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General relativity has the property that, under the natural projection mapping, the image
of the constraint surface in the phase space is a proper subset of the configuration space.
This feature is not shared by other field theories of direct physical interest such as the
Yang-Mills theory, nor by constrained systems which have been modeled after general rel-
ativity and analyzed in detail. Therefore, to gain insight into this feature, a new example
with a finite number of degrees of freedom is introduced and quantized. The analysis sug-
gests that, in the canonical approach, the reduced phase-space method is likely to yield an
incomplete description of quantum gravity. In particular, contrary to the indication pro-
vided by this method, quantum gravity may admit states with negative energies.

I. INTRODUCTION

Although the literature on the phase-space
description of classical general relativity and the
subsequent canonical approach to quantization is
quite rich,! one aspect of the problem appears to
have been overlooked, particularly in the context of
quantization. This has to do with a peculiarity of
the constraints of the classical theory. Certain parts
of the configuration space are inaccessible to the
physical states of the gravitational field. More pre-
cisely, as we shall see in Sec. II, the scalar con-
straint C(q,p)=0 depends quadratically on the
momentum variables and in a complicated manner
on the configuration variables with a consequence
that the constraint surface T in the phase space T’
does not project down to all of the configuration
space € but only to a proper subset € thereof.
While this feature plays no essential role in the clas-
sical theory—the arena for the Hamiltonian
description is the phase space rather than the con-
figuration space—it is significant for passage to
quantum theory via canonical methods. For exam-
ple, in the Schrodinger representation quantum
states arise as functions on the configuration space
so that the “size” of this space dictates the structure
of the quantum Hilbert space.

The feature €% can arise trivially if the con-
straint is independent of momenta (example: a par-
ticle restricted to move on the surface of a two-
sphere in R3). However, in this case, one can first
get rid of the constraint, e.g., by noting that the re-
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duced? phase space is, naturally, the cotangent bun-
dle over %, and then base quantum theory directly
on €. In the case of general relativity, the natural
cotangent-bundle structure fails to exist since the
constraint function now depends on momenta as
well. Had C(g,p) been linear in momentum vari-
ables, the constraint would have led to no restriction
on the configuration variables at all; Z would have
been the same as €. The constraint could be elim-
inated also in this case by simply redefining the
configuration space since the reduced phase space
would again admit a natural cotangent-bundle struc-
ture.’ A familiar example where this situation oc-
curs ii the ang-Mills theory, where the constraint
C(A,E)=divE=0 leads to no restriction on the
configuration variables A and can be handled in a
straightforward way both in the classical and the
quantum theory. (The Yang-Mills constraint is
analogous to the vector constraint in general rela-
tivity which is also well understood.) Do there exist
simple systems with constraints which are quadratic
in momenta? Two such examples are well known
and have been studied in detail to gain insight into
the situation in general relativity.* The first is the
free relativistic particle where the constraint is
C(q,p)=8%p.pp —1>*=0, and the second is the so-
called parametrized nonrelativistic particle, the con-
straint being

Clg,p)=po+(1/2m)p*4+¥(q)=0.

These constraints are sufficiently complicated so as
to prevent the reduced phase space from admitting
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a natural cotangent-bundle structure. However, in
neither case does the constraint impose any restric-
tion on the configuration variables; in both cases
€ =%. Thus, although a number of constrained
systems which mimic certain features of general rel-
ativity have been studied in the literature, apparent-
ly none of them has a constraint which restricts the
configuration variables and, at the same time, ob-
structs the existence of a natural cotangent-bundle
structure.

The presence of such a constraint in general rela-
tivity raises a key question: Will the permissible
wave functions W(g) of quantum gravity be forced
to have support in Z, or can they also have support
in the classically forbidden region € —%? Note
that any approach that requxres one to first go to
the reduced phase space? T and then quantize, e.g.,
by introducing some cotangent-bundle structure—
or, more generally, some polarization—on I" would
a priori exclude the possibility of wave functions
with support on the classically forbidden region.
By construction, T has no knowledge of ¢ —%.
Yet the tunneling effects of this sort are so charac-
teristic of quantum mechanics that one is tempted
to think that W(q) should be allowed to penetrate in
the classically forbidden region unless infinite bar-
riers present themselves. Note that such a quantum
tunneling would have consequences of direct physi-
cal significance. An example—perhaps the most
striking one—is provided by the issue of ground-
state energy of quantum gravity. In the classical
theory, the restriction of the Hamiltonian to the
constraint surface I is a function EAPM the
Arnowitt-Deser-Misner (ADM) energy, which de-
pends only on the configuration variable g;
EADM=EpADM(g)  Furthermore, thanks to recent
powerful theorems,> one now knows that EAPM js a
non-negative function on T, vanishing only at those
points (g,p) which correspond to Minkowski space.
Hence, at first thought, one may expect that the
Hamiltonian of quantum gravity would also be
non-negative. However, there also exist® semiclassi-
cal calculations which indicate that the Gaussian
wave function peaked at the flat three-geometry—
the perturbative ground state—would be unstable in
full quantum gravity. This suggests that the true
ground state of the full theory may have negative
energy. (Note that, unlike in other physical
theories, the “zero of energy” cannot be shifted in
the gravitational case so that the value of the
ground-state energy is absolute.) Since the calcula-
tions are only semiclassical, however, a priori it is
not clear if the results reflect the basic features of

the full theory or if they are only quirks of the ap-
proximation schemes adopted. The framework of
canonical quantization provides an ideal platform
from where one can evaluate this situation. How
does the situation look from this platform? As we
shall see, the key question here is whether or not
physically permissible wave functions tunnel into
the classically forbidden region. If they do not, i.e.,
if their support is restricted to %, one expects the
energy to be non-negative also in the quantum
theory since EAPM depends only on the configura-
tion variables and is non-negative on Z. If, on the
other hand, the wave functions W(gq) do penetrate
into the classically forbidden region € —%, where
the classical energy can be negative, one may have
quantum states with negative energies.

The purpose of this paper is to shed some light
on these issues using a model-constrained system.

