(k]kg)& .

(5.31)

(5.32)

(5.33)

(5.34)
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We now turn to the two-time version of the theory, and make use of Eq. (5.23). The difference

~
%tt+'(k ~ kq ) &

—
~

O'H '(k
~ k2 ) & contains the operator

1 1 1 1

Kl —(kl +W1 )—EEl E2 —(k2 +m2 )—le El —(kl +I 1 )+tel E2 —(k2 +W2 )+le

= —2m' 5(K) —(k) +m2 ))P
~ ~ +5(E2—(k2 +.tnt ))P 2 2 V

E2 —(k2 +m2 ) E) —(kt2+m) )

2ni—W(k),kq ) . (5.35)

We may therefore write

~

@H+'(k, k2) &
—

~
%It '(k)k2) &

= —2mit"(k), k2 )
~
fo(k)k2) &,

and hence

&fo(k)k2)
~

T
~
fo(k)k2)&= 5(k'( —kt )P 2 +5(k2 —k22)P

k2 —k2 k) —k)~

(5.36)

&&&ett '(k;k,')
~

Vt
~ l(,(k, k, )&

5(k) —kt )P, 2 +5(kg k2 )P—
k2 —k2 k) —k)

X &f,(k', k,')
i

V
i
e'+'(k, k, ) & . (5.37)

The equivalence of Eqs. (5.37) and the single-time form of (5.34) is easily established by utilizing the defini-
tion of V, e.g., for the second term of (5.37),

& 0o(k t kz ) I [@~&1 ]+C'
I

q'H (k 1 k2) & = & Po(k t k 2 )
I
@lt t l~'t C'

I q'tt+ '(k ik2 ) &

=(k) —k) )&$0(k)k2) ~@~ %It+'(k)k2)& .

The second of Eqs. (5.37) then becomes

&40(k&k2)
I
T

I Po(kik2)&=@k2 —k2 )&fo(ktk2)
I
@

I
q'a (ktk2)& .

From Eq. (5.15), it follows that

[« i' —k 2') —«i' —kz')1& 0o«'ikz )
I
@

I
q'It «ik2) & =o

(5.38)

(5.39)

so that the matrix element in (5.39) is proportional to 5(k& —k2 —(k& —k2 )); the result therefore coin-
cides prceisely with the first of Eqs. (5.34).

VI. SCATTERING FOR N & 3

A simplification of the type which occurs in Eq. (3.8) can occur for N & 3 only if 4~ ——42—— . ——4~,
however, this seems to be too strong a restriction. ' %e shall therefore follow a more general procedure.

A. The case N =3

l.
~

T)'f2, p3 & in perturbation expansion

We first study the three-body case in some detail. Following the procedure leading to Eq. (3.28) for the
three-body case, we find
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where

V]23(r]r2r3) I r]r2r3 &i] 12 'r3
(6.1)

V]23(r1r2r3) [[4]&+2]&+3]+l']|Pl&lt3]02+0'][]t2&+3]+[01&+2]]t'3+4]0203' (6.2)

The right-hand side of Eq. (6.2) can equivalently contain any permutation of the indices 1,2,3 correspond-
ing to the interchangeability of the partial derivatives in Eq. (6.1). The validity of this symmetry (effective
on the set of states I I

r]r2r3) J ) follows from the (weak) integrability conditions, Eq. (3.10) of I, and is
shown in Appendix 1 of I for any N.

Integrating Eq. (6.1) between arbitrary limits, we obtain

I r]r2r3 &
—

I ~]r2r3 &
—

I r]~2r3 &
—

I r]r2~3 &+
I
r]&2&3 &+ I

&]r2~3 &+
I
~]~2r3 &

—
I
~]~2~3 &

1 T2 T3

dr1 dr2 dr3V123(r]r2r3)
I rlr2r3 )0'1 0'2 0'3

As remarked at the end of Sec. IV, one may add all of the versions of Eq. (6.3) obtained by taking all
semi-infinite integrals excluding only the orthohedron (in Cartesian r]r2r3 space) which has the out state

I
oo oo oo )=

I Po„,) at one corner. On would obtain in this way an integral equation which contains all per-
missible crossed diagrams in its iterated expansion. We shall, however, restrict our attention in this section
to the somewhat simpler equation obtained by taking [cr]—+ —oo:

I
rlr2r3) I

oor2r3)
I r] —oor3& —

I
rir2 —oo &+ I ri —oo —oo &+

I

—oor2 —oo & I

—oo —oor3&

T T2 T3—I1(]„&+]f dr] f dr2 f dr3V]23(1]12'r3) li]i2i3) . (6.4)

There are two types of inhomogeneous terms other than
I
1(;„). For terins of the type

I
r, r2 —oo ), a rela-

tion with
I
r]r2r3) can be constructed which depends on a knowledge of the partial one-body wave opera-

tors' 0'+'. Terms of the type
I
r] oo —oo )—can be related to

I
r]r2r3) with a knowledge of the two-body

wave operators Q+ '. We shall construct these relations in the following.
Froin Eqs. (2.2) and (2.6), we obtain

lK
1 T1 lK2 T2 lK 3 T3 EK3T3 /E2T2 —lE1T1

I
pH~.

From this relation, we find

iK1T1 lE2T2 (3)f —lK2T2 —lE1T1 —1 (3)fIr]r2 oo &=«&+ e e
I

PH & =Uo (r]r2r3)II+ &o(r]r2r3)
I
r'rir3

where we have used the intertwining property of Q'+'. In a similar way, we find

lr] —oo —oo)= lim e e 0+ e e Iq'H)
iK1T1 iE2T2 (3)t —iK2T2 —iK1T1

T2~ —00

(6 5)

(6.6)

=e ' 'Q~+~' e ' '
I %H ) =Uo '(r]r2r3)&+ Uo(r]r2r3)

I
r]r2r3) ~ (6.7)

Equation (6.4) can then be written as

1 T2 T3

IV+(r]r2r3) li]r2r3) —
I p]„)+1f dr] f dr2 f dr3V]23(r]r2r3) lr]r2r3),

where W+(r]r2r3) is the interaction-picture form of

8'+ ——1 —Q+ —Q+ —Q++Q+ +Q+ +0+(1) (2) (3) (23) (31) (12) (6.9)

Since the leading contribution to 8'+ for small enough potentials is unity, it has an inverse, and we may de-

fine

(6.10)

For sufficiently small potentials, one may reasonably hope that the iterative expansion of Eq. (6.8),
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T

W+(1]72r3) I
r]r2r3& —

I Q]n&+] f dr] f de f dr3V]23(r]+2') I pin&

I I I
Tg

+1 f drl f de f «3 f «] f «2 f «3 V123(rlr2r3}

+ 0 ~ ~

converges. The momentum-space representation of
(6.11) is similar to Eq. (4.12) with, however, three
Feynman propagators going with each factor V'

and the matrix of W+(r]r2r3) ' multiplying each
term. In the limit w1~2v3~+ oo,

I
1 ]'r273 &~

I g,«&, and the series (6.1 1) serves as a
perturbation expansion for the S matrix. Since
W+ ( ao, no, no ) commutes with E],E2, and E3, the
S matrix conserves the individual particle masses
(the integrals with infinite upper limits also con-
serve individual particle masses}.

2. Q and Q for@ Q4
The utility of the perturbation expansion (6.11)

depends on a knowledge of the one- and two-body

I

@]2(+)& Q(12)
I y (6.12)

Then, following the procedure of Sec. V, we study

(6.11)

I

wave operators. The special techniques applicable
to the simple case of the two-body problem (for
which 4]——42) do not apply to the computation of
one- and two-body subproblems for N )3. We
shall therefore have to construct the one- and two-
body wave operators in the framework of the
three-body problem. It is convenient to do this by
means of the Lippmann-Schwinger equations.

