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We present a new formulation of the two classes of Szekeres solutions of the Einstein

field equations, which unifies the solutions as regards their dynamics, and relates them to
the Friedmann-Robertson-Walker (FRW} cosmological models in a particularly transparent

way. This reformulation enables us to give a general analysis of the scalar polynomial cur-

vature singularities of the solutions, and of their evolution in time. In particular, the solu-

tions which are close to an FRW model near the initial singularity, or in the late stages of
evolution, are identified.

I. INTRODUCTION

The most interesting spatially inhomogeneous
solutions of the nonvacuum Einstein field equations
that have been published to date are those given by
Szekeres. ' These solutions are general in that they
admit no Killing vector fields. They were
discovered by solving the Einstein field equations
with irrotational dust as source, for the line element

ds = dt +e "(dx—+dy )+e dz

relative to comoving coordinates. Subsequently
these solutions were invariantly characterized using
the rate of shear tensor of the matter, and the spa-
tial curvature tensor, and also by using the Weyl
conformal curvature tensor. This revealed that the
Szekeres solutions are considerably more specialized
than the absence of Killing vectors might suggest.

The Szekeres solutions fall naturally into two
classes, which are referred to as classes I and II.
The class-I solutions are usually presented in a way
that is formally analogous to the Tolman-Bondi
spherically symmetric solutions, which they gen-
eralize. This class of solutions has primarily been
used to model nonspherical collapse of an inhomo-

geneous dust cloud. The class-II solutions are
usually considered as generalizations of the
Kantowski-Sachs and Friedmann-Robertson-
Walker (FRW) solutions and have primarily been
studied as cosmological models

Despite the fact that the usual forms of the class
I and II solutions are quite different, we have no-
ticed that the time euolution along a particular fluid
world line is the same in both classes. In fact this

time evolution is governed by precisely the same
functions which gouern the euolution of density per
turbations in FRW dust models (see, for example,
Refs. 12—14 and references therein). We thus give
a new formulation of the Szekeres solutions which
unifies the two classes from the point of view of
time evolution, and which relates the solutions to
the FRW solutions in a particularly transparent
way. In this reformulation two of the arbitrary
functions appearing in the solutions (which we label

P+) can be linked to the increasing and decreasing
density perturbation modes which arise in discus-
sions of spatially inhomogeneous perturbations of
FRW dust solutions (see, for example, Refs.
12—16). We show that these functions directly
determine the (local) nature of the initial singularity
and the future evolution of the solutions.

The new form of the solutions is presented in Sec.
II together with expressions for various geometrical
quantities of interest. The possible types of initial
singularity that may arise are discussed in detail in
Sec. III and the future evolution of the solutions is
considered in Sec. IV. The role of the spatial curva-
ture is discussed in Sec. V, and Sec. VI contains the
concluding remarks. The relationship between the
new and old forms of the Szekeres solutions is given
in an appendix. Our sign conventions as regards
the Riemann and Ricci tensors are those of Refs. 21
and 32, and we use geometrized units, so that
8+6=1=c.

II. A NEW FORMULATION
OF THE SZEKERES SOLUTIONS

The line element for both classes of the Szekeres
solutions can be written in the following gen-
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a
Q =

aj ' (2.3)

and the hypersurfaces orthogonal to u are t=const.
These hypersurfaces will be referred to as the
"slices."

The evolution of the solutions in time is governed

by S, f+, and f, which are the only functions that
depend on the time coordinate t These. functions
are, however, independent of the x and y coordi-
nates. The function S satisfies the (generalized)
Friedmann equation

S2
S

(2.4)

where M is independent of j, x, and y, and k= + 1,
—1, or 0. The functions f+ and f are, respective-

ly, the increasing and decreasing solutions of the
linear differential equation

S. 3MF+2—F= F .
S

(2.5)

Here and elsewhere, an overdot denotes a/ar.
The matter density for both classes of solutions is

given by 1+, (2.6)
P+f++13 f

or, equivalently, using (2.2},
6M'"=sa

Remarks.
(i) The function S corresponds to the expansion

factor in the FRW models in the sense that for each
value of z it satisfies the Friedmann equation.

(ii) In discussions of linear perturbations of the
FR& solutions with dust as source it is shown that
there are two modes of density fluctuations called
'the growing and decaying modes (see, for example,
Refs. 14 and 15 and references therein}. It is re-

markable that in the case when the perturbed solu-

tion also has zero pressure, the differential equation
determining these modes is, in fact, Eq. (2.5). This
is implicit in the previous references, although the
authors do not write down the equation explicitly.
It has been discussed, for example, by Weinberg'

(2.7)

eral form:

ds = d—t +S [e "(dx +.dy )+H.8' dz ], (2.1)

where

H =3 P+—f+ P —f
and it is assumed that H, S, and 8' are positive
functions. The coordinates are comoving and syn-
chronous, so that the four-velocity of the dust is

and Peebles. ' A coordinate-independent derivation

of (2.5) in the linearized theory is given by Raychau-
dhuri. ' The same equation also governs the densi-

ty fluctuations arising in Newtonian theory. '

