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We consider a gauge approach to the gravitational theory based on the local Poincare

P~o or de Sitter S&0 groups. The P&0 gauge rotations and translations take place in the

tangent spaces to the space-time manifold. We interpret the independence of matter
fields from the tangent vectors as the necessity to use a nonlinear realization of the P)p or
S~o groups thus effectively breaking the full symmetry to the Lorentz group. The La-
grangian we choose is the S~o Yang-Mills invariant with the space-time metric expressed
in terms of the translational part of the S&o nonlinear gauge field. Various consequences

of the theory are discussed, including the correspondence with general relativity, the pro-

pagating spin-connection interactions, the analogy with the chiral Higgs mechanism, in-

stantonlike solutions, a possibility of gravitational repulsion due to the noncompactness of
the Lorentz group, etc. We also analyze the quantization of the theories with torsion

with special emphasis on the presence of the nonlinear realization. We stress the possibil-

ity of obtaining a renormalizable theory if the metric is not quantized but is expressed in

terms of a mean value of the quantized S&0 nonlinear gauge field.

I. INTRODUCTION

Recently, there has been considerable interest in

attempts to extend the Einstein theory of gravity
or general relativity (GR) using the gauge approach
(for reviews see Refs. 1 —8). In the most natural
of these modifications [generalizing in that or
another way the Einstein-Cartan theory (ECT) one
considers the localization of the Poincare group
P~o ——Tq )& )L6 [or the semidirect product of the
translational T4 R' and Lor——entz L6 ——SO(1,3)
subgroups] thus obtaining the tetrad e& and the
Lorentz connection co' „as the gauge potentials
and the torsion 8'&„——N&e'„—S' e& and the cur-
vature R 'b&„[t}&to„+co&co„——(p~v) ]s. as th—e
gauge strengths. As a consequence, the Einstein
interaction of e& (or the metric) with the energy-
momentum tensor t," is supplemented by the in-

teraction of co'
&

and the spin-density tensor S,b"
("co-S interaction"). The Lagrangian of the theory
contains the "translational" part (linear in R and
quadratic in 8), providing the correspondence with

GR, as well as the "rotational" part (quadratic in

R) giving a dynamical (or noncontact, cf. with

ECT) co-S interaction. The possibility of two in-

dependent coupling constants (dimensional and di-
mensionless) follows from the structure of the P~o
itself.

The consideration of these theories is based on
the following reasons: (i) the Poincare group and
the concept of spin are fundamental in particle
physics (cf. Refs. 1 —3, and 8); (ii) the gauge prin-

ciple is very successful as a guide in constructing
theories of fundamental interactions; (iii) one may
hope that a gauge theory of gravity with torsion
(or its supersymmetric generalization) will improve
the quantum behavior of GR. ' At the same
time, there are a number of problems in the formu-
lation of the "kinematics" as well the dynamics of
the P&0 gauge theory. The proposed approaches
(see, e.g., Refs. 8, 13, and 14 and references in
Refs. 1, 3, and 7) use in fact as a gauge group not

P~o but the direct product T4 XL6, or some de-
formed algebra with different commutation rela-
tions from those for P&0. ' As a result, e& cannot
be consistently identified with an ordinary gauge
field and the Lagrangian is invariant under the in-

dependent T4 and L6 groups. In this paper (Sec.
1) we consider the T4 translations acting in the
tangent affine spaces (and not as infinitesimal
coordinate transformations) and show that one
must use the nonlinear realization of the T4 sym-
metry in order to obtain a gravitational theory and
not the "internal" P~o theory (the spontaneous
breakdown of Tz in our approach corresponds to
the trivial invariance of the ordinary matter fields
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under the "internal" T4 transformations). Gravity
is thus described by the nonlinear Pip gauge field
(for the definition of nonlinear gauge fields see
Ref. 15) with kp 'e&([kp]=cm) and co's& being its

T4 and L6 parts (and hence it is the L6 part of
gravity that is the "usual" or linear gauge field).

Another problem is the ambiguity in choosing
the P~p Lagrangian: the independent T4 and L6
symmetries do not sufficiently restrict the La-
grangian. Therefore one can use various combina-
tions of the 8 and R terms with arbitrary coeffi-
cients' ' and thus needs some additional as-

sumptions for selecting a particular one. ' Our in-

terpretation of this ambiguity is the following: the
use of the (e,co) variables corresponds to the use of
the nonlinear realization of P&p and so the fixation
of the dynamics is just the fixation of a "nonlinear
Lagrangian". ' The only distinguished Lagrangian
is the Yang-Mills invariant of the linear gauge
theory. However, the latter choice is not a satis-
factory one for the Poincare group, Pip being not
semisimple (Sec. III). That is why we consider in
Sec. IV the nonlinear gauge theory of the De Sitter
group Sip ——SO(1,4) (or the "nearest" semisimple
extension of Pip) and choose the Sip Yang-Mills
Lagrangian as a basic one. This fixes a particular
nonlinear Pip Lagrangian, possessing a number of
attractive properties, presented in Sec. V. Here we
discuss the correspondence with GR, the spin-spin
interactions, the instanton solutions, a possibility of
indefiniteness of the energy for co (due to the non-

compactness of Ls), etc. In Sec. VI we analyze the
problems of quantization of the (e,co) theories with
torsion and show that the use of the nonlinear real-
ization and the Yang-Mills structure of the Sip La-
grangian provides the possibility to obtain a renor-
malizable theory, where the metric is not quantized
but is equal to a mean value of a quantized field.

Some of the results of this paper were already
summarized in Ref. 18.

Defining the GL(5,R) connection on the vector
bundle over space-time M with the fiber R' and
restricting it on P~p, we get the following P~p con-
nection (one-form on M with values in the Lie
algebra of Pip):

r

N 00=
() (), PEP'O(1, 3), 8ER'

N'=LNL '+L dL ', O'=L0 —&'b,
S' =d +N

The corresponding curvature two-form is

(2.2)

8
4'=dQ+QAQ=

R =dN+N AN, 8=&'0 .
(2.3)

is identified with T„(M) so that the corresponding
bundle is soldered to M with 0 playing the role of
the generalized soldering form'9 2i]. Under the
action of Pip. g'=Lg+b, 8'=L8, where
8=8+8'g. As a result, one can identify co

with the Lorentz connection co on T(M), kp8
([kp] =cm) with the canonical one-form 8
( =e&dx") and 0—with the generalized affine
connection on the tangent affine bundle over M ',
&.e.,

co kp '8 —9'g

0 0

r

R kp '8 —Rg

It is evident from (2.2) that the splitting of 0 on co

and 0 depends on the splitting of P~p on L6 and
T4. This freedom can be naturally separated by
the introduction of the vector field g(x) ER„', fix-
ing in each tangent space T„(M) a stability point
for L& [here

r

CR'
X

II. NONLINEAR GAUGE THEORY
OF THE POINCARE GROUP

(2.1)
La +b

1

a

Let us consider first the construction of the
linear P&p gauge theory following the analogy with
"internal" gauge theories. In order to realize P~p
on the linear vector space and not on the affine
space we use the map Pip~GL(5, R)

L b
Pip ——'M=

O 1,LYSO(1,3), bER'
r

&R =0, S'8—R A0=0, (2.5)

or the well-known Bianchi and Ricci identities. '

The introduction of g in (2.2) can also be treated
in the following remarkable way: g is the "chiral"

(2.4)
where R and 8=&0 are the curvature and torsion
Of N and 0.