Let
I

]t);„& be an in state, and define the partial
Heisenberg state

iK]r] iK2r2 iK]T] —
2 2, (]2)(+)

&hm e e e e
Tj T2 —00

(6.13)

Equation (5.17}provides a valid representation of the operator appearing on the right-hand side of (6.13).
Taking the limits as indicated, we obtain

W]2tI]p]2(+)& Iy &+ f d f d e' ] 1 ' 22V ' 11 ' 22I]I(]2(+)&

where

8'+ ——0+ +0+ —1 .12 (1) (2)

(6.14)

(6.15)

We now take the in state to be sharp in p]p2 at the values k],k2 (but not necessarily sharp in p3). By the
intertwining property of Q'+ ',

I

]pH'+'& is then also sharp in p ]p2, and Eq. (6.14) becomes

W+ I
+H (klk2) &=

I A.(k]k2) & () 2 2 . () 2 2 . V]21''H (k]k2}& .
E]—(k] +m] ) —ie] E2 —(k2 +m2 )—ie]

(6.16)

For small enough potentials, ( W+ )
' exists, and this equation may be iterated to obtain a perturbation ex-

pansion for Q'+ '. Note that this equation differs from Eq. (5.12) for the simple case of the isolated two-
body problem in the factor W+ on the left-hand side, and a sign on the right-hand side. For the isolated
two-body problem, Q'+' ——Q'+' ——Q+ (the two-body wave operator), and Eq. (6.16) would then reduce to
(5.12).

Taking the adjoint of Eq. (5.17) and acting on
I
]I'i;„(k]k2)&, we obtain, in the limit r],r2~ no, the dual—

relation

I
q'H'"'«]k2) & W+ I An(k]k2) &+ V]2 I 1();„(k]k2)& .

E] (k] +m] —} ie] E2 —(k—2 +m2 )—i&
(6.17)
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To obtain the single-particle wave operators of the three-body problem, we shall proceed in a way that
yields relations similar to the single-time result (5.6}. Transcribing Eq. (5.9) to the form

-1 lE ) r) —iEI rI
Up (r) )U(r) )—1= i— de e 4)e

0

for particle 1, we define

I

)P'(+)
&

Q( )
I y

to obtain, in the case of
I f;„& sharp in p) with value k),

(6.18)

(6.19)

(6.20)

This equation may be iterated to obtain a perturbation expansion for 0'+'. No additional inhomogeneous

terms appear in the one-body subproblem. The dual relation to (6.20) is then found, as in Eq. (5.22), to be

I
p~+'«) ) & =

I A.«) ) &-
K, —(k, +m) )—ie

(6.21}

Equations (6.17) and (6.20) must be solved for particle pairs 12, 23, and 31 and the single particles 1, 2, and

3, respectively, in order to have available all of the terms in Eq. (6.9).

3. The S matrix

In order to compute the S matrix for the three-body problem from (6.11), we must study the limit

lim JY+(r)A/13) W+(00—00 00)
t)pr2pr3~ 00

Consider, in particular, the one-particle contribution

~(1)1 w i ~ /E)t) lE2t2 iE3r3~(1) —iE &r&
—iE2t2 —iE3130+ too, oo, oo)= lim e e e 0+ e e e

t) ~ r2~ r3~ 00

lim e e S e e
lE2r2 IE3r3 (1) lE212 lX313

t2) 13M 00

(6.22)

where Q'+'(r)r2r3) is the interaction picture form of Q'+', and S"'=Q'" Q'+' is the one-particle S operator.
According to (6.20), Q'+' is a function of K„K). The limit (6.22) applied to K) is trivial, and applied to K)
it results in

lE2r2 lE3r3 —lE2t2 —lE 313, lE2t2 lE 3t3 —lE2t2 —lE3 r3 lK21 2 lE3t3 —lE 2t2 —lE 3t3
lim e e K1e e = lim e e e e K1e e e e

t2t3~ 00 12t2~ 00

=n(""K,n(") .

%e then obtain the formal relation

(6.23)

Q"'( a) )= lim e ' 'e ' 'S'"(K K )e '"e '"=S"'(Q'"'tK Q'"'K )
1gpr3~ co

with similar results for Q'+', Q'+'.

For the two-particle contribution 0'+ ', we obtain

iE
& rj lE2r2 iE3r3~(12) —iE

& t& —iE2r2 —iE3t3, . iE3r3~(12) iE3r3
lim e e e 0+e e e = lime S e

t)r2r3~ 00 t3~ 00

(6.24)

(6.25)

According to Eq. (6.16), S" ' is a function at K),K2,K),Kz only. The action of the mapping (6.25) on

K1,K2 is trivial, but

llm elE3r3K e-lE3r3 0(3)tK 0{3)
r3~ oo
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for i =1,2, and hence we obtain the formal expression

(6.26)

The S operators with modified evolution operators can be obtained by calculating the associated modified
wave operators using the perturbative techniques we have discussed above.