The two classes of Szekeres solutions differ as re-

gards spatial dependence of the metric. Before giv-

ing the spatial dependence, which is rather compli-

cated, it is convenient to give the explicit forms of
the time-dependent functions S, f+, and f, which

are the same for the two classes. It is first neces-

sary to impose a restriction on the function M in

Eq. (2.4), which is motivated as follows. When one

specializes the Szekeres solutions to the FR% solu-

tions (by setting P+ ——O=P, although this is not

immediately obvious), it turns out that the sign of
the matter density is determined by the sign of M.
Since we are primarily interested in relating the
Szekeres solutions to FRW solutions with positive
matter density we assume M&0. It now follows

from (2.4) that when k=O or —1, S cannot change

sign. For these values of k, we assume without

essential loss of generality, that S&0 (S&0 simply

leads to models which are the time reverse of the
models we consider). With these assumptions the
solutions of (2.4} can be written implicitly in terms

of an auxiliary variable g as

S =Mh'(i) ), with t —T =Mh(q ), (2.8)

where

(2.9)

f+ '
[1—(ri /2)cothg /2]+ 1,—,6M

S
(2.10)

—„q', k=O,

6M
S cotil/2, k =+1,

6M
S cothg/2, k = —1,

24
k 0

(2.11)

Here a prime denotes d/dpi and T is a "constant"
of integration, which is independent of t, x, and y.

Equation (2.5) can now be solved implicitly yield-

ing the following expressions for f+.
6M
S

—[1—(ri /2) cotri /2] —1,
k =+1,
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2
When k=O one can set M = —, without loss of gen-

erality in both classes.
The two classes of solutions arise as follows. The

class-I solutions are the general solutions, while the
class-II solutions are obtained if we impose the fur-
ther restriction that S, =O (the subscript z denotes

differentiation with respect to z). This implies that

f+, M, and T are also independent of z. In addition
in class II the parameter rt in (2.8) depends only on

t, whereas, in general, it depends on t and z. Expli-
citly, the two classes of solutions are determined as
follows:

Class I: S =S(t,z), S,+0, f+ f+(——t,z), T=T(z), M =M(z):

e"=f(z)[a(z)(x +y )+2b(z)x+2c(z)y+d(z)]

where

(2.12)

ad —b —c = 4e, a=0, +1,
A =fvg kP+, —W =(e kf )—
P+ —— kfM, /—(3M), P =fT, /(6M) .

(2.13)

(2.14)

(2.15)

Class II: S=S(t), f+ —f+(t), T=const, M =const:

e"=[1+—,
' k(x'+y')]-', W =1, (2.16)

e "Ia(z)[1——,k(x +y )]+b(z)x+c(z)y J
—kp+, k =+1,A=

a (z)+b (z)x +c (z)y ——,p+ (x iy ), k =0 (2.17)

The relationship between the above form and the
usual form of the Szekeres solutions is given in Ap-
pendix A.

Remarks.
(i) In class I the functions a, b, c,d,f,M, T are re-

quired to satisfy (2.13) and be sufficiently smooth
functions of z, but are otherwise arbitrary. Since
there is coordinate freedom of the form z~g(z),
there are five essential arbitrary functions of z in
this class.

(ii) In class II the functions a, b,c,P+ are arbi-

trary but sufficiently smooth functions of z. The
coordinate freedom allows us to specify one of
these, and so there are four essential arbitrary func-
tions in this class.

(iii) In both classes of solutions the two-surfaces
t,z=const, are spaces of constant curvature. The
sign of the curvature is determined by e in class I
[cf. Eq. (2.13)] and k in class II [cf. Eq. (2.16)].

Despite the rather complicated spatial depen-
dence of the metrics, the kinematical quantities,
Weyl tensor and spatial curvature (i.e., curvature of
the slices) have the same remarkably simple form in
both classes of solutions. We use the natural ortho-
normal basis for the line element (2.1), viz. ,

w' '=dt, w'"=Se'dx,

w' '=Se'dy, w' '=SHS'dz .
(2.18)

Then, using the orthonormal-frame formalism as
described by MacCallum, ' we obtain the following
results. (Further details are given in Appendix B.)
The rate of expansion scalar for the matter is

3S P+f++P f
S H

(2.19)

and the nonzero components of the rate of shear
tensor are

2 P+f++P f
2o-&

&

——2o.22
———o.33

———
3 H

(2.20)

The acceleration and vorticity of the matter are
zero.

The nonzero components of the electric part of
the Weyl conformal curvature tensor relative to
(2.18) are

2M P+f++Pf-
11 22 33 S H

(2.21)
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while the magnetic part H p is zero. The Ricci
scalar and trace-free Ricci tensor of the slices are,
respectively,

R"= k+ [P+(I+kf+ )+kP f ]S

(2.22)

2S ) )
——2S22 — S33

3S H
[P+(1+kf+)+kP f ] .