The above construction of the P&p kinematics is
natural and gives all necessary results by the re-
striction of various GL& formulas to the Pip case.
For example, from the Bianchi identity
DA'=dA'+0 AA —O' A Q=O we have
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S=SpSg, REF, Sj;EE
For the Lie algebra g of 6 we have

g =k e f, [k,k] ck, [k,f]cf, (2.6}

where k is the Lie algebra of K,f is the vector
space, corresponding to F, and F is assumed to be
a weakly reductive homogeneous space. Let A Eg
be the one-form on M corresponding to the con-
nection on P(M, g) for the fixed section of the bun-

dle, i.e., the linear gauge field. Under the change
of the section A'=SAS '+SdS ', SGG. Now
let us define the connection A on the bundle P or
the nonlinear gauge field

A =P 'AP+P 'dP, A &g, PGF . (2.7)

Here A is a one-form on M depending on A and
on the fixed point P(x}=SoFEFX in each copy of
the homogeneous space, i.e., on the adjoint chiral
field. Under the action of G,

SP=(SpS»)SoF SOS», S0F——4' (2.8)

field providing the passage from the linear Pio
gauge field 0 to the nonlinear Pio gauge field

co kp '0
"=p p

The notion of a nonlinear gauge field' was used in
theories with "phenomenological Lagrangians" for
the description of interactions of gauge and adjoint
chiral fields and formally coincides with that of
the connection on the bundle with a homogeneous
space as a fiber. Let P(M, G) be a principal bundle
and P (M,F,G,P) be the associated bundle with the
fiber F=G/K, i.e., the homogeneous space (the

space of a nonlinear realization of 6). Here K is a
subgroup of 6, i.e., for SE6 there is a unique

decomposition

general a complicated function of S», SF, and P
and so the transformed fields in (2.10) depend on S
in a nonlinear way.

The Higgs mechanism is a remarkable example
of the use of the nonlinear gauge fields. Consid-
er a multiplet of scalar fields y linearly transform-
ing under the action of G. If there is a spontane-
ous symmetry breaking G~E, then

F=P 'Ff=dA+AAA,

so for the Lagrangian four-form we have

] A A ]L = —, tr(F A eF)= , tr(F A eF)—.

(2.12)

(2.13)

Now let us turn to the case of our interest:
6 =Pio, K =L6, and 6/K =T& being the homo-

geneous affine Minkowski space M. It is the fact
that M is the affine and not the linear space that
suggests here the use of nonlinear gauge fields.
Taking

1

ET4,
(2.14)

p=g tp, /=exp(a' t, )EF, t t, j Ef, (2.11)

where P corresponds to a set of Goldstone fields
and transforms as a chiral field according to (2.8)
(as a consequence, p transforms as a nonlinear
multiplet, p'=S»p). Introducing the vacuum po
(invariant under K) we get the Higgs field X =p
—po, transforming according to the nonlinear real-
ization of G. As a result of (2.11), (8'y8'y)
= (,&y&y), 6'p=S'X+Afpo, i.e., A transforms
into A by absorbing P and po+0 provides a non-
zero mass for Af. The final Higgs-field Lagran-
gian is invariant under the nonlinear realization of
6 and so the mass term for Af is admissible under
the transformation law (2.10). The field strength
of A is

Decomposing A according to (2.6),

A =Ak+Ay, Ak Gk, Af Ef, (2.9)

L01b
S—SLST—

p 1 p 1

we get the following transformation laws for the
parts of A under (2.8):

Ak ——SgAkSg +SgdSg, Af —S+AfS~

(2.10)

As a result, Ak transforms as an ordinary connec-
tion (or a linear gauge field) but Af transforms
homogeneously (this is a characteristic feature of a
nonlinear gauge field). The nontriviality of the
passage from A to A is due to the fact that S» is in

co 0 R 8
0

P P y O P
~

Thus the identification 8=8+&), to=to in (2.4)
follows directly from the definition (2.7). Because
of the correct transformation law 8'=L8 [follow-
ing from (2.10)] we can now identify ko8 with the
canonical one-form on M and introduce the

(2.15)

from (2.8) we get L'=L, g'=Lg+b. As a conse-
quence of (2.2), (2.7), and (2.14) we obtain the non-

linear P,o gauge field in the form
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metric tensor on M (g&, e——„'e'„=ko 8„'8„i),~) in

terms of the translational part of the P]p nonlinear

gauge field. We see that the P~p case is in some
sense a trivial example of a nonlinear realization
(though a nontrivial redefinition is 8~8): L'=L,
i.e., L' is linear in L and independent of the
translational parameter (and so co' and 8' "do not
remember" about b)

We stress that in our approach translations take
place in the tangent spaces [for example, as a shift
of the origin of the affine basis, r1'=g+b, i)
ET„(M)] and so T4 has no relation to coordinate
transformations (see also Refs. 20 and 21, cf.
Refs. 4 and 5). The ordinary physical fields q&(x)

depending only on the point x EM4 of the base
space are trivially invariant under T4. Thus P~p
can be realized (as a semidirect product) only on
the ring of smooth functions on the tangent bundle
C (T(M)) = [g(x,i)) J and not on C "(M)
=[q(x)},p'(x, iI)=d'(L)g{xL '(iI —b)} [d'(L)
defines a representation of L6], i.e., on the func-
tions depending not only on x, but also on the
tangent vector iI(x) E T„(M) (similar fields are dis-
cussed in Refs. 20, 21, and 23). One can consider
this fact as a manifestation of a spontaneous T4
symmetry breaking (PM ~L6) by the physical vac-
uum (for the fields depending only on x but not on
i)). In analogy with (2.11) we can define [here y
stands for p and P for y in (2.11)]