Section II summarizes the Hamiltonian descrip-
tion of asymptotically flat gravitational fields in
general relativity and explains, in particular, how
the feature under discussion arises. We have devot-
ed an entire section to this description for the fol-
lowing reason. Whereas asymptotic flatness is cru-
cial to the issues which we wish to discuss here, this
is precisely the context which appears not to have
drawn sufficient attention. In the literature on
canonical quantization, the focus is on spatially
compact universes.” In the spatially compact con-
text, the Hamiltonian of general relativity is equal
to the scalar constraint function and vanishes iden-
tically. A great deal of effort has been devoted to
the understanding of the significance of this feature
and the resulting conceptual problems have been the
central themes of the work on canonical quantiza-
tion in recent years. In the asymptotically flat con-
text, on the other hand, the Hamiltonian does not
vanish. On the constraint surface, it reduces pre-
cisely to the ADM energy function EAPM(q). Con-
sequently, in this context, the overall scenario
changes substantially.

Using this scenario as a guide, we introduce, in
Sec. II1, a model system with a finite number of de-
grees of freedom. The model mimics general rela-
tivity in several ways: it has a constraint, quadratic
in momenta, with the property that, under the na-
tural projection, the image Z of the constraint sur-
face is a proper subset of the configuration space ¢’;
the constraint is preserved under time evolution;
and a positive-energy theorem is satisfied classical-
ly. Since the system has only a finite number of de-
grees of freedom, one can quantize it in a straight-
forward manner. Following Dirac,® the constraint
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is carried over to quantum theory by imposing the
condition C(q,p)-¥(q)=0 on the physical states
Y(q), where C(q,p) is the quantum operator corre-
sponding to the classical constraint function C(q,p).
(There are no factor-ordering problems.) We find
that physical states can have support on the classi-
cally forbidden region ¥ —%. Furthermore, the
physical subspace admits states for which the ex-
pectation value of the Hamiltonian is negative.
Thus, because of tunneling, the classical positive-
energy theorem fails to go over to the quantum
theory. Finally, we compare this quantum descrip-
tion with the one obtained using the reduced phase
space and explicitly show that the latter contains
only a part of the states of the former; the reduced-
phase-space method yields an incomplete quantum
theory.

In Sec. IV, we discuss the possible significance of
these results to quantum gravity.

II. HAMILTONIAN DESCRIPTION OF
THE ASYMPTOTICALLY FLAT
GRAVITATIONAL FIELD

We first give a summary of the phase-space for-
mulation of classical general relativity in the
asymptotically flat context and then discuss briefly
the problems associated with quantization.

Fix a C* manifold =, diffeomorphic to R* (Ref.
9). Denote by & the space of positive-definite
three-metrics g,, on X with respect to which Z is
complete and which are asymptotically flat at spa-
tial infinity in the sense of Ref. 10. Denote by T’
the cotangent bundle of ¢. Thus, elements of " are
pairs (g4,p?), where p®=p‘®® are tensor densities
of weight 1. The action of the cotangent vectors p“
on the tangent vectors 8q,, is given by

p-dg=[ P84 - @.1)

The integral on the right-hand side is independent
of the choice of a volume element since the in-
tegrand is a scalar density of weight 1 and con-
verges because of the fall-off conditions of Ref. 10.
¢ represents the configuration space, and ' the
phase space. Consider the surface T in I" defined
by the pairs (g,p) satisfying the constraint equations

C°=Dyp®=0, 2.2)
C=pup™—+p°.p% —(detg)R =0, 2.3)

where D and R are the derivative operator and the
scalar curvature of g, respectively, and where the
indices are raised and lowered by gq,,. ' will be re-

ferred to as the constraint surface. Every point
(g,p) of T provides an initial datum for Einstein’s
vacuum equation, where g, is the intrinsic three-
metric and 7%=(detq)~"2(p®—5p™,.q®) is the
extrinsic curvature. Furthermore, thanks to the
main result of Ref. 10, one now knows that the re-
sulting space-time is asymptotically flat at spatial
infinity (i°) in the sense of [the definition (3.1) of]
Ref. 11.

Had T been finite dimensional, say 7, a surface T
of dimension m in I" could have been specified (lo-
cally) by n —m equations of the type C;(x%)=0,
where i runs from 1 to n —m and a from 1 to n, x¢
being a chart on I'. One can ensure that none of the
equations is redundant (e.g., C, is not just C’* or
C?) by requiring that C; be differentiable every-
where on T and that the (n —m) covector fields
0C;/0x® be linearly independent at -each point.
These conditions ensure that C; can themselves be
used as the n —m coordinates of " which vanish on
T. In the actual case under discussion, we can ob-
tain analogous equations by multiplying C* and C
of Egs. (2.2) and (2.3) by suitable test fields, in-
tegrating over 2, and setting the result equal to
Zero:

Cyo= [ NoC?= [ N, Dyp®=0, (2.4)
Cy= [ NC(detg)~'"2 2.5)
= [ NIppas —5p°
—(detg)R](detq)~ 172
=0.

(Note that, unlike C,, and Cy, C* and C are not

Sfunctions on T'. Hence, to obtain the analogs of C;
of the finite-dimensional case, it is necessary to in-
troduce the test fields N* and N.) What conditions
should N¢ and N satisfy? One can show that Cya

and Cy are not differentiable unless N and N° tend
to zero at spatial infinity."?> This is a general feature
and does not depend sensitively on the technicalities
involved in the choice of function spaces. Hence,
from now on, we assume that the fields N? and N
which enter in the expressions of C,, and Cy satis-

fy this fall-off property. The constraint surface T
is now determined by Egs. (2.4) and (2.5).