The existence of the modified wave operator Q'+'(O' ' K(Q' ',X() is assured if there is a dense set of P's
for which

I ~~(Q' ' 1( (O' ' —E, )e ' (/~~dr((ao .

Since Q' ' is unitary (we assume no discrete eigenvalues), (6.27) is equivalent to

(6.27)

(6.28)

T~~ 00

I ~~(1(. Q ' O' 'E—)e ' '/~~dr((00

which is the condition for the existence of Q'+ ' (see I), where we indicate the sense of the r; limits in the
same order as the sequence of evolution generators (Q'+ ' ——Q' + '). This result also follows by examining

0' 'fE Q' 0Q(1)(Q(23)t~ Q(23) ~P ) h
— 1 — I 1~(

1
Q(23)1' (~(Q(23) (

g(23) tg( 1 2 3 )
+ e (6.29)

Similarly,

~(3)f l ) T) lE2T2~ (3) —lE ) )
—lE, 2T2lim 0 e e Q, e e

00

=0 Q++(3)t (1 2 3) (6.30)

The conditions for the existence of any of the eight three-body wave operators are essentially the same.
Their existence assures the existence of the modified one- and two-body wave operators required for the cal-
culation of W+ ( oo, ap, ao ).

4. The Lippmann-Schminger equation

To complete our study of the three-body problem, we follow the procedures of Sec. V to obtain the
Lippmann-Schwinger equations corresponding to Eq. (6.8). The third crossed derivative of Up U is

—1 Ui i ~3 l+1T1 l+2T2 l+3 T3 v l+I T1 l+2T2 +3T3
i 0 &=& —i& e e e 123e e e

1 'T2 3

Integrating this expression, we obtain

(6.31)

T] T2 T3

Up (v(F27 3)U(7 (rgr3) —i de de de Up '(r'(r2r3 ) V(23 U(r) F2%3 )0 0 0

= U (1 ('F2) U(1 (12)+Up(r(r3) U(r(r3)+ Up(r2r3)U(T2rs)

—Up(r() U(r() —Up(rp)U(r2) —. Up( 3)Ur(rs)+ 1

(6.32)

Multiplying by
~
%H ') and taking the limit as r(, r2, r3 + ao, for

~
f;„—) sh—arp in all three momenta, one

obtains the three-body relativistic Lippmann-Schwinger equation:
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P'
I
eH+'(kik2k3)& = lit;„(kik2k3)&—

1 1

Ei —(k, +mi ) —i@i K2 (—k2 +m2 ) i—e2

P 2 2 . V123 I
+H (klk2k3) &

1 (+).
E3 —(k3 —m3 )i@3

(6.33)

Taking the adjoint of Eq. (6.32) and operating on
I
$1„(kik2k3) &, we obtain, for ri, r2, r3~ —~, the dual

relation

1
X 2 2 ~

X3 —(k3 —m3 ) ie3—V123 I An« i k2k3 ) &

(kik2k3 ) &
—IVy I i(in(kik2k3) &

Ei —(ki +m1 ) —iei E2 —(k2 +m2 ) —i@2

(6.34)

An iterative solution of Eq. (6.33) can be used (with the corresponding expression for
I VH '& ) to define

the S matrix, or, following the method of Sec. V, the T matrix. This solution has the form of Eq. (5.27),
but with V' [defined in Eq. (6.10)] in place of V, three Feynman propagators following each action of V',

and an overall factor of ( W+ )
—1

8. The case N&3

We now turn to the general case E)3. Differentiating the equation

l 7 = a 7 (6.35)

an additional N —1 times, with respect to the other time parameters, we obtain

gN
I
[&l&=VN I [&]&

71 7N
(6.36)

where V1v
——Vi 2 . . . N is defined in Appendix 1 of I, and is shown there to be independent of the order of

the indices. Integrating with respect to each t„we obtain

1[r]&—g I [r]r.~~.&+ g I [r]&.~&. rb~+b& +(——I)
I [&]&

a)b
T2 N=(—1) f dr1 f «2 f «Nvz([r'])

I
[r']& . (6.37)

Again, one may add all of the versions of Eq. (6.37) obtained by taking all semi-infinite integrals excluding
only the orthohedron (in Cartesian ri, . ,rz space) which has the out state

I
00, , co &

=
I p,„,& at one

corner. The resulting integral equation would contain all permissible crossed diagrams in its iteration expan-
sion. We shall, however, consider here only the equation obtained for [cr]~ 00. —

T r2 N

I[r]&—g l[r]r.~r. &+ +(—I)"IP.&=( 1)"f —' «1 f '
«2 f "«NVN([r'])l[r']&.

