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Scalar particle creation in the linearly expanding Bianchi type-I universes is studied us-

ing the Feynman propagator technique. Explicit expressions for the propagators corre-

sponding to an arbitrary "in" vacuum and the "out" vacuum defined by the WKB
positive-frequency solutions are derived. The initial conditions are then singled out by re-

quiring the square integrability of the analytically continued kernels of the propagators
considered. It is shown that for each particular model there is only one Riemannian ker-

nel which satisfies this condition. Furthermore, it is proved that all the kernels selected

this way admit a well-defined path-integral representation defined on the Riemannian

domains of physically allowed values of coordinates. This result confirms the assumption

of Chitre and Hartle that the propagator they found in the isotropic model {which is pre-

cisely that singled out by the square-integrability condition) can be represented by a path
integral defined on the domain to the future of the initial singularity. The initial condi-

tions corresponding to the selected propagators are analyzed. It is shown that they give

rise to the creation of pairs with spectrum, which at high energies resembles that of
blackbody radiation in one, two, or three directions, depending on the background

geometry. Finally, the conceptual and technical problems associated with the complexi-

fied spacetime path-integral method, as applied to cosmological models, are discussed.

I. INTRODUCTION

One of the major problems of quantum field
theory in curved spacetime is the definition of the
particle states. In general, there is no natural way
to determine a preferred set of positive-frequency
solutions of the field equations, or, equivalently, to
choose the Feynman propagator. The difficulty is
especially severe in the case of singular cosmologi-
cal spacetimes, where no "in" regions having par-
ticular symmetries exist. In these situations initial
conditions are either postulated "ad hoc" or select-
ed according to some mathematical or physical cri-
teria.

An important approach to the problem of defin-

ing the initial particle states in singluar universes

was proposed by Chitre and Hartle. ' It focuses on
the Feynman propagator and represents a natural
extension of the complexified spacetime path-
integral method, applied earlier to the black-hole
geometries. Within this method the ad hoc speci-
fication of initial conditions is replaced by the re-

quirement that only paths located to the future of
the initial singularity contribute to the path in-

tegral. The latter has to be evaluated by analytic
continuation to the Riemannian domain (with

positive-definite metric), so that the integrals in-

volved have proper meaning.
In attempting to apply this approach to a partic-

ular model, a linearly expanding, spatially flat
Robertson-Walker universe, Chitre and Hartle re-
placed actual evaluation of the path integral by
solution of the differential equation for the analyti-
cally continued kernel of the Feynman propagator,
subject to certain boundary conditions. It was sug-

gested that the propagator found by this procedure
might be represented in the form of a Riemannian
path integral.

It was recently shown that the boundary condi-
tions used by Chitre and Hartle are not sufficient
to determine the propagator uniquely. Methods to
strengthen the boundary conditions were also pro-
posed. In particular, it was found that the propa-
gator of Chitre and Hartle is the only one for
which the analytically continued kernel has a well-

defined Fourier transform. A covariant generaliza-
tion of this requirement, namely, the square in-

tegrability of the Riemannian kernel, was pro-
posed.

The present work is a further continuation and
development of the analysis given in Refs. 1 and 3.
The Riemannian method is applied in a unified
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way to the problem of defining the initial particle
states in linearly expanding Bianchi type-I
universes, which include the Robertson-Walker
model, mentioned above, as a particular case. It is
explicitly shown that in each case considered there
is only one Feynman propagator, the Riemannian
kernel of which may be represented by the Fourier
integral defined over an infinite domain of the
coordinates involved. All the propagators selected
this way admit a well-defined path-integral repre-
sentation in the domain of physically allowed
values of coordinates. This result confirms the as-
sumption of Chitre and Hartle that the propagator
they found in the isotropic case can be represented

by the path integral defined on the domain to the
future of the initial singularity.

All of the Feynman propagators, singled out by
the above requirement, correspond to the initial
conditions which give rise to the particle creation
in the course of cosmological expansion. At suffi-
ciently high energies the spectrum of created quan-
ta is thermal in one, two, or three dimensions, ac-
cording to the background geometries involved.

The propagator obtained using the above com-
plexification procedure in the case of the degen-
erate Kasner universe (which is flat) is found to be
different from the standard Minkowski propagator.
The origin of this difference is clarified by show-

ing that nonequivalent Riemannian algorithms do
not select the same propagator.

The organization of the paper is as follows. In
Sec. II the complexified spacetime path-integral
method is reviewed, and various boundary condi-
tions associated with Riemannian kernels are dis-
cussed. In Sec. III the most general form of the
Feynman propagator for the scalar fields in the
linearly expanding Bianchi type-I universes is de-
rived. The analytically continued kernels are ob-
tained in Sec. IV. Using the existence of the
Fourier integral as a selection principle we further
analyze corresponding initial conditions and physi-
cal quantities, associated with the created quanta.
In Sec. V the selected Riemannian kernels are dis-
cussed from the viewpoint of path integrals. Sec-
tion VI is devoted to concluding remarks. In the

Appendix, some mathematical expressions used in
the text are derived.

II. PROPAGATORS, PATH INTEGRALS,
AND BOUNDARY CONDITIONS

Feynman propagators are the central building
blocks of quantum field theory in curved space-
time. Knowledge of the propagator enables one to
evaluate all other physically interesting quanti-
ties. ' In this section, the complexified spacetime
path-integral method of evaluation of the Feynman
propagator as applied to cosmological spacetimes is
reviewed emphasizing the technical and conceptual
difficulties of this approach. The discussion is re-
stricted to the case of a neutral scalar field which
satisfies the wave equation

( VqV"—+JR+ m )$(x)=0 . (2.l)

Here V& denotes the covariant derivative with
respect to the background metric gz, R is the Ric-
ci scalar, m is the mass of the field, and g is the
nonminimal coupling constant.

In the Schwinger-DeWitt method the Feyn-
man propagator is defined by the integral represen-
tation

G(xx')=i f dse ' '(xs ~x'0), (2.2)

lim (xs
~

x'0) =[—g(x)] '~i5(xx') .
s —+0

(2.4)

Here g(x) is the determinant of g„,. The kernel
(xs

~

x'0) can be regarded as the probability am-
plitude for the fictitious particle to propagate on a
four-dimensional hypersurface from point x'& at
"time" $=0 to x& at "time" s.

