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We present calculations of the type that will be necessary for interpretation of large cosmic-ray
experiments that measure longitudinal profiles of individual showers. A primary goal of such
experiments is to determine both cross section and composition around 10 eV.

Study of longitudinal development of air showers
initiated by cosmic rays of ultrahigh energy has re-
cently become feasible through study of time struc-
ture of Cherenkov light from air showers, ' and in
the last few months by observations of scintillation
light from nitrogen fluorescence in the atmosphere
induced by traversal of large air showers. ' The last
technique will make it possible to study a large sam-
ple of events (—104) with energy around 10~ GeV in

the next several years. Individual shower profiles can
in principle be measured, in particular, the distribu-
tion of effective shower starting points, shower maxi-
ma, and shower demise for fixed total track length
(i.e., total deposited energy). In this paper, we dis-
cuss the capabilities and limitations of experiments
that measure shower profiles for determining the
asymptotic behavior of the proton-proton total cross
sections up to Ws —100 TeV.4 We also discuss the
sensitivity of these techniques to primary composition
of cosmic rays of about 10' eV. We conclude that it
will probably be possible to measure the proton cross
section at these energies if it is less than —120 mb
and to place a lower bound otherwise.

The use of air showers to determine cross section
and composition simultaneously has a long history. 5

Results have been limited by problems of fluctua-
tions (both intrinsic and instrumental) in the pres-
ence of a steep primary energy spectrum. Although
these problems are still present in the type of experi-
ment discussed here, the ability to measure longitudi-
nal profiles of individual showers is a substantial im-

provement over the situation in the classic air-shower
experiment in which the cascade is sampled at one
depth only.

If the actual shower starting points xo could be
measured, then the cross sections on air nuclei of the
different components in the incident cosmic-ray beam
and their relative weights could be unfolded directly
from the measured attenuation of the primary beam.
In any indirect experiment, however, xo cannot be
measured. Our task, therefore, is to find out to what
extent measurable distributions, such as depth of
quarter maximum (x~~4) or depth of maximum (x ),
reflect the fundamental interaction lengths and the
composition despite the existence of fluctuations in
shower development which may also contribute signi-
ficantly to these distributions.

This problem was investigated in Ref. 6 with em-
phasis on fragmentation and pion production in col-
lisions of nuclear projectiles. It was found that, as
expected, the tail of the xil4 distribution reflected the
input cross section for protons and that the portion of
the distribution with small values of xi~4 is sensitive
to the fraction of heavy primaries. The calculations
of Ref. 6, however, are based on a simplified model
for nucleon showers and consider only one, energy-
dependent o-~ „,. Moreover, only results for xi'
were reported in that paper since that distribution
should resemble the distribution of shower starting
points more closely than x . We have since learned'
that determination of xil4 with Fly's Eye is at
present limited due to problems arising from lack of
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light, contamination due to Cherenkov light, atmos-
pheric scattering, and other effects. We therefore
present results here for x, based on a variety of as-
sumptions for cr~ „,and using a rather detailed
Monte Carlo treatment of development of showers
initiated by protons and nucleons of nuclei. Frag-

mentation and pion production by nuclear projectiles
are treated as in Ref. 6. Momentum distributions 'of

secondaries produced in collisions of nucleons and
pions are obtained by simply scaling the measured
distributions from Js = 20—60 GeV to cosmic-ray
energies, as in Ref. 8.

Figure 1 shows distributions of x for two arbitrary
compositions, ' The region 600 ~ x~ ~ 750 g/cm' is
particularly sensitive to abundance of heavy primaries
relative to protons, whereas the region x ~ 750
g/cm reflects primarily protons. We therefore ex-
pect that the tail of the x distribution may reflect
the proton cross section. Accordingly, we define an
effective attenuation of the maximum by fitting the
deep portion () 760 g/cm2) of the distribution to
exp( —x /A ). In the example shown here the in-
teraction lengths for protons and 0.'s are A~ „,—40
g/cm' and h. ,;,—35 g/cm2 (corresponding to
o~t~" —130 mb at Ws = 25 TeV)." If the proton cross
section is indeed this large, measuring it will be possi-
ble only if the concentration of o. primaries is not too
large (i.e., only if N (N~). '2 The extent to which
heavy primaries may interfere with determination of
X~ „-, is illustrated by noting that A is decreased by
13% for the heavier composition in Fig. 1 and by 7%
for the composition with 55'/o protons relative to the
case for pure protons. For p-air cross sections in the
range of 500 mb, a 10% uncertainty in A gives rise
to an approximately equal uncertainty in o~ „, (see
Fig. 2).