What are the canonical transformations generated
by Cy. and Cy? As is well known,! the action of

Cy

spatial diffeomorphism group generated by N% on =
(Gab—>Gap +€-L Nqap and p®—p®+e.# yp® in the
infinitesimal form), and the action of Cy corre-

« is the same as the induced action on T" of the
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sponds to diffeomorphisms in the timelike direction
generated by Nt° in the four-dimensional solution
of Einstein’s equation obtained from each (g,p) in
T, t° being the unit normal to = (regarded as a sub-
manifold in the solution). It is important to note
that, since N® and N are required to go to zero at
infinity, the diffeomorphisms are all identity there;
in terms of i°, they induce the identity transforma-
tion of the asymptotic Poincaré group.!! To obtain
asymptotic translations, one must allow N¢ and N
to go to nonzero constant fields at infinity. Howev-
er, when this is done, C,, and Cy are no longer dif-

ferentiable functions on I', and, consequently, fail
to generate any canonical transformation. This is in
fact the main reason behind the asymptotic condi-
tions on N° and N imposed above. To summarize,
then, the canonical transformations generated by
the constraint functions correspond to diffeomor-
phisms which are asymptotically identity. These do
not include the diffeomorphisms which feature in
the asymptotic Poincaré group. In particular, the
translations are excluded.

What are the generators of translations? One can
show!? that these are

-1 r L a b
HTaE 87 fz Taca+ 87 ¢ST P“de ’ (2.6)
1 -1/2
Hr= 167 f; 1

1
=+ ET—¢ST(aaqbc —a,,q,,c )eacdSb » (2.7)

where T is a vector field on = which is asymptoti-
cally a space translation, T a scalar field on 2=
which is asymptotically a constant, e a fixed flat
metric on 2,!° 3 the covariant derivative compatible
with e, and where S is the two-sphere at infinity
of . Even though T and T fail to vanish asymp-
totically, the presence of the surface terms makes
H_, and Hr differentiable on I'. H, is the spatial

momentum and Hr is the energy. Note that, even
on the constraint surface I', H , and Hr do not

vanish identically. In fact,on T,

1 b
Hr(g,p)= 1—Jgisﬂa‘,q,,c—a,,q,,c )e*dsS

=T |SEADM(Q) ’

and the positive-energy theorems ensure that EAPM
is non-negative on T and vanishes only at the points
(g,p) corresponding to Minkowski space.’ Using
this result, we can now see how the peculiarity of

general relativity, discussed in Sec. I, arises. Con-
sider any three-metric ¢, in € for which the sur-
face term in Eq. (2.7) is negative. (There exist a lot
of such metrics. Example: Choose g2 to be
isometric to the negative-mass Schwarzschild
three-metric outside, say, r =17 | m | and make any
smooth extension inside.) Then, there cannot exist
any tensor density p® such that the pair (¢°p) sat-
isfies the constraint equations (2.2) and (2.3): the ex-
istence of such a field will provide us with a point
of T at which Hy is negative, thereby contradicting
the positive-energy theorem. Thus, g3 cannot be-
long to the image € of T under the natural projec-
tion mapping from I" to €; € C¥. Note that the
argument uses the fact that the surface term in Eq.
(2.7), the ADM energy, is independent of the
momentum variables, which is itself a peculiarity of
general relativity.

To summarize, then, in the asymptotically flat
contexts, there is a clear distinction between con-
straint functions Cy. and Cy and the Hamiltonians

H_, and Hy. In the Dirac® theory of constrained

systems, constraints generate gauge and Hamiltoni-
ans generate dynamics. If one adopts this
viewpoint, one is led to the conclusion that in the
asymptotically flat contexts, there is a clear distinc-
tion also between gauge and dynamics. A detailed
examination shows!? that the group generated by
the constraints—the gauge group @ la Dirac— is a
normal subgroup of the group generated by the con-
straints and Hamiltonians together, the quotient be-
ing the four-dimensional group of translations,
representing “pure dynamics.” (To simplify
matters, we have left out rotations and boosts.) Al-
though this viewpoint is simple and attractive, it is
not necessary to adopt it for our main purpose in
this paper. What we need is only the fact that the
constraints are different from the Hamiltonians.
The difference disappears in the spatially compact
case. This situation is analogous to that in the
Yang-Mills theory. On a compact spatial slice, just
as the total charge of any source-free Yang-Mills
field vanishes, 'so does the total four-momentum of
any source-free graviational field.

We can now turn to the problem of quantization.
Two lines of attack have been proposed in the
literature. The first is the reduced phase-space ap-
proach. Here, one first constructs the space I', each
point of which represents an equivalence class of
(“gauge-related”) points of the constraint surface
T.2 T inherits a natural symplectic structure from
I' and may be thought of as the phase space of true
degrees of freedom of the gravitational field; con-
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straints are eliminated. The price paid is that the
reduced phase space T does not have a natural
cotangent-bundle structure. Hence to obtain the
quantum description, one has to find a new input, a
polarization'® on f. Alternatively, one can try to
take advantage of the existing cotangent-bundle
structure of I'. This leads to the second approach.
Here, one considers wave functions ¥(gq) on ¥.
However, one now has to incorporate the con-
straints explicitly. The prescription is to find quan-
tum operators QN,, and Cy corresponding to the

classical constraint functions and permit as physical
states only those wave functions W(g) which satisfy
the quantum constraints'*:

Cy¥(@)=0, 2.8)
CyV¥(q)=0. (2.9)

The significance of the first constraint is clear': It
requires that the wave functions W(q) should de-
pend only on the equivalence classes of three-
metrics, where g,;, and g, are considered equivalent
if they are related by a diffeomorphism on = which
is asymptotically identity. The second constraint is
not so easy to interpret. In fact, in this case, the
formal expression of Cy is divergent because it in-
volves products of operator-valued-distributions and
a canonical regularization is not yet available due to
the difficult factor ordering problems. Thus, both
approaches face difficulties. There are, nonetheless,
indications that one may be able to use the presence
of a nonvanishing Hamiltonian to resolve several of
these problems. These indications, however, will be
discussed elsewhere; the main purpose of this paper
is to compare the two methods using a model sys-
tem which mimics the appropriate features of gen-
eral relativity. For now, we only note that for ex-
amples studied in this context so far, both methods
are applicable and lead to equivalent quantum
theories.