In the limt $ —+0+ the kernel can be represented

where m is taken to have a small negative ima-
ginary part and the kernel satisfies the
Schrodinger-type equation

i (xs ~x—'0) =(—V&V"+JR)(xs
~

x'0),
(2 3)

with "initial" condition

r

l io(xx').
(xs

~

x'0) ——,exp
@~0+ (mrs�) 2$

b, '~ [1+isfi(x,x')+(is) f2(x,x')+ ]+F(x,x',is) . (2.S)

Here o(xx') is half of the proper distance squared (minus proper time squared) along the spacelike (timelike)
geodesic connecting the points x'" and x", 5 denotes the biscalar

b (x,x') = —[—g (x)]'~ det[ —B&B~o (xx')][—g (x')] (2 6)
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f;(x,x') are the so-called DeWitt-Hadamard coefficients, and F(x,x';is) is some function which has an
essential singularity at s=0. It is present usuaBy in those situations where the particle creation takes place.
The function F(x,x;is) cannot be specified uniquely by the initial condition (2.4), so that further nonlocal
boundary conditions are required for its determination.

Using the similarity between Eqs. (2.3) and (2.4) and the standard one-particle quantum mechanics one
can represent the kernel (xs

~

x'0) as a functional integral

(xs ~x'0) = f d [x(s')]exp i f ds'L x,
ds

where the integration is carried out over all paths x (s) which connect the point x'" at "time" s=0 with the
point x" at "time" s. More concretely, the functional integral can be represented as the iterated integral

(xs ~x'0)= lim f d xzQ g(xz—) . f d x,Q g(x, )—(xs ~x~s e) —. . (x,e~x'0), (2.8)

where the "short-time" kernels have the form

(xs
~

x'0) —Y(e,xx')exp —f L x, ,
ds'dx

4 o ds'

dx" dx
"" ds ds

(2.10),

When the spacetime is singular, incomplete, or
compact, the motion of fictitious particle changes
radically and the path integral has to reflect this
effect, which can be viewed as the boundary condi-
tions imposed on the kernel (xs

~

x'0). For com-
pact manifolds the problem is quite clear and the
path integral can be constructed by taking the sum
of contributions from all geodesics, which connect
the corresponding spacetirnes points. The situa-
tion is much more complicated when the manifolds
are singular or incomplete, because in these cases
the boundary conditions are, in general, unknown.
For cosmological models with initial singularities
Chitre and Hartle suggested that the effect of
boundary conditions can be incorporated in the
path integral by restricting the paths to those
which are located to the future of the initial singu-
larity. The iterated integral (2.8) is then defined
over the domain of physically allowed coordinates.
However, an explicit method of path-integral
evaluation of the kernels which incorporates only
those restricted paths has not been developed yet.

Usually the iterated integral (2.8) is ill defined
because it involves terms which do not fall off rap-
idly enough when the separation between the

(2.9)

Here Y(e,xx') is an appropriate weight, which de-
pends upon the coupling constant g. If the classi-
cal motion of a fictitious particle is unrestricted,
the corresponding Lagrangian can be taken in the
form

points X" and X'" tends to infinity. In
Minkowski-spacetime quantum field theory it is

customary to evaluate the functional integrals by
"Wick rotation" to imaginary time and deal with
the Euclidean quantum field theory. According to
the Euclidean postulate the physical quantities are
obtained by analytic continuation back to Min-
kowski spacetime. The analog for the general rela-
tivistic field theory is to construct the theory in
spacetimes with positive-definite Riemannian
metric y&„. The Riemannian version of the theory
is obtained by rotating some of the coordinates x"
in the complex plane and simultaneously rotating
the "time" coordinate s by —n. /2, writing
s = i Q Th—e ma. jor difficulty of the method is its
nonuniqueness, which is due to the fact that the
spacetirne might be cornplexified by using non-
equivalent Riemannian algorithms. Consequently
one obtains nonequivalent field theories. This dif-
ficulty is present already in the flat spacetirne if
one starts with a non-Minkowskian coordinate sys-
tem as in the case of the Rindler space. A similar
situation occurs for the degenerate Kasner
universe, which is also a part of the Minkowski
spacetime. This problem is discussed in detail in
the forthcoming sections. Which Riemannian al-

gorithm to choose cannot be decided within the
theory itself. One of the criteria for such a choice
could be the operational interpretation of. corre-
sponding field theories.

For the Riemannian space with coordinates 7&

and metric y&, the analytically continued kernel
(XQ

~

X'0) is a solution of the parabolic equation

(XQ
i
X'0) = ( V„V"—gR )(XQ

i
X'0),

(2.11)

with the "initial" condition
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lim (XQ
~

X'0) =il[y(X)]'~'5(X,X') . (2.12)
0 O+

Here V'& and R denote the covariant derivative and
the Ricci scalar evaluated with respect to the
positive-definite metric y&„,and g is a possible

phase factor. The nonlocal boundary conditions
have to be further imposed to single out the propa-
gator uniquely. The most natural boundary condi-
tion could be the requirement that the kernel
(XQ

~

X'0) has to be represented by a well-defined
iterated Riemannian integral

(XQ ~X'0)= lim il f d X~[y(X N)]'~z . f d Xi[y(Xi))'~'(XQ ~XNQ F—) (X,e~X'0),
N-+ oo

{,1+N)e=Q
(2.13)

(2.14)

where the integration is carried out over the physically allowed domain of coordinates P&. As applied to the
cosmological case Chitre and Hartle' required this domain to be that obtained by analytic continuation of a
physical domain, lying to the future of the initial singularity. Actual implementation of this approach is too
difficult, and one might consider more explicit boundary conditions that ensure the existence of the Rieman-
nian path integral, or equivalently, the iterated integral (2.13). One such condition was proposed recently in
Ref. 3. For open spacetimes it requires the square integrability of the kernel (XQ

~

X'0), namely,

f ~
(XQ ~X'0)

~

y' d x is convergent for each allowed value of X'.

Here the integration is performed over the domain
of physically allowed values of coordinates. This
condition seems to be a necessary one, because the
condition proposed earlier by Chitre and Hartle, '

which required the kernel just to vanish for infin-
itely separated points 7 and X', does not uniquely
determine the propagator.