Even without the problem of heavy primaries,
measurement of x or x~~4 alone cannot determine an
arbitrarily large proton cross section because of in-
trinsic fluctuations in shower development. The
results of our calculations bear this out, as shown in
Fig. 2. Here we show A for proton showers only, as
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FIG. 1. (a) Distribution of depth of maximum for
showers of energy ~3 x 10 eV per nucleus for two composi-
tions: p: o. '. CNO+Mg: Fe =0.55:0.21:0.16:0.08, as at low
energy (L); and p: u. CNO+Mg: Fe =0.2:0.08:0.07:0.65,
denoted H. (b) and (c) show the components separately for
the low-energy and the heavy composition, respectively.

FIG. 2. A~ vs cr~.„,for proton showers chosen from a
power-law energy spectrum (differential index = 2) with

Eo & 3 x 10 eV, Error bars show statistical uncertainty
from the simulation result. Since the figure shows proton
showers only, it cannot be used for an accurate determina-
tion of o.. See text.
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TABLE I. Characteristic lengths for various cross sec-
tions. Errors are statistical uncertainty in simulation results.
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FIG. 3. (a) Energy-dependent cross sections for inelastic

p-air collisions used for the calculations shown in Fig. 2.
The curves are labeled to correspond to the values of o-~1~0

shown in part (b). (b) Energy-dependent pp total cross sec-

tions. The curves labeled logs and log s are extrapolations

of fits to the cross section up to CERN ISR energies. The
curve labeled A is an extrapolation of the estimate of Afek

et al. (Ref. 15) and LM stands for Leader and Maor (Ref. 16).

a function of o.
~ „,at 3 x 10' eV. For the atmos-

phere,

2 4x104
) ~,;, (g/cm') =

trp @y (mb

%c emphasize that Fig. 2 cannot at present be used
for an accurate determination of o-~.,;, from A be-
cause of the dependence on composition mentioned
above. In addition, possible effects of uncertainties
in the interaction model and of instrumental fluctua-
tions need to be understood.

Primary energies of the protons were chosen from
a power-law spectrum with Eo & 3 x 10"cV. To ap-
proximate Fly's Eye conditions we used a differential
spectral index of 2. The true index is about 3 but the
acceptance is proportional to E. Cascade develop-
ment depends on the hadronic cross section at all en-
ergies up to the primary energy, though the overall
profile is dominated by the high-energy behavior.
Figure 3(a) shows the energy dependences of o.~ „,

used to construct Fig. 2. [Each point in Fig. 2 corre-
sponds to one curve in Fig. 3(a).] The p-air and
nucleus-air cross sections were obtained from o-~~

(and the pp slope parameter) using Glauber theory as
described in Ref. 13. The corresponding values of
o.~t~" are shown in Fig. 3(b)."

Inspection of Fig. 2 suggests that experiments that
can measure shower profiles should be able to esti-
mate the proton cross section at Js —50 TeV if it is
not too large (say a~ „,( 600 mb or o~t~ ( 120 mb)
and to place a lower bound otherwise. If the abun-
dance of o. primaries werc much larger than we have
assumed or if heavy primaries were very abundant,
the dividing line between measurement and lower
bound should be somewhat lower. Perhaps surpris-
ingly, A is as sensitive to cross section as A1/4,
though for a given cross section A1/4 is numerically
closer to X;„, than A (i.e., A )At/4) X;„,—see
Table 1). This may be of practical importance since
x appears easier to measure than x1/4. Determina-
tion of relative abundance of heavy nuclei, as well as
cross section, will require unbiased measurements of
x (and/or xt/4) over the full range of depths (see
Fig. 1).

Complete results for shower profiles calculated
with various models (including scale breaking) over a
range of energies and description of details of the cal-
culation will be published elsewhere.
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