III. THE EXAMPLE
A. The system

Our aim is to construct a model which mimics
certain features of general relativity and is yet suffi-
ciently simple so that the two quantization methods
referred to in Sec. II are applicable. The features of
general relativity which we wish to mimic are the
following. (i) There is a constraint, quadratic in
momenta, such that the image @ of the constraint
surface T under the natural projection is a proper

subset of the configuration space ¢; (ii) The con-
straint is preserved under time evolution, i.e., the
Poisson bracket of the Hamiltonian and the con-
straint vanishes weakly; and, (iii) The Hamiltonian
is non-negative on the constraint surface T'. Strictly
speaking, the third property is not essential to com-
pare the two quantization schemes. However, it
will enable us to show explicitly that the differences
between the resulting quantum theories are not just
mathematical artifacts but can lead to distinct phys-
ical predictions.

Let the configuration space € be R3 and let T be
the cotangent bundle over ¢. Introduce spherical
coordinates (r,0,4¢) on €. Let the constraint be

C=pe’—R(¢)=0, (3.1)

where R(¢) is a smooth function of ¢ which takes
on both positive and negative values. The con-
straint is quadratic in momentum variables, and,
since pg’ is non-negative, the image Z of the con-
straint surface T is not all of €: € contains only
those points of € at which R(¢)>0. The regions
of T with Py 20 will be referred to as T, respec-
tively; on T, pg=+[R (¢)]/%

Next, we have to introduce a Hamiltonian such
that conditions (i) and (iii) above are satisfied.
Several choices are available. Perhaps the simplest
of these is

H(4,p)=C(4q,B)+E($) (3.2)

with E(¢) satisfying the condition E(¢)-R(¢)>0.
Thus, in particular, E(¢) >0, where R(¢)>0. This
definition mimics the situation in relativity, E(¢)
playing the role of the surface term EAPM(g). The
Poisson bracket of C and H clearly vanishes. Final-
ly, since H(q,p)=E(d,p) on T, the energy is
non-negative on T'; a positive-energy theorem is sat-
isfied classically. Furthermore, just as E“PM(q)
fails to be positive outside the constraint surface in
general relativity, so does E(¢) in our example.
Another possible choice of the Hamiltonian is

H'(q,p)=p,2/2+pa*/2r*+V(r)R($),  (3.3)

where V(r) is a smooth, non-negative function of r
with f V(r)rldr < «. Again, it is easy to check
that conditions (ii) and (iii) are satisfied.

Both choices have the feature that p, does not
appear in the Hamiltonian although ¢ does. Conse-
quently, ¢ is a constant of motion although p, is
not. This makes it awkward to interpret the model
directly in terms of particles and potentials that one
usually comes across. The feature could probably
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have been avoided at the cost of making the con-
straint and the Hamiltonian more complicated.
However, the situation in general relativity is simi-
lar to that in the present model: the kinetic energy
term

(3 9ab9ea —acqba )PP

in the Hamiltonian (2.7) has a degenerate super-
metric so that the momentum variables satisfying
P%p% =2p.p® make no contribution to the Ham-
iltonian. We have therefore refrained from intro-
ducing more complicated models.

For simplicity, in what follows, we shall use H of
Eq. (3.2) as our Hamiltonian. However, all the
basic results would remain unaltered had H' of Eq.
(3.3) been used instead. Furthermore, the proofs
would have to be modified only in inessential ways.

B. Quantization with operator constraint

Let 2 denote the Hilbert space of square-
integrable functions on €; ##=L*R3). A physical
state ¥ of the system is an element of # satisfying
the quantum constraint equation

C¥=[py"—R(¢)]¥(r,0,6)=0. (3.4)

Fortunately, the system is simple enough so that no
factor-ordering problems are encountered here. The
operator R just multiplies ¥ by the function R (¢)
and the operator py is given, as usual,' by

Po=(#/i)dg+ 5 coth) . 3.5

(Note that pg is a symmetric operator on the dense
subspace of 57 consisting of, say, C* functions of
compact support of R* and admits a self-adjoint ex-
tension.) It is straightforward to solve Eq. (3.4).
The solutions are given by

V. (r,0,4)=K(r,¢)(sin~'"20)

X exp (3.6)

J_r—;;\/_R(dJ)e

where K(r,¢), an arbitrary function of r and ¢, is
the “integration constant.” It is important to note
that the support of K(r,¢) is not necessarily con-
tained in %, and, consequently, R (¢) is not neces-
sarily real everywhere in the support of ¥,. The
solutions ¥, are nonetheless normalizable provided
K (r,¢) falls off appropriately at infinity,

|

|(r,0,6)|>= [_|K(r,¢)|*r%drdods + [ __|K(r¢)|%exp rd0dpdr. (3.7

_2 12
$20|R(@))|

Denote by .%’+ the space of normalizable solutions W, to the constraint equation. Each %’+ is a complex
subspace of the Hilbert space . Set =3, ® 7 _. I is the physical subspace of % (and is the quantum
analog of I). For simplicity, we shall restrict ourselves to 7 . in detailed calculations. The analysis and re-
sults for 77 _ are identical.

Note that if the support of K (r,¢) is chosen to lie in & —%—which can always be done since K (r,¢) is
freely specifiable except for a normalization condition—we obtain physical states whose support lies entirely in
the classical forbidden region. Let us consider the expectation value of the Hamiltonian operator
H=py*>—R(¢)+E(¢) in such a state ¥, . One obtains

<W+,LIW+)=(W+,E(¢)W+)

ﬁ —
='2'f%_%-E(¢)|K(r,¢)I2|R(¢)I 172 [1——exp

Since E (¢) is negative in € — %, we have
(¥, ,HV,)<0. (3.9

Thus, although the classical energy is positive on
the surface of physically admissible states, the
quantum Hamiltonian admits negative expectation
values on certain states in the physical subspace 7.
As is clear from the above calculations, this comes
about because the elements of # can tunnel in to

——2-ﬁ£|R |'/2' ]rzdrdd). (3.8)

the classically forbidden region € —%. Finally,
since HVY =E(¢)¥ for all V¥ in the physical sub-
space 7 of &, and since E(¢) is a C* (and hence
bounded) function on R?, it follows that the Hamil-
tonian H is a bounded self-adjoint operator on .
The spectrum of H is bounded below and, by Eq.
(3.9), the lower bound is negative.!’