In the following sections the boundary condition
(2.14) will be used to single out the kernels for
each of the cosmological models considered. It
will be shown that these kernels can be represented
by well-defined Riemannian path integrals. Furth-
ermore, it will be shown that at least some other
kernels that do not satisfy the boundary condition
(2.14) do not admit the path-integral representa-
tion, provided that the integrals involved have in-
finite hmits of integration required by the Rieman-
nian schemes developed below.

III. SCALAR FIELDS IN LINEARLY EXPANDING
SIANCHI TYPE-I UNIVERSES

In this section we develop the conventional
field-theoretical analysis of conformally coupled
massive scalar fields propagating on the classical

I

background of linearly expanding Bianchi type-I
universes. The metric of these cosmological
models can be written in the form

2 dt2+ t2dx2+ t ~dy2+ t 2dz2 (3.1)

X=t sinhx, T =t coshx,

F=y, Z=z .
(3.2)

This transformation is singluar at i=0. The de-
generate Kasner metric represents that part of the
flat spacetime which is located within the region

/

T
[ & [X f

. For the background metrics (3.1) the
conformally coupled (g= —,) field equation (2.1)
can be written explicitly as

~here p& and p2 are constant parameters equal to 1

or 0. All these cosmological models do not have
particle horizons. The case p& ——p2 ——1 is a particu-
lar Robertson-Walker universe. Both this model as
well as the anisotropic model with p& ——1,p2 ——0
have a curvature singularity at t=0. The case

p ~
——p2

——0 corresponds to the degenerate Kasner
universe. It is flat and singularity free. It can be
written in the usual Minkowski form with coordi-
nates T,X,F,Z related to t,x,y, z as

2+~1+~2] ~ { +&1+~2 ~ —2 ~ ~& ~ &2 ~ 2 —2
2 2r', +m +y—t p(x, r)=0,Bt B& j Bx By Bz

(3.3)

where y is the constant parameter determined by the exponents p~ and pz.
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1, pi ——p2 ——1;
3 p~ —1, p2 ——0; (3.4)

The general solution of Eq. (3.3) can be written as

P(t, x)= f d k[A-„f-„(t,x)+A-„f~g(t,x)], (3.5)

where the basis functions f z (t, x) are given by

fk(t, x)=(2n) ~ Pk(t)exp(ik x),
f-„(t)=B-„H,',"(pt)+. C-„H„"(pt),
f'z(t) =BzH „'(pt)e "+CkH „"(pt)e

(3.6)

(3.7)

(3.8)

In Eqs. (3.7) and (3.8) H," and H„'are the Hankel functions of the first and second kind with imaginary
index iv, which satisfy the equation K„'=H,"exp( —vm). The parameters v and jM are given by

and

v= ~ (k„+k»+—„)',pi ——1, p2 ——0;
kx~ p1=p2=0 i

(3.9)

m, p&
——p2 ——1;

p= ~ (m +k, )'i, pi ——1, pi ——0;
(m +k, +k» )'i, pi ——p2 ——0.

(3.10)

(3.11)

Introducing now the conserved Klein-Gordon scalar product

(g, h)= i f d—X"g*B&h,
X

where X is a spacelike hypersurface, one can verify that the basis functions f k and f k satisfy the following

conditions:

(3.12)

if and only if the coefficients B k and C z are restricted by the Wronskian condition

C7k I
e —IB-„

I
e =a/4. (3.13)

This condition also guarantees that the operators A k and A z obey the standard commutation relations for
the annihilation and creation operators.

The Wronskian constraint (3.13) does not determine the basis functions uniquely. Consequently one can
decompose the field operator P(x, t) with respect to other basis functions p i, (x,t):

P( x, t) = f d k [agp k (x,t)+a „p"q ( x, t)j,
where

pp(x, t)=(2m) ~ f'q(t)e'"'",

(3.14)

(3.15)

f'k (t)=B'k H,"(pt )+C'zH, '(pt), (3.16)

and the coefficients B'k and C'z are subject to the condition (3.13). The basis functions pg, p'z are ortho-
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normal in the sense of Eq. (3.12), and the operators a j, ,a p satisfy the same commutation relations as the

operators' k and A k.
The basis functions g-„(t)and P'z (t} are related by the Bogoliubov transformations

(3.17)

(3.18)

Consequently the operators A k,A k and a k,a k are related as

a- =a-A-+g-'A
k k k k —k

g ~ —~~+ ~+@~+k k k k —k

We can now define the Feynman propagator G(x,x') by the Schwinger average'

(0,„,~

Ttg(x)$(x') I ~
0;„}

GF(x,x') =i
00m~ I 0i.&

(3.19)

(3.20)

where T denotes the time-ordered product of the field operators, and
~
0,„,) and

~
0;„)are the "out" and

"in" vacuums. Referring to the basis (3.6) as the "in" basis and (3.15) as the "out" basis, and using Eq.
(3.19) one obtains

3

GF(x,x') =i I, [8(r —t')p
k (x,t)f k (x ', r')+8(t' —t)p z (x ', t')f k (x, t)] . (3.21)

Here 8(t) is the Heaviside function

t)0,
0 t 0 (3.22)

For large t(t &&m ') the expansion is sufficiently slow and one can single out the out basis functions P'k

using the positive-frequency WKB solutions of Eq. (2.3). Making use of the asymptotic form of the Hankel
functions for the large argument' one obtains

1/2 —1 P 1+P2)/2 ITV' l 7T (2),2 t exp — H;v (pt& . (3.23)

The Bogoliubov coefficients a „andP-„connecting the in and out bases are then given by
r

CK k =277. eXp
—1/2

—
GATV l 7T

2 4

P-=2m. ~ exp — 8-'TTV l &
k 2 4 k (3.24}

The Feynman propagator corresponding to the out basis (3.23) and the most general in basis is then given by
Eq. (3.21}as

G (x x')= (t t )
' ' d ke'"'" " 'H' '(pt ) H'"(pt )+ e 'H' '(pt )

4(2~)
gV ) 1V ( Cg lV (

k

Using the relationships between Hankel and Bessel functions, ' one can write the latter equation as

(3.25)
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6 ( i) ~ 2—l(2 )
—3(t t )

&i+&2 Jgs«l k ( x —x ') ~ 277vB +~

—1 (e '—1) 'H' ;'„(pt))g;,((Mt()
k

B*„
+e2 (e 1) —'