(2.16)

and choosing g=rj (as a gauge) we get y(x)
=P(x,0). Thus Pio is realized nonlinearly on

[y(x) J [in the mentioned trivial sense, cf. (2.14)]
and we come to the necessity of using the non-
linear gauge field (2.15}. The "chiral field" g plays
the role of (four} Goldstone fields, all physical
fields are of the "Higgs type" for gravity and grav-
ity itself is described by the nonlinear P~p gauge
field. In this final interpretation our approach
differs considerably from the earlier suggestions of
treating gravity as a nonlinear gauge field. It
is interesting to note that translations play a rather
peculiar role (cf. Ref. 28): they do not act on the
physical fields (and thus the Pio covariant deriva-
tive coincides with the L6 one) but their localiza-
tion is necessary for the introduction of the tetrad
one-form (and thus metric) as the part of the non-
linear gauge field (note that this interpretation of 8
is unrelated to the attempts at considering the
metric as a Goldstone field

We come to the conclusion that the L6 symme-

try is unbroken (and so is realized linearly) and the
corresponding L6 gauge field co is a part of the
gravitational field which is really a (linear) gauge
field. The tetrad field (or metric), i.e., the Einstein
gravitational field, is the "nonlinear" T4 part of
the nonlinear Pio gauge field, which (due to the di-
mensional character of the T4 coupling constant)
provides a clear explanation of a possibility of non-

polynomial (in e& or g&„) interactions (present in
the Einstein theory).

III. THE CHOICE OF THE DYNAMICS
FOR THE POINCARE GAUGE THEORY

Lp —— tr(&h eSP) .1

4k
(3.1)

However, here it is necessary to assume that g&, in
the star operation in (2.13) is expressed in terms of
8. That is why the use of the 0 as a whole is not
sufficient, and this is a well-known obstacle to
describing gravity by the Lagrangian, polynomial
in the linear gauge field (cf. Refs. 5 and 30—32).
In view of the nonsemisimple nature of the Pip,
the Killing-Cartan form "tr" in (3.1} is degenerate,
leading to the lack of equivalence of two pro-
cedures: (i) varying (3.1) as a GL5 Yang-Mills La-
grangian and going to P~p only on the level of the
field equations; (ii) treating (3.1}as the Pio La-
grangian from the very beginning, substituting
(2.15) and varying the independent Pio potentials.
The latter procedure gives the unsatisfactory result
Lz Li ——(1/4A, ) tr(R /i e R——) or only the L6 La-
grangian without a T4 part (necessary to establish
the correct Einstein limit). The first procedure
gives the following field equations:

Now let us consider two possible ways of con-
structing the dynamics of the P~p theory. First,
one can start with the nonlinear gauge field (2.15)
and use its parts co and 0 separately in a Lagrang-
ian, invariant under the nonlinear realization of
Pio (or actually under L6) and of course under the
general coordinate transformations. Hence a La-
grangian is not fixed uniquely [note that the possi-
bility of the linear in curvature R (co) term, provid-
ing the correspondence with GR, is due to the
homogeneous transformation law for 0, cf. Ref.
30]. Second, one can try to construct the dynamics
in analogy with internal gauge theories, i.e., consid-
er the Lagrangian depending on 0 (or SF) as a
whole object. The simplest nontrivial choice is the
Yang-Mills Lagrangian (2.13),
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or

S —kpt
(3.2)

ated with the principal bundle P(M, Sip) and 0
be the connection on 8' or the linear Sio gauge
field [one-form on M with values in the P"O(1,4)
algebra]

&eR = —A, eS,
k&+8—eR AO= et (k =2jNp ) .
2

(3.3)
co 80= r, coEP'O(1, 3}, OCR '
0 0

The corresponding curvature is given by

(4.3)

These equations provide the dynamical e-S in-

teraction and a correspondence with GR [when
8=0 and J=0 (3.3) is equivalent to the vacuum
Einstein equations, see also Ref. 34]. However,

Eqs. (3.3) are nonvariational in a two-fold sense.
First, they cannot be obtained from some action by
varying co and 8. Second, the dependence of g&„
[in "s " in (3.1)] on the 8 part of the dynamical
variable 0 is not reflected in (3.2} [otherwise t in

(3.3) would be supplemented by the energy-momen-
tum tensor of 9F]. As a result, one cannot identify

t,"with the energy-momentum tensor of matter
[=e 'B(eW )/Be„', e=dete„'] though it is possi-
ble to identity S,b" with the spin density
(=BW /Bco'b„).

We conclude that the approach based on (3.1)
does not give an acceptable theory in the case of
the Pio as a gauge group. It seems natural now to
pass to the De Sitter group, or the "nearest" sem-

isimple extension of Pip (with the nondegenerate
trace tr) and to consider again a unique Yang-Mills
invariant (3.1). This gives the theory with the vari-
ational field equations, analogous in their structure
to Eqs. (3.3).

R+n- 0
R =dN+N AN,8 u

8=HA 8, 8=8'8 . (4.4)

(4.5)

The splitting of 0 (4.3) is invariant only under the
L6 transformations (b =0). In order to have a
possibility to establish the relation of co and 0 to
the Lorentz connection and the canonical one-form
on T(M) it is necessary to consider the nonlinear
realization of Sip. This effectively provides us
with the space-time (noninternal) gauge theory and
corresponds to the "breaking" of the symmetry
Sio~L6. We can now construct the nonlinear S~o
gauge field by considering the connection on the
associated bundle & (M,X,S,p, P) with the De
Sitter spaces X =S.p/(L6)c as fibers (8' is a fixed
point in R ' DX ). Using the prescription (2.7)
with P equal to Sb (4.2) we get [compare with
(2.14) and (2.15) and note that the correspondence
with the Pio theory can be obtained by the Inonu-
Wigner contraction Sio~P&0, i.e., by formally put-
ting all quantities with index T equal to zero].

co 80= —r, coEWO(1, 3), OCR'

IV. NONLINEAR GAUGE THEORY
OF THE DE SITTER GROUP

The following parametrization of the De Sitter
group Sip ——SO(1,4) is useful in separating the

L6 ——SO(1,3) subgroup:

co=co o(b Sb co+co—b .gb ),

O=yO+dP+cob+cr(Ob )b .