The existence of quantum states with support en-
tirely in the classical forbidden region is very
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surprising at first. For, since these states satisfy the
quantum constraint ps*¥ =R ($)¥, and since R (¢)
is negative on € — €, one obtains

(W,pp®¥ ) =(¥,R($)¥) <0, (3.10)

contradicting one’s intuition about the positivity of
1_)92. How does this result come about? Let us reex-
amine the steps leading to Eq. (3.10) one by one.
Consider, to begin with, solutions ¥ to the quantum
constraint equation (3.4). Does ¥ define, unambi-
guously, an element of %#7? Note, first, that al-
though W contains a factor of sin~!/26, its singular-
ities are confined to a set of measure zero, the z
axis. Furthermore, since the volume element of R3
contains a factor of siné, the L2 norm of W is finite.
Thus, it does define a unique element of 7. Next,
we ask: Is poW . again in # for all ¥ in 77 ,?
Since!® -

P+ =[R($)]'*¥ ,

we have
<1_79‘P+’1_’0W+ ) < IR(¢) I sup<\y+’\l’+ ) ’
(3.11)
where | R(¢) | gp is the maximum value of | R(¢) |
in R3. [Recall R(¢) is a bounded function on R3]
Therefore, if ¥, belongs to 5, ps ¥ belongs to
2. Furthermore, since the quantum constraint
operator C contains derivatives only with respect
to 0, it follows that pp¥, =R'*¥  is again in
# . Thus, Po leaves # ., invariant and conse-
quently py” is a well-defined operator on . How
then can 292 admit negative expectation values?
The answer is simply that py (as well as _1392) fails to
be self-adjoint (in fact, even symmetric) on #,
which is to be expected since R!/? is imaginary on
€ —%. Thus, if ¥, and ¥, are any two elements
of 7, with support entirely in € —%, we have

|

——2—6|R(¢)|’/2 r2dr d6 d¢

<‘§+,£9W+>_<_P_9‘i;+,‘l’+)=—lﬁ“fag [E*Kexp

=% (R*K)

exp

—iﬁ’l ]R(¢)[1/2'—1Jr2drd¢

0

in general. Consequently,
(W 1.p0™¥ 4 ) =(pd¥ 1,pe¥ 1)
#(po¥ +,pe¥ 1)

in general. Thus, the classical constraint is tran-
scended at the quantum level by a subtle
phenomenon. Although the physical subspace is in
the domain of the differential operator pg,'® it con-
tains elements which fail to belong to that domain
which makes py self-adjoint.'” An intuitive “ex-
planation” of this behavior lies in the fact that #
contains wave functions ¥ (namely with support
outside Z) for which |¥(r,0,4)|%%sind fails to
vanish at the poles § =0 and 6 =. Physically, of
course, there is nothing abnormal with these wave
functions; there is no physical reason as to why the
quantity should vanish at the poles or why the
operators which constitute the quantum constraint
should be self-adjoint on the physical subspace.

To summarize, then, the physical subspace #
consisting of elements of 2 satisfying the operator
constraint admits states with support entirely in the
classically forbidden region & —%. These states
have an exponential—rather than oscillatory—

r
behavior with respect to 6 which is characteristic of
quantum tunneling. Because of this tunneling, the
classical positive-energy theorem is violated in
quantum mechanics and the energy spectrum ex-
tends into the negative part of the real line. In spite
of this extreme tunneling, the quantum Hamiltoni-
an is self-adjoint on the physical subspace.

C. Quantization via reduced phase space

The reduced phase space T is the manifold of or-
bits, restricted to T, of the Hamiltonian vector field
generated by the constraint function. Let us for
simplicity, restrict ourselves to T, defined by
0<pe(=+R'?). Analysis on T _ will be identi-
cal.?® The Hamiltonian vector field C, generated
by the constraint function C(g,p) on T, is given by

- d , d
C+=2p965+R (¢)—a;;

9

—opl12
=2R Y

3
+R'($)— .
¢ 3,

(3.12)
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Hence, to obtain a chart on the manifold T 4 of or-
bits of C+, we need to find four independent func-
tions f on I satisfying

¢ flr,=0. (3.13)
By inspection, a set of solutions is given by
r,pr’¢ and p, p¢ _p¢__6R_1/2 (3.14)

Each integral curve of C, on F+ can be specified
by fixing the values of these four functions with
0<r< o, ¢ such that R(¢)>0, — o0 <p, < + 0,
and — w0 < p‘,;* < + o0. Therefore, modulo the usual
problems associated with the spherical coordinates
r, Pr» ¢, and 17¢+ provide us with a global chart on
[',. It is straightforward to verify that the obvious
symplectic structure induced on I' , by these coor-
dinates,

Q'=dr Ndp,+d¢ Ndpy , (3.15)

is 1n fact the natural symplectic structure induced

on 'y by @ on I". Hence, it is consistent?! to in-

terpret T + as the cotangent bundle over a manifold
C defined by

E{r,¢/0<r<oo and R(¢)>0} . (3.16)

C is a two-manifold and may be regarded as the re-
duced configuration space obtained from [ . r +
is a four-manifold and may be regarded as the
phase space of “true degrees of freedom” (obtained,
according to the Dirac® theory, by factoring out
gauge).

Quantization procedure is now straightforward
since constraints are eliminated classically. Let
%+ be the Hilbert space of square-integrable func-
tions on C with the volume element r dr d$.?> This
is the Hilbert space of quantum states determined
by C, . Since the classical Hamiltonian induced on
the reduced phase space is given by

A(rp,,¢.55 )=E(¢) , (3.17)
the quantum Hamiltonian on 2’!\/+ is given by
BY(r,¢)=E$)¥(r,¢) . (3.18)

Finally, since E(¢) is positive on the support of \I/
for all ¥ in d‘l’+, it follows that the Hamiltonian H
is a positive, bounded Aself-adjomt operator on Z’+
The situation on I'_ is completely analogous.
The only difference is that p, p¢ is now replaced by
Ps =ps+(R'/2)6R ™2, I'_ is again a cotangent
bundle on € whence Z_ is just a copy of ZCL The
quantum Hamiltonian operator is again given by
(3.18). Thus, the complete Hilbert space of quan-

tum states & is the direct sum of JF+ and JZ’
The positivity of the quantum Hamiltonian Hon
# is a direct consequence of the positivity of the
classical Hamiltonian on the constraint surface r
(and hence also on the reduced phase space I').