1 — H „'(pt))g;„(pt()
k

(3.26)

Making use of representations of products of Bessel and Hankel functions as given in Ref. 10, p. 439, Eq.
(3.26) can be written in the Schwinger-DeWitt form (2.2) with the kernel (xs

~

x'0) given by

2 l2

(xs
~

x'0) =i exp [(2s) '(2ir) (tt') ' ' ]
4is

X Jd'«'"'" " 'e "'" ' (1—e '~) B k ttt'I I;„
k

e 21rvB+

+(ez "—1) —1 I
k

(3.27)

Here Ii(x) is the Bessel function of imaginary argument with index A,.
When the in and out bases are the same, i.e., B k

——0, one can perform the Fourier integration in Eq.
(3.25) for both the isotropic model and the degenerate Kasner universe. The resulting expression is found to
be

G(0)(x xi) (8~)—lm 2g1/2( 2~ 2
)
—1/2H(2) [( 212&)1/2]

where

(3.28)

—2 '(t +t' —2tt'coshr), r =
~

x —x'~, pi pi 1, —— ——
2'[t +t—' +(z —z') +(y y') 2tt'c—osh(x——x')], pi ——p2 ——0, (3.29)

r 'sinhr, p& ——p2
——1,

1/2
1, p& =p2=0. (3.30)

The calculation for the isotropic case is given in
Ref. 3. The evaluation of the propagator
G' '(x,x') for the degenerate Kasner model is
presented in the Appendix.

In the isotropic case the above choice of initial
conditions is unrealistic due to the nonvanishing
curvature of spacetime and finite mass of the field
considered. On the other hand in the case of the
degenerate Kasner universe one does not expect
particle creation, so that B k =0 seems to be the

is half of the proper distance squared (minus prop-
er time squared) along the geodesics between x and
x', and b, is the biscalar, defined by Eq. (2.6). Its
values are

. cr(x,x')
+exp i

2$
(3.31)

most natural choice. In fact, the vacuum defined

by the WKB solutions of the wave equation is the
same as the usual Minkowski vacuum, as was
shown by Fulling, Parker, and Hu. " This is also
reflected in the corresponding Feynman propagator
(3.28) which is the same as the standard
Minkowski-space propagator of the massive scalar
field.

The corresponding kernel (xs
~

x'0)( ' is then
given by '
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IV. SELECTION OF THE INITIAL CONDITIONS

In this section we apply the analytic continua-
tion algorithm discussed in Sec. II in order to sin-

gle out those propagators (3.25) for which the
analytically continued kernels satisfy the square-
integrability condition (2.14). The resulting expres-
sions are further used to determine the Bogoliubov
transformations between the WKB out basis (3.23)
and the in basis singled out by the square-integra-

bility requirement. Physical quantities associated
with the latter Bogoliubov transformations are also
discussed.

We begin our discussion by considering the ana-

lytic continuation of the spacetimes (3.1). Follow-
ing the method of Chitre and Hartle' one rotates
the time coordinate t and the spatial coordinates,
along the axes of which expansion takes place, by
an angle m/2 in the complex plane,

t =iA, ;
iX, p1=1,

~ 1.X =lg; X, p1 ——0;

~ 3lg, p2=1
Z — 3X, p2 ——0, (4.1)

to obtain the Riemannian metric y& defined by the line element

dl =dk +A, (dX') +A, '(dX ) +A, '(dX ) (4.2)

The range of variables k, X',P,X is taken to be the same as the range of the coordinates of the physical
spacetimes, i.e.,

k)0, +00 )g ) —ao, +00 )X ) —ao, +(x})X ) —ao
1 2 3 (4.3)

It is worthwhile mentioning that the analytic continuation of the degenerate Kasner model is different from
that of the entire Minkowski space. The latter has the same metric, but the range of parameters A, and 7 is
given by

(4.4)

The geodesic distance o between two points X'(A, ', X ') and X(A, , X ) of the Riemannian manifolds (4.2} is
given by

A, +A, ' —2XA, 'cosr, r =
~

x —x'~, p~
——p2

——1;
2o = A, +A, ' —2XA, 'cosp+(X —X ' ), p =(X'—X') +(X X' ), pi =1, p2=0;

g +g' +(X —X' ) +(X —X' ) —2A, A, 'cos(X' —X'), p&
——p2

——0 .

and the biscalar b, '
(X,X') is found to be

(4.5)

snab'
p1=p2 —1 ~

(X,X')= ~ sinp
p1 ——1, p2 ——0, (4.6)

p1=p2=0

When A, & 0, as required by Eq. (4.3), the expressions (4.5) are valid only when r & m., p & m, or
~X' —X'

~

& ~, respectively. Otherwise the points X and X' cannot be connected by a geodesic, which lies en-

tirely in the domain A, )0. The latter corresponds to the domain of the physical spacetime located to the fu-
ture of initial singularity (actual or fictitious).

The transformation (4.1}will be used now to derive the analytically continued kernels (XQ
~

X'0), where
0= is as described in Sec. II. Using Eq. (3.27) for the physical kernels (Xs

~
X 0}and rotating the corre-

sponding components of the k vector in the complex plane by writing

—lK2, p1= 1 —lK3, p2= 1

(4.7)
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one finds

(XQ
~

X'0) = i [(2n ) 2A, A, 'Q] 'exp (~ +~ ) d3
' (x-r ) A(+iI

4Q

A,
2

A,
'2

(XQ
~

X'0) = —i[(2n. )32(AA.')'~ Q] 'exp
4Q

pi ——p2
——1, (4.8)

3 g K (g —X ')—K3 0 {+)
(K 2+K 2——) / 2Q12

( ) AA

(K 2+K 2 )1/2 2QK1 +K2
p& =i pe=0 (4 9)

(A, +A, '
)

(XQ ~X'0) =i[(2n) 2Q] 'exp

3 &K'(+ + ) (K3 +K2 )+ (+) Ark ( )+ k , pi ——p2 ——0, (4.10)

where

(1—e '") '(1 B*;„/C'—;„),pi ——p2
——1;

A-„+= . I 1 —exp[2mi(K, +K2 ——„)']J(1 B';„;„,—/C';„;„),p, =, p2 ——

[1—exp(2m;.„,)](1 B';„/C*—;„),pi =p2 ——0

(4.11)

and

[exp( 2~iK) —1] 'I ——1+[exp( 2niK)]B;„—/C';„J, pi ——p2=1;
irz ~ 2 2

I exp[ —2mi(K( +K2 —» )]' —1] '( —1+I exp[ —2ni(K( +K2 ——„)'] I

)fcXB—ia&, —ia /C —ix&, iK()& pl — & p2

[exp( 2' K()——1] I
—1+[exp( 2niK()]B—;„/C*;„I, ir&

—(22 —0 .