(6.38)

As in Eqs. (6.6) and (6.7), the inhomogeneous terms may all be related to
I [r] & by means of wave operators

for j (N particle scattering processes:

1K~1~ (a)t —EK ) v') —lK~ Tg ~XN+N ~ .~ (+ )
&[7]ta~—00 ) =8 ~ ~ ~ e ~ ~ ~ +Q e ~ ~ ~ e ~ ~ ~

I
~a (6.39)

(6.40)

iK s —iK ~
where an underline indicates that the factor is to be deleted. Inserting the factors e ' 'e ' ' on the right
of 0+', and using its intertwining property, we obtain

I[ ].---&=II1+"([»I[».
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Similarly, we have

gK)v) sE w tKbrb IK@r~l[r]r, c—c,rb&=e . . e '' -. e e

(~b)f —iK ~ —tKbrb (+)
&)&0' e ' '-. . e '' -. e . -. e+ a

lKggg —/KgTg 1Kbvb —EKb7 b 0

and inserting the factors e ' 'e ' 'e e to the right of the wave operator, we obtain

I [r]r, oo, r—b~ —e) & =Q~ ' ([r]) I [r]& .

Representing all of the inhomogeneous terms in Eq. (6.38) in this way, we write it as
1) N'"'W+([r])'I [r]&=

I g;a& —i"I «i ' ' I «N~N([r'])
I
[r']&

where ' 'W+ ([r]) is the Dirac-picture form of

(N)W ( 1)N+1 1 y II(a)+ y I)(ab) y I)(abc)+. . .
a&b a&b&c

(6.41)

(6.43)

(6.44)

yr y ((}v)W$ )
—1 (6.45)

To calculate the S matrix from Eq. (6.43), the
limit [r] +oo must —be studied. Since

including terms up to the (N —1)-body wave
operators. Since each of the 0+ ' ' ' has unity as
its dominant contribution for small potentials, a
simple application of the binomial theorem indi-
cates that ' '8'+ also has dominant contribution
unity [as in Eqs. (6.9) and (6.15)].

The iterative expansion of Eq. (6A3) has essen-
tially the same form as Eq. (6.11), with N Feyn-
man propagators multiplying each (E-body) ampli-
tude, and

[E,, ( 'W ([ ])]=0 (6.46)

for all a =1,. . .E, the S matrix conserves the indi-
vidual particle masses. Furthermore, since the
leading contribution to ' '8'+ is unity, the leading
term in the expansion of the S matrix is
54(pi I? i ) 5—4(J?~ p~). Th—e operator

'W+ ([oo ]) can be calculate perturbatively using
an extension of the methods discussed earlier in
this section for the three-body case. Only wave
operators for the cases n ((N —1)-body case are
required for this calculation.

In the limit of sharp
I P;„&, Eq. (6.43) reduces to

the analog of the Lippmann-Schwinger equation
for N-body scattering:

'"'Wt+
I

)pH(+)(k, k„)& =
I y;„(k) . k}v) &

1

Ei —(ki +m) )—ie(
I')v

I
q'a+ «i1

E~ —( k)v —m)v )—l eN

gN
(v 'v, ) =i "-v 'v„'v. , . -

+1 +N

Integrating this equation between (0,[oo ]), we may operate with the result on a sharp
I f;„& to obtain

II'+"' "'IA.«i ' ' ' k)v)&=
I
q'H+'«) k)v)&

'W+
I
(t(?;„(k( k}v)&+(—1)

Ei —(ki +mi ) —iei

(6.48)

x, , I'?'v
I ()?).(k) '1

E~ (k~ m?v ) ie—N— —
(6.49)

(6.47)
An iterative solution of this equation has essentially the same form as that of Eq. (6.33), but each factor V
is accompanied by the product of X free Feynman propagators. With the corresponding expansion for