We now have two quantum descriptions of the
model system and can therefore ask for the relation
between them. We claim that there is a well-
defined sense in which the quantum theory obtained
via the reduced phase-space method is “contained”
in the theory obtained via the operator constraint
approach To see this, define mappings I, from
J7, into 57, as follows:

1,0, (r,¢)= (7rsing)~ ¥, (r,¢)

X exp (3.19)

i
= R—1/2
ﬁe

for all \f/\i in ﬁ’t. It is easy to verify that the map-
ping is norm preserving:

[Iio\i/\i(r,¢)]§?+=% S 19.r$)| *rdrdg de
= [ |9.(ng)|?rdrds

=¥, | (3.20)

N

¥ .

Here we have used the fact that function R (¢) is
non-negative on Z to get rid of the phase factors in
the norm integral. Equation (3.20) implies that I,
are (proper) imbeddings of x . into 7, as Hilbert
spaces. Finally, since

I,0(A9,)=1,0[E($)¥.]

the imbeddings commute with the action of the
Hamiltonians. Thus, the reduced phase-space
method yields only a part of the description provid-
ed by the operator constraint method. One may
summarize the situation as follows. The 6 depen-
dence of elements of # is predetermined by the
quantum constraint equation. Thus, as in ¥, the
freedom in  is to choose a function of r and ¢
only, namely the function K (r,¢). Indeed the map-
ping I, essentially sends ‘I7+(r,¢) to K (r,¢). Thus,
it is not the availability of 6 variables that makes #°
larger than . Rather, the difference
arises because, whereas \I'+(r,¢) is allowed to have
support only in the classically permissible region
where R (¢) is non-negative, there is no such re-
striction on the support of K(r,¢). Consequently,



3350 ABHAY ASHTEKAR AND GARY T. HOROWITZ 26

3 corresponds only to the subspace of 7 in which
the wave functions W, have support only in Z. It
is precisely the orthogonal complement of this sub-
space in & that contains the wave functions
representing quantum tunneling, wave functions
which are responsible for lowering the quantum en-
ergy below the classically permissible values.

IV. DISCUSSION

In Sec. II, we saw that the scalar constraint of
general relativity restricts the physically permissible
classical configurations to a proper subset of the
configuration space and, being quadratic in momen-
ta, prevents the reduced phase space from admitting
a natural cotangent-bundle structure. To gain in-
sight into this feature, in Sec. III we introduced a
model system which mimics this feature. We saw
explicitly that the operator constraint method and
the reduced phase-space approach yield inequivalent
quantum theories and, in particular, whereas the
first method yields quantum states with negative
energies, the second does not. What implications
does this analysis have for quantum gravity? In the
model, the difference between the two quantum
descriptions occurred due to a tunneling
phenomenon which, in turn, was possible because
the operator py which enters the constraint fails to
be self-adjoint on the physical subspace. Since there
are independent reasons?> to believe that the con-
straints of general relativity cannot be promoted to
self-adjoint operators in the quantum theory, we ex-
pect the situation in general relativity to resemble
that in the model. ’

In the model, both theories do agree if one re-
stricts oneself only to those states which are com-
mon to both, i.e., which arise in the reduced phase-
space method. Thus, it is not that the two theories
are inconsistent. Rather, the second description is
contained within the first. Hence, even if one
adopts the viewpoint that the operator constraint
method is the “correct” one, the appropriate label
for the reduced phase-space approach would be “in-
complete” rather than “wrong.” A priori, of course,
it is not clear as to which of the two methods is the
physically correct one. Both would yield the right
classical limit (provided of course the limits are tak-
en appropriately); they both incorporate the classi-
cal constraint. This is not surprising: distinct
quantum theories can have the same classical limit.
Indeed, the existence of an ambiguity in quantiza-
tion of complicated classical systems is only to be
expected. For, quantization is essentially guess-

work; one tries to guess the more complete quantum
theory given only its classical limit. Hence, strictly
speaking, the question as to which of the two
theories is the correct one can be settled only by ex-
periments. That is, there is no theoretical principle
which can, by itself, decide unambiguously whether
or not the extra quantum states provided by the
operator constraint method actually occur in Na-
ture. Unfortunately, the model only mimics certain
mathematical features of general relatively and does
not describe a simple physically realizable mechani-
cal system. Therefore, the experimental avenue is
not available.

The question, nonethelesss, is not completely
unanswerable. For, although quantization is guess-
work, it is guesswork which follows hints. Hints
come from experiments with simpler systems, from
semiclassical features and from mathematical
analogies. Among these, there are two which can
shed some light on the question as to which of the
two methods should be preferred in the quantiza-
tion of gravity. The first comes from the barrier
penetration phenomena which lie at the heart of
nonrelativistic quantum mechanics. To be specific,
let us consider a particle in three (spatial) dimen-
sions subject to a spherical potential V' (r)=V,> 0 if
r<rog and V(r)=0 if r>ry, where r as usual is
given by r>=q-q. Let us impose a constraint:

C(4,3)=p2/2m+V(r)—Ey=0,

where Ej is a constant 0 < Ey < V. Then, classical-
ly, the configuration variables are restricted by the
constraint: the region r <r, is inaccessible to the
particle. The situation thus resembles the one in
general relativity. Furthermore, a quantum-
mechanical treatment of the problem is readily
available. One knows that a barrier penetration can
occur and is described by the Schrodinger equation.
This is precisely the prediction of the operator con-
straint  method. The constraint equation
C(q,B)¥ =0 is precisely the Schrodinger equation.
The reduced phase-space method, on the other
hand, will not allow for this tunneling since the re-
duced phase space f* has no knowledge of the clas-
sically forbidden region r <r,. Thus, in this case,
experimental evidence does support the operator
constraint method.?* The second hint, although not
connected with experiments, is more direct as far as
quantum gravity is concerned. It comes from semi-
classical considerations. There is now ample evi-
dence that the existence of a suitably regular (c-
number) Euclidean solution to the field equations of
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a theory connecting two configurations of the
field—the instantons—signal the existence of a
quantum transition between the two configurations,
even when such transitions are forbidden classically.
Therefore, in general relativity, one may ask: Do
there exist Euclidean solutions to Einstein’s equa-
tion which join two three-geometries, one of which
is classically permissible (i.e., lies in Z) and the oth-
er of which is not? The existence of such solutions
would indicate that, even if one began with a wave
function W(q) whose support lies entirely in %,
generically, quantum time evolution will force its
support off €. This, in turn will mean that to ob-
tain a coherent quantum theory, we must allow the
Hilbert space of physical states to contain some
wave functions whose support is not restricted to lie
in Z; the penetration into € —% (permitted by the
operator constraint) is essential. It turns out that it
is trivial to obtain Euclidean solutions of the desired
type. Consider the four-dimensional flat Euclidean
space and introduce in it polar coordinates 7, r, 0,
and ¢. Let g, be the flat three-metric intrinsic to
the surface 7=0 and let g,, be the intrinsic metric
on the surface defined by 7=1+f(r), where f is a
smooth non-negative C* function of compact sup-
port. A desired instanton is the four-dimensional
region bounded by the two surfaces (equipped with
the flat four-metric). It is clear that the metric g,
belongs to the classically permissible region € of
the configuration space. However, unless f(r) van-
ishes identically, the metric g,, cannot. [Proof:
Since g, is flat outside a compact region, its ADM
energy is zero. Hence, if g, were to belong to Z,
by the positive-energy theorem’ it must be isometric
to the metric of a spherically symmetric, spacelike
three-surface in Minkowski space. But this is im-
possible, e.g., because if 7, is in the support of f(r),
the distance between the spheres of radii r, and
ro+€, as measured by g, is greater than €, while
on Minkowski space surfaces, the distance would be
equal to or less than €] Thus, the semiclassical
analysis based on instantons also lends support in
favor of the operator constraint method. Although
these arguments do not constitute a proof, taken to-
gether they suggest quite strongly that the reduced
phase-space method is likely to provide only an in-
complete description of quantum gravity.

The question of negative energies in quantum
gravity is a more delicate one due to two factors.
The first is that, due to the arbitrariness in the
choice of lapse and shift fields [T and T in Egs.
(2.6) and (2.7)], the Hamiltonian in classical general
relativity acquires ambiguities. On the constraint

surface T these ambiguities essentially disappear:
since the volume integrals in (2.6) and (2.7) vanish
on T, one can specify the Hamiltonian uniquely
there just by picking a time translation at infinity.
That is, on T, the four-momentum is defined unam-
biguously. Off T, however, the volume integrals
also contribute and one has therefore to specify the
lapse and the shift everywhere on the three-manifold
3 and not just at infinity; the freedom in the choice
of the Hamiltonian is now “infinite dimensional,
rather than just four.” This ambiguity must be
faced if we wish to permit tunneling off the classi-
cal constraint surface. What choice of lapse and
shift is one to make to compute the quantum Ham-
iltonian? Although the ADM energy does become
negative off T, it is quite possible?® that for specific
choices of T and T° the Hamiltonian Hr+H,,
would be a non-negative function on all of T, al-
though for a generic choice, of course, it would be-
come negative off T'. Therefore whether quantum
gravity admits states with negative energies appears
to depend on the choice of the Hamiltonian to
which energy refers. The model, however, suggests
that this may not be so. For, in the model, the
ground-state energy in quantum theory is dictated
by E(¢) and not by H=py>—R(¢$)+E($). In par-
ticular, if E(¢) admits negative values, the quan-
tum ground-state energy would be negative even
when H is everywhere positive [i.e., E(¢)—R(¢) is
positive] on I".?6 This surprising situation can oc-
cur because the expectation value of 292 can become
negative on physical states in quantum theory even
though pe? is everywhere non-negative classically.
Hence, by analogy, one can conclude that, since
EAPM(g) does become negative off T, the ground-
state energy of quantum gravity would be negative
irrespective of the choice of lapse and shift. The
key question is: Is the analogy good enough? This
brings us to the second reason which makes the is-
sue of ground-state energy more subtle than that of
the existence of tunneling. For, even if an operator
constraint allows tunneling, in general, it will not
permit wave functions whose support lies entirely in
the classically forbidden region. Thus, a priori, it is
quite possible that the wave functions ¥(q) in quan-
tum gravity will be forced to have part of their sup-
port in the classically permissible region Z. Be-
cause of this, the expectation value of EAPM(gq) on
any physical state may still be non-negative; the
contribution from Z may outweigh the contribution
from € —%. If this occurs, the quantum Hamil-
tonian may still be non-negative in spite of tunnel-
ing.
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To summarize, tunneling into the classically for-
bidden region is likely to occur in quantum gravity
since its existence depends only on the gross
features of the constraint which are shared by the
model system.?’ The occurrence of the negative en-
ergy states, on the other hand, depends on the de-
tailed form of the constraint which decides whether
or not the physical states of the quantum theory can
have most of their support in the classically forbid-
den region. Therefore, on this issue, the situation is
less clear; further information is needed on the
properties of wave functions satisfying the quantum
scalar constraint of general relativity. The model
can nonetheless serve as a useful guide in the inves-
tigation of this issue since it presents an explicit

mechanism for transcending the classical positive-
energy theorems.

ACKNOWLEDGMENTS

For comments, criticisms, and suggestions, we
are indebted to Matt Alexander, Peter Bergmann,
Tony Duncan, Jim Hartle, Karel Kuchar, Ted New-
man, and Rafael Sorkin. This work was supported
in part by the Syracuse Research and Equipment
Fund. A. A. acknowledges the receipt of an Alfred
P. Sloan Fellowship and partial support from Syra-
cuse University and the National Science Founda-
tion under Contract No. PHY8008154. G. T. H.
acknowledges the receipt of an Albert Einstein Fel-
lowship.