(4.12)

Expressions (4.8)—(4.12) can be further simplified leading in each case to a single integral as follows:

A,
2

A,
'2

(XQ
~

X'0) = i[(2n ) 2A, A, 'Qp] 'exp — 4m.
4Q

~simcpdk A„I„+A„I
„

(+) AA, ( ) AA,

0 2Q " " 2Q pi=pal=i ~ (4.13)

X3 XI3 2 g2 gl2
(XQ

~
X 0) = —i3/n. [(2m) (2Q) (A,A, ')' ] 'ex

4Q

X upp(up)[A„ I, &,~, +A„I, &,~, ]du, pi ——1, p2 ——0,
12 12
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and

(x x )+(x x )+~+~
4Q

EK~(X —X ) (+) gg { )dK1e A„,I+„, 20 +A„-,I „,20 pi —p2 —0 ~ (4.15)

one finds that the integrals in Eqs. (4.13) and (4.14)
are convergent if and only if A'-„'=0. The con-
tour of integration in Eq. (4.16) has to be located
entirely in the domain Rem & 0. In the case of the
degenerate Kasner universe the kernel has a well-

defined Fourier transform only when

A'+'=e(~, ), w'- =e( —~,). (4.17)

We thus see that the requirement that the
Riemannian kernel be expandable into a Fourier
integral, or, equivalently, the requirement of square
integrability of the Riemannian kernel given by Eq.
(2.14), singles out a unique propagator in each of
the models considered.

I.et us determine now the initial conditions of
the scalar field which correspond to the selected
kernels. Both in the isotropic case, considered pre-
viously in Refs. jI and 3 and in the anisotropic case
with p~

——1, p2 ——0 the condition A'-k '=0 gives
8*=C*„e . Using the Wronskian condition
(3.13) one finds

I Bk I

=2-'~'"exp—
2

[exp(2m v) —1]'~

(4.18)

I
C-„

I
=2 '~'~ [exp(2~v) —1]

The absolute values of the Bogoliubov coefficients
follow from Eqs. (3.24) and (4.18):

I
a i, I

=exp(nv)[exp(2@v) —1]

I Pi, (
=[exp(2n.v) —1]

(4.19)

Using the latter expressions for
I a& I

and
I
p-„

I

and the results of Ref. 9, the probability of detect-
ing n particles in the kth mode at late times is
found to be

Making use of the integral representation of the
Bessel functions I„(z)given in Ref. 10, Eq. (3.11),

oo +1Fl

I„(z)=(2@i)
' dw exp(z coshw —~w ),

ao —%l

(4.16)

The propagator selected for the isotropic case is
the same as that of Chitre and Hartle and corre-
sponds to the isotropic distribution of created
quanta. For sufficiently large momenta of created
particles the spectrum (4.20) resembles that of the
blackbody radiation with the temperature

T=(rrtkii) (4.21)

(4.22)

The corresponding Feynman propagator is dif-
ferent from the standard Minkowski-space propa-
gator (3.28) for which B z

——0. This difference re-

sults from the fact that the complexification
scheme used above is not equivalent to the stand-
ard Euclidean treatment of the Minkowski space.
Using Eqs. (3.13) and (3.24) the coefficients of the
Bogoliubov transformation between the in and out
basis functions are found to be

I
a-„

I
=exp(m

I k„
I
)[exp(2ir

I k„
I

) —1]

where kz is the Boltzmann constant.
In the anisotropic case p~

——1, p2
——0 the initial

condition (4.18) leads to production of particles
with anisotropic momentum distribution. Particles
are created with probability which is a function
only of the transverse component of the physical
momentum pi=(k„+k» )'~ t.

For sufficiently large pz the constant —
„

in the
expression v=(k„+k„+—„)'~can be neglected
as well as the mass term in the energy of created
quanta. Under this condition the spectrum of
created particles resembles that of the two-
dimensional blackbody radiation with the tempera-
ture given by Eq. (4.21). The initial conditions
leading to this spectrum were first discussed by
Nariai. '

Finally let us determine the initial conditions of
the scalar field in the degenerate Kasner universe.
From Eq. (4.17) it follows that

C-„exp(—2m.
I k„

I ), k„)0,
k (~ k (0

P„(k)=exp( 2mvn)[1 ——exp( —2irv)] . (4.20)
I
P-„

I

= [exp(2n.
I
k„I

) —1]

For sufficiently large k„,namely,

(4.23)



26 FEYNMAN PROPAGATORS AND PARTICLE CREATION IN. . . 3377

k„/t »k» +k, +m, the spectrum of the out
particles resembles that of a unidirectional black-
body radiation with the temperature defined by Eq.
(4.21). Integrating over all modes one finds that
the total number of the out particles present in the
in vacuum is infinite. Consequently the Fock rep-
resentations built on the in and out vacuums are
not unitarily equivalent.

As follows from Eq. (3.2) in the present case the
operator id—/dx is the generator of the Lorentz
boosts in the T-X plane. Since both in and out
basis functions are the eigenfunctions of this opera-
tor they are invariant under these transformations.
However, as was shown by Sommerfield' and Ful-
ling, Parker and Hu" by using the Fourier integral
representations of the Hankel functions, only the
out particles can be represented by the wave pack-
ets constructed entirely from the Poincare-invariant
positive-frequency solutions. This fact is also re-

flected in the corresponding Feynman propagator
(3.28).

The in vacuum, determined by the Bogoliubov
transformation (4.23), was discussed by Sommer-
field, ' Berger, ' and Davies and Fulling. ' This
vacuum can be obtained by diagonalizing the t-
time dependent Hamiltonian at t =0.' ' As was
pointed out by Parker, from the operational point
of view one would not expect creation of particles
in the degenerate Kasner universe, since the space-
time is flat and the clocks measuring the Kasner
time are not accelerated.