Under the action of Sip,

(4.6)

(1 ob Sb )L b-
b L =SbSI,

y.
LEL6,b&R' (4.1)

L 0 0 P
SI =

O ~
Sb =exp

P 0

b= P, p = b2, —
p

}=(I+b')'", (P')'=P. . (4 2)

Let I'(M, R ',Sip, P) be the vector bundle, associ-

a)'=L'a)L' '+L'dL' ', O'=L'B, (4.7)

where L ' is defined from SSb ——Sb SL, S=—S,SL.
Finally we are able to establish the necessary

identifications of the co and O=kpO (coinciding
with those of Pip case}. Two remarks are now in
order. First, one can observe that the Goldstone
fields here are represented by the five-vector

b (x)
( )

EX„'

or the section of the bundle ~ (see also Refs. 27
and 35). The second remark is that the bundle M
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is soldered to M with 0 being the soldering form
(for detailed discussion of the De Sitter bundle see
Ref. 20). The curvature of (4.5) can be written in
the form

R+5
o~

-2 rP=kp m, m. =OA6
0

(4.8)

where R and 8 coincide with the same quantities
in (2.15).

Having defined the metric on M in terms of
e&

——kp8& we choose as a Lagrangian the S]p
Yang-Mills term [cf. (2.13) and (3.1)]

Ls tr(——9F A s SP)
4A,

tr(9t A s 9P),1

4k
(4.9)

invariant under the nonlinear realization of S~p (or
even under the linear realization of S&p if g» is
considered as an invariant object).

It is important to recognize that only the 1.6
symmetry is physical for the ordinary matter fields
[this fact is a manifestation of a nonlinear realiza-
tion of S&p (or P&p)]. Thus various earlier at-
tempts ' at treating gravity directly as the De
Sitter gauge field seem to be inappropriate. The
correct attitude toward the problem (i.e., basing on
a nonlinear realization) has been presented in Refs.
25 —27, but from a different point of view regard-
ing the reason for the nonlinear realization (see

Ws = — [R (co)—2A]+ 8'„8,»
k 2k

(4.10)

Varying (4.9) plus the matter term

—kpt
L = ——, tr(s JAQ), J=

~m 2 pSab epta
ab p a p

—kpt 0
(4.11)

with respect to co and e, we get the following equa-
tions:

also Sec. II).
As far as the dynamics of the S~p theory is con-

cerned, there have been proposed different variants
of the S~p Lagrangian, but only (4.9) corresponds
to the natural physical requirements [(4.9) was also
discussed in Refs. 36 and 38 but with a different
emphasis and in a different context]. For example,
the Lagrangians of Refs. 27, 32, 37, and 40 are
simply the reparametrizations of the ECT Lagrang-
ian. ' The approach of Ref. 39 (though similar to
ours in the requirement of noncontactness of the
cp-S interaction) is an unsatisfactory one: the La-
grangian here is a total derivative while all physi-
cal effects are obtained from the gauge-fixing term.

Returning to our Lagrangian (4.9) we can
rewrite it [using (4.8)] as follows [Ls=&sag d x
(g =—detg„„}]:

S'~R+2Ak (&» m+8A s 8 —s SA8 )=—As S,
k2&+8—eR A8 2Ak enA—8= (et. +A, 'eTp) .
2

(4.12)

(4.13a)

They differ from the Sz Yang-Mills equations only by the presence of the energy-momentum tensor Tp of
the 0 itself [arising due to the dependence of g» on 8 in (4.10)]:

a a v
Tpp =evTp&

(4.13b)
4~ g ab & A. p ab 2~ „a „A, i „a „Ap & ab A. ~ abTppv= — (es e, ~„R„u 4gz~e&e, R&—q)+ 2 (O&x8,„—4 g»8x&8, ) + , (R14xR~„—4 g»—R~s, ) .
k k

The Lagrangian (4.10) can be given the following
useful interpretation. A spontaneous symmetry
breaking S~p~L6 occurs in the free S&p gauge
theory itself, supplying the L6 gauge field co with
the "mass term. " The difference from the case of
the internal nonlinear gauge theory lies in the fact
that the "exterior" metric in (4.9) is constructed of —p I4 pv+ —+Oppp1 v (4.14)

the 8 part of the gauge potential and thus can "ab-
sorb" (by the contraction of indices) the 8 multi-
pliers in various terms of (4.10). As a simple ana-
log of this situation let us consider the chiral
Higgs mechanism,
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with the reduced symmetry SO2. The only draw-
back of this "Higgs" mechanism is its perturbative
nonrenormalizability (see, however Ref. 41). The
correspondence with our theory is obvious:

a 2 2 a b
g =m ~epe v'gab = gatv

&„q~e„'„=Q'„e'„—&~„' .
(4.16)

As a result, e„' being, from the geometrical point
of view, the "covariant" part of the nonlinear Sio
gauge field plays the role of the vector chiral

Higgs field in the Lagrangian (4.10). Let us note
that possible interpretation of 8 as a vector Higgs
field was also mentioned in Ref. 42. Quantizing
the connection on the flat background e&-|i& we

really do obtain the mass term for co (see Secs. V B
and VI).

V. SOME CONSEQUENCES OF THE Sio THEORY

A. Correspondence with general relativity

There are two possible approaches to the prob-
lem of correspondence with GR in the context of
the (R +8 +R ) gauge theories of gravity. In the
first, one naively assumes that torsion must be ap-
proximately zero in the Einstein limit and thus
needs the linear in curvature term in the Lagrang-
ian in order to obtain the Einstein equations. It
should be understood that this approach is in no
way necessary and compulsory and suffers from
possible drawbacks when matter is present. The
second approach (see, e.g., Ref. 43 and references
therein) is based on the remark that the Einstein
limit corresponds to the case of the spinless matter
and thus to the theory, where only the translational

subgroup of the Poincare group is localized. As a
result we are led to a teleparallelism theory with

8„'~0, RP„„=0 If the 8 part. of the Lagrangian
contains the appropriate combinations of the in-

variants, one can in principle establish the correct
correspondence with GR. Though this prescrip-
tion is rather appealing and natural in the context
of the Hehl et al. Lagrangian, ' ' it seems not to
be well suited for our case (4.10), where there is the

where A& is the SO3 gauge field and yGS
=SOi/SOz is the adjoint chiral field (q&

=m, Itp'] 6R ). In view of the local SO3 invari-
ance of (4.14) we can simply put y=yo ——(0,0,m),
obtaining the Lagrangian

2

,F„„—F""+. [(2„') +(Aq) ] (4.15)

explicit R term (while the 8 term does not give a
realistic teleparallelism theory). Keeping in mind
that this inapplicability of the second approach
may be considered as a possible shortcoming of the
choice of (4.10), we shall treat here the question of
correspondence with GR assuming that torsion is
zero.