I
q(ir '&, the S matrix (or, following the method of Sec. V, the T matrix) can therefore be calculated pertur-

batively.
To obtain the direct formal solution of the scattering equation (6A7), consider the adjoint of the operator

relation associated with Eq. (6.36):
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VII. CONCLUDING REMARKS

In the classical theory of relativistic direct-
interaction dynamics it is not sufficient to specify
the generalized mass shells E,. The Hamiltonian
H = g, co,E, also requires the specification of the

co, in order to convert the many-time formalism to
a single-time formalism. This conversion is a
necessity on the classical level. It then leads to the
problem of finding co compatible with both the
cluster property and the world-line condition. '

We have claimed in I that the conversion to a
single-time formalism is not necessary for a
quantum-mechanical scattering theory. The
present paper supports this claim. In particular,
we were able to prove (see Appendix) that for
X=2 the two formulations are, in fact, equivalent
and lead to identical S matrices; the expansions
(4.7) and (4.13) can be shown to be equal. But it is
the S matrix in the multitime form (4.13) that
yields diagrams similar to the Feynman diagrams
of quantum field theory.

For N =2 we also showed that the equivalence
of the two formulations implies the asymptotic
conservation of the particle masses. If the p,

' of
the incident wave packets are concentrated at
p,

' =—m, , the p,
' in the denominators of (4.13)

can be replaced by the (negative) squared masses.
The perturbation expansion then has a form closely
analogous to that of quantum field theory with
gauge-mediated interactions, as described by con-
ventional Feynman diagrams.

In the time-independent version of scattering
theory the two formulations lead to two different
but equivalent Lippmann-Schwinger-type equa-
tions, (5.6) and (5.12), only the former having the
form of the conventional nonrelativistic counter-
part.

Turning to the many-body case, N & 3, we find
that, in general, a single-time formulation does not
emerge. The two-body subproblem, required for
the construction of the inhomogeneous terms of
the equation forming the basis for the perturbation
expansion, does not have the symmetry of the
two-body problem in the presence of one or more
of the other particles, e.g., in the three-body case,
Pi+$2 if particle 3 is present. Hence, the two-
body subproblem of an (N & 3)-body problem must
be solved in greater generality. In accordance with
the cluster decomposition property, the symmetries
of the (n &N)-particle subsystem are restored when
the N —n other particles are at large spacelike dis-
tances.

The problem of a quantum-mechanical formula-
tion of the relativistic N-body problem (on the
first-quantized level) is, of course, an old one. The
extensive literature (much too large to be quoted
here) emphasizes especially the two-body system.
It is cast in a Hilbert space of L (R ). Our mani-

festly covariant formulation, however, led us to a
Hilbert space L (R ) and a many-r formulation.
The physical significance of such a structure has
been studied elsewhere. '

As we have shown here, the scattering theory of
this formulation of N-particle relativistic quantum
dynamics leads to an S matrix which is similar to
a quantum-field-theoretic S matrix, in which the ~
dependence has disappeared (all

~
r,

~

~ a& ) and in
which the difference between L (R ) and L2(R3)

has box:ome trivial (effectively sharp mass shells of
free particles). Our work can thus be compared
with that on pseudopotentials' and on the eikonal
approximation. ' Also related is the multichannel
relativistic scattering theory by Coester, ' which

points toward future extension of our work. A
nice recent application within this general frame-
work (though to a bound state) is the treatment by
Crater and Van Alstine' of the triplet quarkonium
system.

In I we have presented the basic equations of an
N-particle relativistic quantum dynamics that has
as its classical limit the generalized mass-shell

dynamics (Ref. 6 of I). In the present paper we
obtain the S matrix explicitly, show how it is ob-
tained from Lippmann-Schwinger-type equations,
and present its perturbation expansion.
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APPENDIX

In this appendix, we show that the expansions
(4.7) and (4.13) for the two-body S matrix (for the
case 4i ——42 —=4) are equivalent in each order.