V. ANALYSIS OF THE KERNELS

Let us now examine in more detail the kernels
selected in the previous section, which will be
denoted by (XQ

~

X'0)' ':

(XQ
~

X'0)"'=i [(2n)2AX'.Qr] 'exp (A,'+ A,') . A, A,
'

4w k sinkrI„dk, pi ——pq
——1,

0 20 (5.1)

X3 XI3 2 g2 g&2

(XQ ~X'0)"'= —ivy[(2n. )'2Q' '(AA, ')' '] 'ex
40

CQ u, '
ufo(up)I 2 & 1/& dtt, pi ——l,pz ——0,

12

(5.2)

(XQ~X 0)(])(4Q)P(XX)+(XX)+A'+A
40

X dK)cos[lc)(X —X )]I», p) ——pg
——0 .

00 AA

0 20 (5.3)

For the Riemannian metrics (4.2) one can rewrite the parabolic equation (2.11) as

2 -2 28
( ~,0) ~

— + + ) 8
~ +» +» 8 ~ 8 ~ »8—

BQ aA, (BX')' (&X')'

a2
(XQ iX'0) .

(QX3)2 g2
(5.4)

By substituting the kernels (5.1)—(5.3) into Eq (5.4) and. interchanging the orders of differentiation and
integration one verifies that the kernels (XQ

~

X'0)"' are solutions of the parabolic equations for all values
of coordinates 7. The latter change of orders of differentiation and integration is justified, provided the
contour of integration in Eq. (4.16) is taken to lie in the right half of the complex w plane.

Let us show now that (XQ
~

X'0)"' satisfy also the initial condition (2.12). Using the large argument
asymptotic expansions of function I as given in Ref. 10, p. 203, and the Gaussian approximation of the 5
function one obtains

(XQ ~X'0)"' — iA, '5(X,X')+~'(&&') '~'2~ '&(&+&') J&'« ', @~=@~=1, (5.5)
n o+
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(XQ
(
X'0)"' — i—)(,5(X,X') —i(AA') , '(2m) . 5()(+1'),5(X X—

'
)

n o+

)& f '
dK2 f dK3exp[i[K((X' X—')+K2(X X—

' )+n(K. ) +K2 —,—+ —, )' ]I,

(XQ ~X'0)"' — iA5(X X')+i(A)(.') '/ (2m. ) '5(A, +A, ')5(X —X' )5(X —X' )
o o+

+ i[K](g —g )+Q ~K) ~+1/2)]
X d&~e p] =p2 =0 ~

p( =1 p2=0 (5.6)

(5.7)

1 1

w+i(X' —X'} u —i(X' —X')

In the domain A,, A,
'
& 0 which corresponds to the region of the physical spacetime, located to the future of

the singularity (physical in the cases p)+0 and fictitious in the degenerate Kasner model), the kernels

(5.1)—(5.3) satisfy the initial conditions. However in order to fix the kernels uniquely one has to consider
the domain A, , A,

' &0 as well. As Q increases the effect of initial conditions in this extended domain diffuses
into the region )(, & 0, A,

'
& 0 and influences the behavior of the kernels considered.

In the particular eases p( ——p2 ——0 and p( ——p2 ——1 one can represent the kernels (XQ
~

X'0)'" in a more
simple form. I.et us consider first the case p, =p2 ——0. The contour of integration in the integral (4.16)
might be always chosen as follows: it is a straight line from w = cc mi to w—=e ni (e&—0), a straight line
from w =e mi —to w =@+xi, and, finally, a straight line from w =a+xi to w = co+xi. Interchanging the
orders of integration over K) and u) in Eq. (5.3) one obtains

oo +8'i
(XQ

~

X'0)"'= i(4srQ) (2sri) ' dwe'
oo —Ki

(X2 Xi2)2+ (X3 Xi3)2g2+ gi2
+exp ~ p)=72=0 ~ (5.8)

The integral in the latter equation might be further simplified:

f (A,A, '/2O)COSIlll1

oo —1Tl

1 1

co+i (X' —X') (v i (X' ——X')
—s

(hA'/20)coshw —
, +1 1

—w w+i[(X' —X')+n.] w+i[ —(X' —X')+sr]

In the limit e—+0 one then finds

+ f dWe
—(itiV/20coshw

w +i [n+(X' —X'.)] w +i [sr —,(X' —X')]

(5 9)(A,A, /20)COS(U —l E)
I 1

v i E+ (X' ——X') v i E(X' X')— —

(XQ
~

X'0)"'= (XQ
~

X'0)"'[8[m+(X' —X')]—8[—~+(X' —X')]]

)
—1(4 Q)—2 f —(AA. '/20)coshw 1 1

w+2[sr+(X' X')] —w+i[m —(X' —X')]

(X'—X')'+ (X'—X')'+ &'+&'
g exp ~—

40 (5.10)

where the kernel (XQ
~

X'0) ' ' for p( ——p2 ——0 is given by

(XQ ~X'0)' '=i 4srQ ex 40 ui =p2=o.
(5.11)
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Each term in Eq. (5.10) is discontinuous at
l

X' —X'
l

=m. The discontinuity of the second terin might
be verified by using the identities'

1 1
lim . = n—i 5(w)+P—
a~0 W+lE W

I

1 1
lim . =ni5(w. )+P—
e-+0 W —lE W

(5.12)

(5.13)

where P[1/w] is the principal value of 1/w. The discontinuities of both terms compensate each other, so
that (XQ

l
X'0}'"is continuous and differentiable everywhere. Because of the discontinuities mentioned

each term in Eq. (5.12) when taken separately violates the parabolic equation (5.4). It is worthwhile men-

tioning that the latter discontinuities appear exactly on the hypersurface, which separates points that can be
connected by geodesics which do not cross the fictitious singularity at A, =O, from those points that cannot
be connected by such geodesics.

In the case p1 ——p2 ——1 one obtains by a similar procedure

&XQ
l

x'o&'"= (XQ
l
x'0),",'=„=is(~—r)

where

8v,1

u+i (ir+ r )

~ (A, +A, )/4Q —(AA, '/20)cosAU inI V

(2m) Q p
—" v+i(nr). — (5.14)

i sinr A, +A,
' —2A, A, 'cosr

(4irQ)' r " 4Q Pl P2 (5.15)

When Q~O the major contribution to (XQ
l

X'0 }"' in Eqs. (5.10) and (5.14) comes from the terms
(XQ

l

X'0)' ', which are, in fact, the analytically continued kernels (3.31). The second terms in Eqs. (5.10)
and (5.14) have an essential singularity at Q=0.