Putting S, t, and 8 in (4.12) and (4.13) equal to
zero we get

k 2

Rpv g
(R 2A)gpv= 7@v ~

2jll„

a b A, & a bkptv i (R bpi.R av 4 gpvR big a

R bvp
—0, Or RI )~g) =0,

where the wave denotes the objects constructed
with the help of the Riemannian connection.
Equation (5.1) can be rewritten as

2~
k

EIJ,v =CpgvpE &
R =4A

(5.1)

(52)

(5.3)

where E&„——R&„—4 g&„R and Cpp p is the Weyl

tensor. Equations (5.2) and (5.3) are obviously sa-

tisfied if Rz„——Agz . It seems very probable that
the Einstein spaces are the only vacuum solutions
with zero torsion of the system (4.12) and (4.13).
Though we failed to prove this statement for
A+0, it seems sufficient to assume that A=O (the
cosmological constant seems to be very small in
our real world) and then to use the result of Ref.
44 that the system (5.1) and (5.2) with A =0 is
equivalent to R& ——0.

One can also try to prove for (4.12) and (4.13)
some form of the Birkhoff theorem: the unique
solution of (4.12) and (4.13) with S =r =0 for the
SO3 spherically symmetric ansatz for e& and co& is
8=0 and g& ——the Schwarzschild-DeSitter
metric. This is really possible for some classes of
the (R+8 +R ) Lagrangians. ' At the same
time for the (8 +R ) Lagrangian of Hehl
et al. ' ' there exists the SO3 symmetric solution of
Hackler with 8+0. It is probable that in our
case [(4.10)] torsion will be nonzero but will swiftly
fall down away from the origin with r~ co (thus
representing a "torsion monopole", cf. Refs. 9, 45,
and 48).

The apparent problem is the relation of magni-
tudes of A and the co-S interaction constant A, (note
that A -A, /k also for the Baekler solution ). It
is possible to solve the problem of the great A
(with A,+0) merely subtracting the A term froin
(4.10). However, one must keep in mind that the
great A term arises also in a number of other
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cases and may also take into account the possibil-
ity of some kind of "confinement" on the mi-
crolevel due to the co-S interaction (hadrons as
Schwarzschild-De Sitter "universes"}. Finally, let
us note that even for a spinless matter (S =0) the
condition of 8=0 is too stringent, because accord-
ing to Ref. 50 nearly all solutions of (5.2} are the
vacuum Einstein spaces (cf. Ref. 2; see also the dis-
cussion of the Newtonian limit for the (R +R )

theories in Ref. 46).

B. Spin-Spin interactions

Taking e&——5&,A =0 one can write the (R +8 )

part of (4.10) in the form

2 (co,co'+ 1 geo co'),

b abca ab ~ d ~abed
3I

(5.4)

p =12k A, . (5.5)

It leads to the following static nonrelativistic po-
tential ' for the interaction of two fermions with
spins o.

~ and 0.
2 in the linear approximation and

massless limit:

cr] cr2 (cri r)(cr2 r)
Vp-k A +B

r p 3

+ [5(r) terms] . (5.6)

Another approximation is obtained if we neglect
the transferred momentum in the co propagator
(p+0), giving the contact potential as the ECT
case. Thus the L6 Yang-Mills term R in (4.10)
modifies the ECT just like the theory with inter-
rnediate vector bosons do with the Fermi theory of
weak interactions. The potential (5.6) will lead to
some new physical effects, depending on the value
of the L6 dimensionless constant A, . In Ref. 39 A,

was taken to be 10 (or p-the mass of the pro-
ton), but the absence of contradiction with known
atomic effects allows it to be sufficiently greater
[e.g., 10 ' (Ref. 10}]. One can observe that the

Ad Ad
Making use of the relation S,b, ——cab,dS, S1— 1

, gy y—5$—forthe spin ——, fermions and as-

suming that co,b,
——e,b,dec, we get the Lagrangian

for the co-S interaction,

W=
2 [—(d cob) —

&
(c) co ) +p co

—3(co,co') —2i,co,S'],

spin-spin interaction is already present in the Ein-
stein theory (V@-—k (cri cr2)lr is the analog of
the Breit potential '). The point, however, is that
the gaugelike co-S interaction provides the 1lr
spin-spin potential analogous to the fundamental
llr potentials in electrodynamics and gravitation.

C. Instanton solutions

The field equations (4.12) and (4.13) in vacuum
possess the remarkable solutions, intimately con-
nected with the Yang-Mills structure of (4.9), i.e.,
the self-dual solutions [usually considered in the
Euclidean case SO(1,4)—+SO(5), il,b

—+ —5,b or
kp ~—kp in (4.10)]

A=eA' or e(R r7)=R P—, 8—=+8.
(5.7)

The solutions of (5.7) realize the local minima of
the Euclidean action

Is= f d~x~g[(R —5) +20 ]
8A,

bounded from below by the topological invariant

1
tr(9F A SF)=P)L

It is important to stress that here we do not con-
front the difficulty of the indefiniteness of the Eu-
clidean action, present in the Einstein theory (and
also in ECT and in supergravity}. Note that
though the action of Ref. 32 is also non-negative,
it does not lead to the convergence of the path in-
tegral (as compared to Is). The absolute minimum
I~ ——0 is realized on the De Sitter space S,A'=0,
or 8=0, R'

&
——(2lkp )e&('e„}. Then the minima

with 8=0 and self-dual (R 8), which c—oincide
with the solutions of the Einstein equations with
self-dual Weyl tensor, are realized (e.g., CP and its
generalizations considered in Ref. 54). Instantons
with 8+0 have greater action (or topological num-
ber).

One can a priori hope that the theory (4.10) may
provide the realization of the idea of Hanson and
Regge about the analogy of gravity with torsion
8+0 and the theory of superconductivity (with the
Meissner effect corresponding to the phase of zero
torsion, thus dynamically explaining why 8=0 in
GR, and localized regions with 8+0 being the
analogs of the Abrikosov vortices). In Ref. 9 this
analogy was proposed to hold in the Euclidean
case with e and co being spherically symmetric in
the four-dimensional sense ("torsion instantons").
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However, (5.7) does not admit nontrivial solutions
of this type. All solutions for the most general
SO4 ansatz (p=x'x, ),

(5.8)

are exhausted by the trivial S instanton:

V 2ak0

p+a p+a

stein gravity, interacting with the SO(1,3) gauge
field. (Note that co interacts only with spinors. )

The field equations have the form [we use matrix
notations in a,b, . . . , e.g., R„„=(R'b„,),
tr(Rq„R~p) =R 'bq+, ~p],

k 2

, gq, R — (&q, +As, „), t( „l—0,
2

—, t——r(RpgR —4gq„RxpR ~), (5.10)