IFor recent reviews, see K. Kuchaf, in Quantum Gravity
2, edited by C. J. Isham, R. Penrose, and D. W. Sciama
(Oxford University Press, Oxford, 1981), and articles
by J. Isenberg and J. Nester, C. Teitelboim, Y.
Choquet-Bruhat and J. W. York; P. G. Bergmann and
A. Komar, in General Relativity and Gravitation I,
edited by A. Held (Plenum, New York, 1980).

2The reduced phase space f* is the manifold of orbits, re-
stricted to the constraint surface I, of the Hamiltonian
vector field generated by the constraint function.
Thus, each point of £ is an equivalence class of (gauge
related in the manner of Dirac) points of T.

3See, e.g., A. Ashtekar and R. Geroch, Rep. Prog. Phys.
37, 1211 (1974), Appendix 3.

4See, e.g., articles by Kuchaf and by Bergmann and
Komar cited in Ref. 1.

SR. Schoen and S. T. Yau, Commun. Math. Phys. 65, 45
(1979); 79, 231 (1981); E. Witten, ibid. 80, 381 (1981).
6G. T. Horowitz, Phys. Rev. D 21, 1445 (1980); in Quan-
tum Gravity 2, Ref. 1;J. B. Hartle and G. T. Horowitz,

Phys. Rev. D 24, 257 (1981).

"This has a curious history. DeWitt pointed out as early
as 1967 that there is a significant difference between
the spatially compact and asymptotically flat cases.
However, he confined his investigations within the
canonical approach to the first case because he felt that
the so-called covariant method was better suited to
handle the second. After that, most work on canonical
quantization became focused on the spatially compact
case and the question of boundary conditions was not
discussed. [See, however, Cthuet-Bruhat and York,
Ref. 1, and T. Regge and C. Teitelboim, Ann. Phys.
(N.Y.) 88, 286 (1974).] Indeed, some recent papers do
not even mention that a restriction is involved; vanish-
ing of Hamiltonians is presented as an intrinsic feature
of general relativity without any reference to boundary
conditions.

8P. A. M. Dirac, Can. J. Math. 2, 129 (1950); Lectures in

Quantum Mechanics (Academic, New York, 1965).

9Actually, one could have considered a more general situ-
ation and required only that the complement of a com-
pact subset of = be diffeomorphic to the complement
of a ball r<ry of R3, with 7o a fixed constant. We
have made the restriction for simplicity only; issues of
interest to this paper are insensitive to topology.

10D, Christodoulou and N. O’Murchadha, Commun.
Math. Phys. 80, 271 (1981).

1A, Ashtekar, in General Relativity and Gravitation 2,
edited by A. Held (Plenum, New York, 1980).

12T, Regge and C. Teitelboim, cited in Ref. 7; A. Ash-
tekar, D. C. Christodoulou, and A. Magnon-Ashtekar,
in preparation.

13See, e.g., N. M. J. Woodhouse, Geometric Quantization
(Clarendon, Oxford, 1980).

141¢ has also been argued that a weaker form of Egs. (1.8)
and (2.9) should be imposed; to obtain the correct clas-
sical limit, for example, it suffices that the expectation
values of CN,, and Cy vanish on physical states. In this

paper we shall show that, even with the stronger condi-
tion, wave functions can tunnel into the classically for-
bidden region.

I5p. W. Higgs, Phys. Rev. Lett. 1, 373 (1958); 3, 66
(1959).

16T et ¥ be any vector field on the configuration space.
The quantum operator corresponding to the classical
observable p, V¢ is (%/i)V°V,+(#/2i)V,V° Setting
V?=3/90, one obtains Eq. (3.5).

7The lower bound, however, belongs to the continuous
spectrum of H. Thus, strictly speaking, there is no
ground state.

18The wave functions W+ are defined everywhere on R>
except for the =z axis. On this domain,
po¥Y+=+RV2W, whence W, satisfies Eq. (3.4).
Note, however, ¥ 4 is not a solution to (3.4) in the dis-
tributional sense. This is why it does not belong to the
domain which makes pg self-adjoint.



26 ON THE CANONICAL APPROACH TO QUANTUM GRAVITY 3353

9In fact, the situation is rather curious: py is an un-
bounded self-adjoint operator with a dense domain in
2 and a bounded linear but non-self-adjoint operator
on an infinite-dimensional subspace 7 of .

21This is but one way to endow a cotangent-bundle struc-
ture on f'. f does not admit a natural cotangent-
bundle structure in the sense that one must introduce
on f* additional structure, not inherited from I' and T,
to make it a cotangent bundle.

20For simplicity, we are ignoring the set of measure zero
at which py vanishes on T. The set would be incor-
porated in the quantum description in the process of
Cauchy completion of the space of wave functions.

221t is more natural to regard quantum states as densities
of weight % than as functions. When this is done, a

specific choice of volume element is not needed on the
configuration space. For details, see, e.g., Ref. 13.
233ee, e.g., the review by Bergmann and Komar cited in
Ref. 1 and the references therein.
241n this case, the constraint is easy to realize experimen-
tally. One only needs to prepare an incident beam of
specific energy and find a repulsive central potential.
25In fact, there is a strong indication that the lapse and

the shift fields obtained by solving the Witten equation
(see Ref. 5) have this property.

26Note also that, although one can add to H any smooth
function of the type f(q,p)-C(q,p) without changing
the classical dynamics, this ambiguity does not affect
the quantum ground-state energy since the expectation
value (¥4, f(q,p)C(g,p)¥+) of the extra term van-
ishes in all physical states. The situation would be the
same in quantum gravity.

2TLinearization of the classical scalar constraint (off the
datum g, = flat, p,, =0) yields R'=0, a constraint in-
dependent of momenta. Hence, the operator constraint
R’Y =0 implies that, in the weak-field limit, there is
no tunneling; support of W is restricted precisely to the
classically permissible linearized metrics. A simple-
minded expansion of the constraint equation (2.9) in
powers of the coupling constant suggests that the situa-
tion would be analogous to higher orders in the pertur-
bation expansion since the “kinetic energy term” in
(2.9) is always one order higher than the “potential en-
ergy” term. Thus, the tunneling appears to be genuine-
ly nonperturbative phenomenon.