Making use of Eqs. (5.10) and (5.14) one can determine the behavior of kernels (XQ
l

X'0)"' in the limits

l

X' —X'
l
-+ ao (pi ——pq

——0) and r~ ao (pi ——p2 ——1}. In the first case the following inequality holds:

f —(A,A, '/20)coshwe
1 1

{w+i[n+(X —X' .)]J w+i[n(X —X' .)—]1 ~1 ~ 1 ~1

so that

e
—Xk'/20 + oo 2 4 3/2Q—(A,A, '/40) w 2

e dw=, exp
lx —x'

l

ill A,
'

[(X'—X')' —H] ', (5.16)20

l
(XQ lX'0)'"

l ( 2 n ~ Q ~ (AA, ') '[(X' X') n]— —

(g+ gi)2+(X2 Xi2)2+(X3 Xi3)2
Xexp Pl P2 (5.17)

Similarly one finds that in the case pi ——p2 ——1,

2

l
(XQ

l
x 0)

l

"'(~-'(r' —6)-'(u, )-'"(4~Q)-'"ex
40 (5.18)

Using Eqs. (5.17}and (5.18) one can explicitly see that the kernels (XQ l
X'0}'"fall off rapidly enough

when the separation between the points X and 7 go to infinity, so that the square-integrability condition
(2.16) is certainly satisfied. [This, obviously, follows also from the Fourier integral representations
(5.1)—(5.3) ]

Let us show now that the kernels (5.1}—(5.3) can be represented by well-defined iterated integrals (2.13),
and therefore correspond to well-defined Riemannian path integrals, defined over the regions given by Eq.
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(4.3).
First let us evaluate the integral

I &x"2e
~

x'e&"'&x'~
~

xo&"'y(x")'"d'x"

i'2

26

for the isotropic case. Substituting the kernels, given by Eq. (5.1) in the above expression, and performing
the integration over the spatial variables 7', one obtains

I &X"2e
~

X'p&~~~&X'e &~~~&X'p
~

XO&~~~[y(x')]~~2d4X"

A"+A'= —(2m ) (2e) (A, 'A, ) 'exp du, 'exp
4e

d3~ I + ~ ( g g }I At
lC8

2E' 2E'
(5.19)

Using the integral identity (Ref. 10, p. 395)

2 +A A A'" g«(A, 'x)g«(A, "x)x dx =2@ 'exp — I«
4e 2e

(5.20)

valid for k ~ —1, and the orthogonality of Bessel functions

I x dxg «(A,"x)g«(A, 'x}=00 5(A,
"—X')

(5.21)

one obtains

I &x"2e ~x'~&'"&x'e
~

xo&"'[y(x")]'~'= —&x"2e
~

xo&"', p, =p, =1 . (5.22)

Making use of the latter result in the iterated in-
tegral (2.13}and adjusting the phase by introducing
the weight factor —i to be associated with each in-
tegration involved, one concludes that &XQ

~

X'0&'"
indeed admits path-integral representation. Similar
results are obtained for remaining cases p~

——1,
p2 ——0 (with the phase factor i), and p~ ——p2

——0 (the
weight factor i)

The next problem one faces is to recover the
functional integral form of the iterated integrals
found, namely, the action associated with each
path and the functional measure. This problem,
which is a nontrivial one even for unbounded coor-
dinates is especially severe when the boundaries are
present, as in the models considered here. It is still
unresolved and will be considered in the future.

Finally, let us compare the kernels selected
above using the square-integrability condition with
some other solutions of the parabolic equation
(5.4). In the particular cases p &

——p2 kernels (5.11)
and (5.15) are solutions of Eq. (SA) which cannot
be expanded into a Fourier integral, or equivalent-

ly, do not satisfy the square-integrability condition
(2.14). For the case p~

——pz ——0 the Riemannian
kernel &XQ ~X'0&' ' given by Eq. (5.11) corre-
sponds to the Minkowski-space Feynman propaga-
tor. It is the heat kernel for periodic space (X

I

identified with X'+2m), lifted to the covering
space. This is quite similar to the well-known
Rindler and Schwarzschild cases. For the isotro-
pic model, i.e., for the case p&

——pz ——1, the corre-
sponding kernel &XQ

~

X'0&' ' given by Eq. (5.15) is
not periodic because of the factor r '. This kernel
decreases when the separation between g and 7'
tends to infinity, and therefore it satisfies the
Chitre-Hartle boundary condition mentioned in
Sec. II. However, the kernel (5.15) falls off too
slowly, so that the square-integrability condition
(2.14} is not satisfied. It is easy to verify by direct
substitution that the iterated integrals (2.13) which
involve the kernels (5.11) and (5.15) are ill defined
in the domain ~&0, —Oo &X,X,X &+00 be-
cause of the oscillating character of the integrands.
The one-parameter family of kernels

&xQ
~

x'0&'~'= g&XQ ~x'0&"'

+(1—g)&XQ ~x'o&'", (5.23}

the members of which satisfy the parabolic equa-
tion (5.4), also lead to ill-defined Riemannian path
integrals in the infinite domain of coordinates in-
volved when Q+l.

Let us examine the difference between the ker-
nels &XQ

~

X'0&'" and &XQ ~x'0&'~' (Q&1) from
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the point of view of the initial condition (2.12).
Following Chitre and Hartle' one requires this con-
dition to hold in the domain in which the points g
and X' can be connected by a single geodesic that
does not cross the singularity (actual for pi ——pz ——1

or fictitious for pi ——pi ——0) at A, =O. For the case

p i ——p2 ——0 the above domain is defined by A, & 0,
~

X' —X'
~

& m., and for the case pi ——p2 ——1 it is
given'by A, &0, r &~. In these domains each of the
kernels (XQ

~

X'0)'~' satisfies the initial condition
(2.12). One can then consider whether the latter
kernels satisfy the initial condition (2.12) globally,
i.e., in the entire region A, ~ 0, —oo &X'X X & + ao

corresponding to the Riemannian schemes chosen
in this paper. According to Eqs. (5.5) and (5.7) the
kernels (XQ