8=0, g=0 &„R""=AS; X=&+I j . (5.11)

[co corresponds to the SO4 connection for the SU2
one-instanton solution ]. This result has a simple
explanation. Looking for solutions with 8+0 we
are looking for "multiinstanton" configurations,
which are not spherically symmetric. The correct
point of view probably is that the Hanson-Regge
analogy takes place in the Minkowski-signature
space-time and what we really need is the SO3-
symmetric static solution, corresponding to the tor-
sion "monopole" (similar solutions were already
found in a number of theories . This solution
is analogous to the SU2 't Hooft-Polyakov mono-

pole with e& playing the role of the Higgs field and
co'"z of the Yang-Mills potential. In the case of
M being the Minkowski space one is able to prove
the topological stability of such solutions. Putting

e0 ——1, e; =e0——0, ej ——By'/Bxl C SO3 and choosing

we get the map e&. R U I oo ] ~SO3 classified by
m (SO3) =Z. The necessary degeneracy of the e&
vacuum is provided by the condition e„'e„g,~ ——g&,
cf. the discussion of the analogy with the chiral
Higgs mechanism in Sec. IV).

D. Model Lagrangian and physical consequences
of noncompactness of the Lorentz group

Dropping the torsion "mass terms" (and A term)
in (4.10) [in (R +8 )] we obtain the following ap-
proximation for (4.10),

z R (g) + R 'b„„(co)R,""(co)
k

+00 2(~E +~H +E ~H ) ~L2

, (8'H +M—E g'E —MH—), i.e., the noncom-2 2

pactness of Lb ——SO(1,3) (the indefiniteness of the
group metric) imply the indefiniteness of the ener-

gy for co. The lack of the positive definiteness of
the energy is the necessary consequence of the lo-
calization of I.6, drastically influencing physical
predictions of the theory (e.g., violating the condi-
tions for singularities, providing the possibility for
the "gravitational repulsion, " etc.). We conclude
that the Poincare gauge theory, taking into account
the co-S interaction of the I.6 Yang-Mills type, may
provide a possible answer to the question of Wu
and Yang about the physical applications of
gauge theories with noncompact gauge groups.

There exists the situation when the system of
spina creates the field co with negative energy (the
following example is also interesting from the
point of view of possible experimental observation
of the co-S interaction). Namely, let us consider
the cylindric ferromagnetic specimen with all spins
polarized in the z direction so that inside the speci-
men

1

P=~ne ' ' 0, S'=I0,0,0, , nJ—
0

(cf. Sec. V B) (n is the concentration of the elec-
trons). Supposing that g&„——rl&, we have from
(5.11) (in the linear approximation) the following
interior solution:

(5 9)
The Wo theory may be considered as a model of
the Pio dynamics, corresponding in some sense to
the T4XLb gauge theory {the analogous Lagrang-
ians were discussed in Refs. 56—58 and 7). One
can treat Wo also as the Lagrangian for the Ein-

R' =—x'S, R' =Ax~'S ~,
3 (5.12)

2 =14/288, 8=5/288

AM= I r00d x = —A, n mr l —l + r—42 2 ~2
3 4
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(r is the radius and I is the length of the specimen).
As a result, the spins produce the L6 gauge field
with the negative energy and thus decrease the to-
tal mass of the system of "sources + field" and

hence, effectively, of the specimen. For example,
when I -10 cm, r -1 cm, n —10 cm, then
bilf -A, 10'2g (iil=c =1) and therefore in the world

with A, -10 one will witness the "antigravity"
after the instantaneous polarization of the speci-

men (cf. the recent proposal of antigravity in su-

pergravity ).
Another consequence of the noncompactness of

L6 is the possibility of static regular solutions of
the L6 Yang-Mills equations in vacuum, absent for
compact gauge groups. For example, let us consid-
er the following complex solution for the SUq

gauge theory found in Ref. 59 in flat space:

Ak=ekjf(r)n, Ao=n g(r), n= —(i,j,k, =1 2,3),I'

I+rf =prlsinh(pr), 1+rg =prcoth(pr), @=a+ib ~C, a &0 .
(5.13)

The corresponding SL(Z,Q or SO(1,3) solution is

obtained according to the rule A&
——8'&+i V&,

co&
——V&, covz e"J W——

&
The. field strength for

(5.13) is regular in r=0 and goes as r when
r~ oo. The energy of the solution is zero, i.e., it is
possible to generalize it to the approximate solu-

tion of (5.10) and (5.11) for conformally flat
metrics. We remark that the existence of regular
solutions like (5.13) is probably a manifestation of
a long-range character of "noncompact" gauge
fields (analogous to that of the Abelian fields}.

Thus the L6(co) gravity has a long-range nature
just like the Einstein T4(e) gravity (so the idea of
"confinement" of ai proposed in Refs. 1 —3 seems
to be inappropriate and based on an incorrect
choice of variables).

Treating the vacuum Wo theory as
GR+ SO(1,3) gauge field it is easy to obtain the
general spherically symmetric solution of (5.10)
and (5.11), cf. Ref. 61 (for an analogous solution
for an arbitrary gauge group see Ref. 62),

go=a dt, 8'=bdr, gi=rdg, 8 =r singdy, co= dt gc—osgdy,—
r

R =Eg hg +Hg Ag, E=—,H=, a =b =1— + z q, q = —, tr(u +g )
0 ] 2 3 2 2 26~ 4~6 2 2 1 2 2

~2 pg2 p p

(5.14)

(u and g are commuting matrices from the algebra

of L6). Note that q &0 due to the noncompact-

ness of L6. Here u and g are connected with the
"charge" (i.e., with the spin) of the central body
and hence there is a possibility of preventing the
formation of a horizon by a nonzero total spin X
of the star [q =(A, /6n )X ]. It is interesting to
note that torsion is nonzero for (5.14) [and thus the
Birkhoff theorem of Ref. 45 is not valid for (5.9)]
but goes down too slowly (- 1 lr) to provide the in-

terpretation of a "torsion monopole" to the Abeli-
an solution (5.14).