We first remark that the momentum matrix ele-
ments of 4 are of the form
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&P1P2 I
~' I» ')P2 & 2~( p ) 5(~ p)5 (p p )@(~i) ~

where 5=pi —pi ——p —p' is the momentum transfer.
The single-r perturbation expansion for the wave function [from Eq. (4.5)]

(Al)

'(p, '+p '—p,
' —p') n &p(P2 I

+
I p ip2 &

Wplp2 r) Wi (plp2) 2 f (dp 1 )(dp2),, 4i (plp2 )
P) +@2 —P )

—P2 —l E'

2+ 2 & 2 p 2)&y2
4 f (d (1))(d (1))(d )(d )

' Pl +Pa

&7 iP2 I
@

I P i P2 & &P i )P2
I
@

I P iP2 &

2 2 2 2 ~ (1)2 (1)2 2 2 ~ ~'" P)P2 )+
(pl +p2 pi p2 le)(pl +» 2 pl p2 le)

then becomes

g(p(p2, r)= $(„(pip2) —2lr( p)' —f (dpi )(dp2)5 (p p')—

(A2)

&(p) —p) H

X5(—,(pi —pi ) ——,(p2 —p2 ))@((p)—pi))), . Q; (pip2)
P) —P i —l6'

+(2m') ( P) f (d—pi")(dp2")(dpi )(dp2)5( —,(pi —pi '
) ——,(p2 —p2 ))

(1)2 2) 1

(
(1)2 i 2))54(p p(1))54(p(1) pi) Pl Pi

e'((p i —p'i" )).)@«p'1"—p') )).)
X 2, 2 . (1)2 2 . Pin(p 1P2 )+

(Pl P 1 e)(pl P 1

where we have used the kinematical relation (for P =P')

(Pl P 1 ) (P2 P2

The two-r perturbation expansion of the wave function [from Eq. (4.12)j,

Wplp2 rlr2) A (pl» 2)+ f (dP1 )(dP2 )e

&Pip2 I
~

I pip2 &

gt2 . 2 gt2 . A&(p ip2 )
(Pl P 1 (el)(P2 P2 ie2)

(A3)

+ f (dp', ")(dp,'")(dp', )(dp,')e ' " "e' '

&pip2 I
~

I
p'i"p2" & &p'i"p2"

I

~
I
p')P2 &

2 2 ~ 2 2 ~ (1)2 2 ~ (1)2 2(pi —p 1
—le, )(P2 —p2 —ie2)(p) —p, i el)(p2 ——p2 (e2)—

+ t ~ ~ (A4)

can be compared to (A3) if we recall the definition (3.29) of V, for which we obtain

&» i»» I
l'lpip2 & (pl p2 )&plp2 I

@
I p)P2 &

+ f (dp'i")(dp2") &P)P2 I
+ IP'i"P2" &&P'i"P2 '

I
+ IPip2 & (A5)

The "Born term" of (A4), therefore, contains a contribution which is quadratic in 4, and must be com-
bined with the part of the second-order term which is second order in 4 (this term contains third and fourth
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order in 4 as well). Carrying out these steps, we obtain for (A4), using again (Al),

$(p)p2,'r)r2)= l(;„(ptp2) —2n( P—) f (dp) ){dp2)5 (P P—')5( —,(p) —p) ) —2 (p2 p 2 ))

i (p& —p &
)(1]+'P2)

@(p)—p~ 4W;.{p)p'»
p&

—P& —I&

+(2m) ( P)—f (dp)")(dp2")(dp) )(dp2)5( —,(p) —p')" ) ——,(p) —p2" )) .

X5(—,(p —p' ) ——,(p' —p' ))5 (P —P'")5 (P'"—P')

)(p —p' )(~ +~ ) @((pl p) 4)~ ((pl p) 4)(1) (1)

(&)2 2—Pi(])2,2 . Pin(p lp2 )+
Pi —Pi —l6'

(A6)

The two terms in the large brackets in the second-order part arise, respectively, from the "Born term" in the
expansion {A4) and the part of the second-order term which is second order in 4; they combine to cancel
one factor of p& —p &

—i@ in the denominator. The resulting series then precisely coincides with the
single-r expansion (A3) for r=r)+r2 up to second order. The comparison of higher-order terms proceeds
in a similar way. The equivalence of the wave-function expansions order by order in perturbation theory,
for every r=r)+r2, then implies the perturbative equivalence of the S-matrix expansions (4.7) and (4.13).
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