~

X'0)"', selected by the square-
integrability requirement, indeed satisfy the initial
condition (2.12). One the other hand the kernels
(XQ

~

X'0}' ', and consequently (XQ
~

X'0}'~+",
violate this condition in the regions

~

X' —X'
~

&n.
for p, =pi ——0 or r ~ n. for p, =@2——1. In the case

pi =pi ——0 the kernel (XQ
~

X'0)' ' given by Eq.
(5.11) is periodic, so that the 5 function at X=X' is
repeated at points X~ =(A,',X'+2irm, X',X' ) for
all m=+1, +2,. . . . In the casep& ——p2

——1 the cor-
responding kernel (5.15) is not periodic, but as
Q~O+ it also evolves into 5 functions repeated
periodically with reduced strength. For the models
considered here and in Ref. 3 the above analysis
suggests that the "true" propagator can be singled
out by imposing the initial condition (2.12) in the
entire domain (4.3) corresponding to the Riemanni-
an schemes chosen. The resulting kernel is the one
which is selected by the nonlocal boundary condi-
tion of square integrability and admits a well-

defined Riemannian path-integral representation.

VI. SUMMARY AND DISCUSSION

The path-integral formulation of quantum field
theory in curved spacetimes faces serious difficul-
ties when the background geometry is singular or
incomplete. As applied to the singular cosmologi-
cal models the important idea of Chitre and Hartle
to restrict the paths to those located to the future
of the initial singularity does not resolve the prob-
lem completely, since it is unclear what is the ac-
tion to be associated with such paths and what is
the corresponding functional measure.

The complexification of spacetimes is not so
much a method for evaluating formally divergent
expressions, but rather a way to establish the form
of the kernels of the Feynman propagators. The

major difficulty of this approach is its noncovari-
ance. More specifically, one applies the analytic
continuation to a certain coordinate system so that
different Riemannian schemes lead to nonidentical
field theories. A particular scheme seems to be
justified if the operational meaning can be given to
corresponding particle states.

Once the Riemannian section is chosen there is a
problem of finding the propagator corresponding
to this choice. Because of the lack of knowledge
of both the action and the functional measure of a
path integral when the manifold is singular or in-
complete, one is forced to solve the parabolic equa-
tion and to choose the appropriate boundary condi-
tions. It is at this stage that the path integral
plays an important role, being the selection princi-
ple for the solutions of the above equation. I con-
jecture that there is only one Riemannian kernel
that admits a path-integral representation defined
on the domain specified by the complexification
scheme chosen. The existence of the Riemannian
path integral, or more precisely, of the iterated in-

tegral, is a boundary condition which is too impli-
cit, but it certainly requires the integrands of the
iterated integral to fall off rapidly when the
separation between the arguments of the kernels in-
volved tends to infinity. This condition may be
embodied in the square integrability of the
Rieinannian kernel, proposed in Ref. 3 and expli-
citly used in this paper, although it is stil1 not clear
whether these conditions are equivalent.

In the present work all of these problems were
not touched in their full generality, but rather a re-
stricted class of linearly expanding Bianchi type-I
models was discussed. For all of them the square
integrability singles out only one propagator within
the Riemannian algorithms used. However, as was
explicitly shown in the case of the degenerate Kas-
ner model, the condition of square integrability is
not totally invariant, because the limits of integra-
tion are determined by the Riemannian scheme
chosen. Furthermore, it was shown that all the
kernels selected this way can be represented by
well-defined iterated integrals, although the prob-
lem of explicit functional integral representation of
the results still remains to be solved. It was also
shown that the kernels selected by the square-
integrability condition satisfy the initial condition
at 0~0+ in the entire domain chosen by the
Riemannian schemes used. Explicit expressions
were found for some other heat kernels. Within
the infinite domains of coordinates involved the
latter kernels violate the initial condition at A~0+
and do not admit well-defined path-integral repre-
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sentations.
Finally, all of the selected piopagators corre-

spond to particle creation with spectra that at
higher energies resemble those of one-, two-, or
three-dimensional blackbody radiation. How gen-
eral this result is is also a problem which has to be
solved in the future.
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Let us consider the propagator G(P)(xx') for the
degenerate Kasner universe, which is given by the
Fourier integral

G o
( ) d3kei k ( x —x ')H(2)(pt )H(1)(pt )

4(2m }
ik„ ) k„

Using the result of Ref. 3, the integral over k„is found to be

(Al)

2iH—() '(( —2((, o.
)
)'~ ), o i (0,

—Ep((2)M o))'~ ), o, &0,
m'

(A2)

where

2o, =—[t'+ t' —2tt'cosh(z —z') ], (A3)

and I(.'p(x) is the Hankel function of the imaginary argument of order zero.
Let us consider first the case o i &0. Using the integral representation of the Bessel function (Ref. 10, p.

359)
2'f e'"r "~d$=2irg p(up),

one can rewrite the integral in Eq. (Al) as

(A4)

GP'(xx') = f ding p(Ap)Ãp([2o)(A+m )]',~ ),
(2ir)

where

p'=(y —y')'+(z —z')' .

Using the standard integral given in Ref. 17, p. 706, this leads to

GF (xx')= I(.')((2m cr) )=-(p) , 1 m m2 HP'(( —2m (r)'~ )

4 2o. ( —2m'o )'"
where o is given by Eq. (3.29). In the case o i &0,

(A5)

(A6)

(A7)

(AS)G' '(»')=
s f dk2e ' f dk e H' '(( —2)p o))'~ ) .

2(2ir) CO

Using the integral representation of the Hankel function H0 ' as given in Ref. 10, p. 180 the latter expres-
sion can be written as

(p), l +~ ik2(z —z') +~ ik (y —y') ~ du .O1 .~ u
G (xx'}= dk2e ' dk~e " exp i i—

2(2m} 0 u u 2

ik„u iky u

2 2

(A9)

Introducing small convergence factors and interchanging the orders of integration leads to the following ex-
pression:
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G (xx') =(O), 1 ~ ds . g 10
exp —im s+

(4n) o s s

where o is defined by Eq. (3.29). Using the result of Ref. 4 one finds that in this case once again

2 ~(2)(( 2rn2 )1/2)
G "&(xx )=-

( —2trt a)'

Therefore in both cases, o~ &0 and crt &0, the resulting propagator is given by Eq. (All).

(A10)
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