As far as cosmological solutions of (5.10) and
(5.11) are concerned co can be considered as some
background field (due to a probable lack of its
sources). Here, in general, 8+0. It is important
to realize, however, that torsion is not a directly
observable quantity. Namely, from (5.10) and
(5.11) one gets the following conservation laws (or

equations of motion}:

&qS"=0, P";„=—, tr(Ri'"S„) (5.15)

VI. QUANTIZATION OF GAUGE THEORIES
OF GRAVITY %6TH TORSION

A. General remarks and propagator

The noncompactness of L6 (or the absence of
positive definiteness of the energy) presents prob-

and so the spinless particles move along the
Riemannian geodesics, while in the presence of
spin they are influenced by co via the generalized
Lorentz force (see also Ref. 8). As a result, one
can in principle detect the existence of the e-5 in-

teraction observing the differences in the trajec-
tories of particles with and without spin near a
probable source of co (i.e., a ferromagnetic speci-
men or a rotating neutron star).
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lems in quantization of the theory, including the
WL part in the Lagrangian [as in (5.9)]: the Ham-
iltonian H & 0 is not bounded from below, there is
no ground state and unitarity, etc. The correct
quantization scheme is absent for the noncompact
gauge fields. From the point of view of the path-
integral quantization, the indefiniteness of H ap-
parently implies the divergence of the Euclidean
path integral. However, our case of Ls is a re-
markable exception. Here the Wick rotation takes
place not only on the base space (gz„~g&„') but
also "in the fibers" [SO(1,3)~SO(4)], because the
fiber here is the tangent space to the base. As a
result, the Euclidean action is positive [compare
again with GR (Ref. 53)], signifying that in spite
of the ghosts in the Minkowski sector the corre-
sponding quantum theory may be meaningful.

Let us now consider the propagator in the S]p
theory, i.e., the bilinear approximation in (4.10) in
terms of t0 and B, e&-5&+kB& (we disregard the
A term). The analysis of the spectrum of particles
in the theory allows the following ambiguity: (i)
one can treat (e&,t0& ) as a multiplet of ten vector
gauge fields, i.e., 40(e,c0) =10)&(1 $0 ); (ii) in
the bilinear approximation there is formally no
difference between the latin and greek indices and
so one can consider B,b as the basic variables

Bgb =Bgb+ 4 5~bB +B(,b) = I 2+,1,0+;0+;1,1+I;
2 e

abc abc+ 3 +c(a 0b]+~abed

= f2+,2,1,1+;0+,1;0,1+
J .

The second approach is preferable when dealing
with the propagator and is in clear correspondence
with GR (graviton as 2+), while the first one is
essential in the exact theory. Let us note that the
appearence of the 2+ particles from the co,b, (be-

sides the gravitaton from the B) provides the inter-
pretation of the (e,t0) theory as a variant of
"strong gravity. " ' ' The propagators in (e,co)

theories with quadratic Lagrangians recently were
discussed in detail in Refs. 10, 11, and 16 so we
shall only emphasize the essential point of our ap-
proach. From the above dicussion it is evident
that there is (e —co) mixing in the 2+,1,1+,0+
sectors of the propagators. However, for the aim
of revealing the pole structure it is advantageous to
analyze the propagator in terms of the SO(4) and
not of the SO(3) spin. Here again the mixing oc-
curs and the propagator P has the following sec-
tors: "trace" P, "pseudotrace" P and "irreducible"
P. P turns out to have no massive poles, while P
and P have the following tachyonic poles:

p = —12k A, , P = —6k A,, A, ~O [cf. (5.5)].
The passage to the Euclidean theory implies
S~p~SO5 or k ~—k and the change of the
square of momentum sign [our signature is
(+ ———)]. As a result, the Euclidean propaga-
tor has no real poles just as in the case of a
"respectable" Euclidean theory (we hope that this
fact makes the objection of the absence of unitary
raised against (4.10) in Ref. 11 harmless). Thus one
may suspect (as one does in the case of the Einstein
theory ) that it is the Euclidean approach that possi-
bly provides the correct quantization of the theory.

Analyzing the propagator one can formally act
in terms of the nonlinear Sio potential 0 (4.5).
However, it is necessary to take into consideration
the spontaneous symmetry breaking (ez ) =5&. It
is remarkable that in our approach this condition
(extremely essential also in GR) is the direct conse
quence of the use of the nonlinear realization of Sio
(or Pio). Assuming that for the linear gauge field
0 (4.3) (0)=0, or (co) =0, (8)=0, we get from
the definitions (4.5) and (4.6) that (co) =0,
(8)=dP+0 [the Goldstone parameter /3 in (4.6) is
considered as a classical field]. Dealing, for sim-

plicity, with the case of the Pio theory (2.4) and
(2.15) we have ( 8& ) = ( B&P ) =5„' (where P=x '
when M is flat, i.e., coincides with the tangent
space). Thus the problem is reduced to the ques-
tion about the values of Goldstone parameters in
the vacuum state and clearly corresponds to the
spontaneous T4 symmetry breaking.

One may notice that the nonzero (8) had led to
the mass terms for co [more accurately, to the poles
of the combined (e,co) propagator]. This fact
prompts the possibility of obtaining the spontane-
ous symmetry breaking in a sourceless internal
(e.g., SO„) gauge theory by the use of a nonlinear
realization (SO„~SO„ i) under some natural as-

sumptions about the vacuum values of Goldstone
parameters. As a consequence, the SO„~ gauge
field will get some mass and so this mechanism
may be an interesting alternative to the ordinary
Higgs mechanism, being based only the use of
gauge fields.

An additional remark about the A term in (4.10)
is in order. Even if 2Ak is subtracted from
(4.10), the minimum (= —2Ak ) of the Euclidean
action is realized on the De Sitter space. Thus the
value of A is a serious problem (note, however,
that in GR even the notion of Euclidean vacuum is
senseless in view of the indefiniteness of the action
and hence the choice of the flat space as the vacu-
um state is an additional assumption).
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B. The problem of renormalixability

We shall consider sucessively a number of exam-
ples of the (e,co) theories to illustrate the main dif-
ficulties confronted in the case of the S~o theory
(4.10). Let us start with the Wo theory (5.9). In

the Euclidean variant it is unitary but nonrenor-
malizable (as GR plus SO4 gauge theory). Taking
into account the result of Ref. 63 one can get the
one-loop counterterms in the form [e= 8m (n —4),
rt. ——6 Czt. =Cz(SO4)]

(6.1)

Using the field equations (5.10) and (5.11) we have
R =0, R =—R~ +div, or ~I-0 ——a~R~
+a&(R'b„,) . Extraction for the torsion part from
co yields (R,b„„) =(Rx„„~+Tq„~),T =BT+TT,
T=co coo(e}, a—nd thus the renormalizability takes
place after the additional assumption that the
background torsion is zero (this condition may
have physical sense if the idea about the Meissner
effect for torsion is true }. This "conditional re-
normalizability" may be compared with the finite-
ness of supergravity beyond the one-loop level
when the background fields satisfy certain self-
duality relations. If one puts also the quantum
torsion equal to zero, the Wo theory is reduced to
the R +R theory, which is renormalizable but
apparently nonunitary (see also Ref. 66 and refer-
ences therein). We conclude that torsion plays the

I

part of the field, restoring the unitarity (see also
Ref. 11) but in general breaking the renormalizabil-
ity of the theory with a quadratic Lagrangian.

Our next example is the theory of Fairchild, '

WF -R (co) +R (co )R (to) [coinciding with (4.10) up
to the A and 8 terms]. Here the kinetic term for
e& is absent making the quantization of e& (or
metric) somewhat senseless. If e& is not quantized,
Wz is simply the Lagrangian of the SO4 gauge
field in curved space-time, interacting in a gauge-
invariant manner with the external source

m&~
——e&~'e'„~ by means of the Pauli-like term

R =R'"&„rr",b This th. eory is unitary (cf. the oppo-
site claim in Ref. 11 in the case of Minkowski sig-
na re and quantized e„'. Using the algorithm of
Re. 67, one can obtain the one-loop counterterms
in the form

2
1 ~L, 2A, 1kWF — Cgp,p +C21 ( —,)tr Rp„+ ~py ——„Rpy20 k

(6 2)

where the Weyl tensor C~&,& and m. depend only on
the external field and so do not disturb the renor-
rnalizability. However, if e& is quantized, the ad-
ditional R terms appear in (6.2) thus breaking re-
normalizability if the background torsion is
nonzero.

Turning now to the case of the S&o theory (4.10)
we conclude, that it is unitary (in the Euclidean re-
gion) but in general is nonrenormalizable in view
of unavoidable R counterterms [arising from the
coupling of metric to the kinetic (Bco) and (Be)
terms in (4.10)]. Thus we have a strong feeling
that Lagrangians like (4.10) lead to nonrenormaliz
able theories (this is especially obvious when a non-
supersymmetric matter is present, giving additional
counterterms absent in the initial Lagrangian). As
a result, the S&0 theory has the quantum behavior
analogous to GR (excluding the remarkable fact of
the positivity of the Euclidean action and an in-
teresting possibility of obtaining the renormalizable

I

theory when the classical torsion is equal to zero).
There is, however, a chance to improve the situa-
tion by treating the metric as a classical object
and quantizing only the linear S&0 gauge field 0
(4.3). Let us assume (in the context of the back-
ground field method ) that

Q=Q, )+Qg, 0,) ——0,
or

(6.3)

i.e., that the breaking of the symmetry S~O~I.6 is
established by the condition that the classical part
of the quantized linear gauge field (4.3) is equal to
the nonlinear gauge field (4.5}. If the condition
(6.3) is absent and gz, is some classical metric we
have, for (4.9),

hWs ——— (Cg„,p) +—„C2s(——,)tr(9t„~"")

(6.4)
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implying the renormalizability. Taking now into
consideration (6.3) and the equality (4.9) one can
observe that renormalizability is still present (up to
a subtle point of establishing the background gauge
invariance in view of the dependence of g» on the
part of the background S~o gauge field). The latter
problem does not arise in the proof of the renor-
malizability (in the flat space-time) of the SO„
gauge theory with the spontaneous symmetry
breaking SO„—+SO„~ of the type discussed in
Sec. VI B. We emphasize that the obtained result
is based essentially on (a) the Yang-Mills (renor-
malizable) structure of the Lagrangian (4.9), and
(b) on the use of the nonlinear realization [neces-
sary to establish the interpretation of (4.9) as a
gravity theory]. The approach based on (6.3) is
sort of a compromise: though the metric is not
quantized, it is not purely classical being expressed
in terms of the mean value of the quantum field 8.
The apparent drawback of this suggestion lies in
the fact that matter interacts naturally with e and
co but not with 8 and co. The radical point of view
is that the quantized part of the gravitational field
is the connection c0 (or the L6 gauge field ), the
tetrad or metric being purely classical.

Our final comment is about the interaction of co

with the spin- —, fermions. As is well known (see,

e.g., Ref. 8), the corresponding term in the La-
grangian is W;„, (gy "-ysg)co„, ~0&

= —(I/3!)e„~~ ~, i.e., only the axial part of the
connection (or torsion) contributes to it. As a re-

sult, in order to establish the renormalizability
(even if the metric is classical) one needs the fol-
lowing bare term in the (gravity + matter) La-
grangian:

, g ~„W&, 8'~„dpr0„——B~p .—(6.5)

It is this term [and not R (co) in (5.9)] that should
be added to the Einstein Lagrangian for the renor-
malizability of the c0 —S interaction. This fact
seems to be overlooked in earlier investigations
(i.e., various Lagrangians of Refs. [1—3, 8, 16, 17,
and 36—40 are nonrenormalizable in the presence
of fermions).

there any monopolelike solutions of Eqs. (4.12) and
(4.13) with the localized torsion and what is their
impact on the quantum theory (cf. Refs. 9 and 48)'?

(3) Does there exist a supersymmetric extension of
the Lagrangian (4.10), partially improving the
quantum behavior of the theory (see in this con-
nection Ref. 70)? (4) Is it possible to develop a
sensible quantum theory of (4.10) by continuing the
Euclidean theory back to the Lorentzian sector?
(5) What is the exact form of the one-loop counter-
terms for (4.1) when both e& and co& are quan-
tized? (Let us point out that the one-loop counter-
terms in the theories with nonzero torsion can be
evaluated using the well-known algorithm of Refs.
67 and 71 without the modification proposed in
Ref. 72).

The questions related to our theory in internal
gauge theories are (i) how to quantize gauge
theories with noncompact gauge groups, and (ii)
whether it is possible to establish a viable alterna-
tive to the Higgs mechanism by working only in
terms of the pure gauge theory under the assump-
tion of a nonlinear realization and choosing ap-
propriate conditions on the "broken" part of gauge
potentials [cf. (6.3)], (see also Ref. 73 about "non-
compact" gauge theories).

The main question is about the existence in na-
ture of the interaction of the Lorentz connection
and spin. If the answer is negative, the Lorentz
group should not be gauged and one must give up
the attempts to interpret gravity as a gauge theory
(analogous to the internal gauge theories). Howev-

er, if the answer is positive, we believe that the
co —S interaction will be of the Yang-Mills type
and thus the total Lagrangian will look like (4.10)
[probably plus (6.5)].

After the completion of this work appear several
references useful to our view: similar approaches
to the kinematics of the Poincare gauge theory
were proposed in Ref. 74; the Lagrangians analo-
gous to (4.10) were discussed in Ref. 75; for instan-
tons in the R theory see Ref. 76.
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