(2.23)

Note that when k=O in class I, the slices are flat, as
follows from (2.15).

Finally, the Cotton-York tensor of the slices is
zero for both classes of solutions so that the slices
are conformally flat ' in general.

Remark. It follows from (2.20) that

cr,b ——0 P+ =0 . (2.24)

6M, 6k
PFRw= ~ RFRw =

S S
(2.25)

as follows from (2.6) and (2.22). Thus, to every
Szekeres solution with M &0 there corresponds an
FRW dust solution with positive density, obtained

by setting p+ =—0. From (2.25) we see that it is the
parameter k that determines the spatial geometry of
the corresponding FRW models. It should be not-
ed, however, that the Szekeres line element does not
assume one of the standard FRW forms when

p+ ——0, since the spatial coordinates are not stand-
ard FRW spatial coordinates.

III. THE INITIAL SINGULARITY

In this and the next section, we discuss the nature
and occurrence of scalar polynon1ial curvature
singularities in the Szekeres solutions. Such
singularities occur when a polynomial curvature
scalar becomes unbounded. In a general spacetin1e
there are 14 independent polynon1ial curvature
scalars. Due to the simple form of the Weyl ten-

Since the models in general have zero acceleration
and vorticity it follows that p+ =0 are necessary
and sufficient conditions for the Szekeres solutions to
reduce to an FRW solution Wh. en p+ =0, it fol-
lows from (2.21) and (2.23) that S~ti ——0 and

E p ——0, as expected. In addition the density p and

spatial curvature scalar E.* assume the usual FRW
orms

or

0&g (2~, k =+1,
since S=O at the finite end points, as follows from
Eqs. (2.8) and (2.9). These ranges correspond via
(2.8) and (2.9) to

T(z) & t & + oo, k =0,—1

T(z) &t & T(z)+2aM(z), k =+1 .

Thus if we move into the past along a fluid WL
starting at a time t =to & T(z) we will encounter an
S=O curvature singularity after a finite time It.
may happen, however, that for a particular fluid
WL we encounter an H=O singularity before we
reach the S=O singularity, with the specific value
of t being determined by solving

H(t, x,y,z) =0 (3.1)

for t as a function of x,y, z. The existence of solu-
tions to (3.1) depends on the values of k, A (x,y,z),
and P+(z). In any case, each fluid WL, when ex-
tended into the past, necessarily encounters an ini-
tial singularity.

Remark. The S=O singularities are the analogs
in the Szekeres solutions of the simultaneous big-
bang singularities which arise in the FRW models,
and specialize to them when we set p+—=0. We
note however, that in the Szekeres solutions (class
I), the S=O singularities are not, in general, simul-

taneous for all observers, due to the z dependence in
T(z).

We assume that the energy density of the fluid is
positive. Since we have H&0 in general, and have
restricted our considerations to MgO, it follows
from (2.7) that

sor in the Szekeres solutions and the fact that the
source is dust, this nun1ber is in fact reduced to 2
(see Appendix C), namely, the density p and the
scalar C,b,dC' '", where C,b,d is the Weyl confor-
n1al curvature tensor. The latter is in fact a con-
stant multiple of (Eii) (see Appendix C). It thus
follows from (2.6) and (2.21) that a scalar polynomi-
al curvature singularity occurs in a Szekeres solu-

tion if and only if S~O+ or H~0+. We refer to
these two types of singularities as S=O and H=O
singularities, respectively.

The maximum range for ri along a fluid world
line (abbreviated WL), as determined by the require-
ment SpO, is

O~g &+ op, k =0, —1
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pp0=---A &0. (3.2)

In order to determine whether the initial singularity
on a particular fluid WL is an S=O or an H=O
singularity we need the behavior of the functions

f+, as defined by Eqs. (2.10) and (2.11). This is
given in Fig. 1. Since lim +f+ ——0, the term

p+f+ in H is insignificant as rl ~0 . On the oth-
er hand, since H&0, A &0, and lim +f =+ ae,

it follows that as rl decreases along a fixed fluid
WL, H will reach zero for some positive value of rl

(i.e., before S=O at rl =0) if and only if p &0.
In cosmological models, or in general in any solu-

tion of the Einstein field equations whose source is
a perfect fluid with nonzero rate-of-expansion ten-

sor, the scalar polynomial curvature singularities
can be classified by considering the dynamics of the
fluid as the singularity is approached along the
fluid WL's. To this end we introduce the length
scales l~, a=1,2,3 in the eigendirections of the
rate-of-expansion tensor of the dust. The l are
positive scalars and are defined, up to a scale
change which is constant along the flow lines, by

l

l~
—=8, a=1,2, 3, no g on a,

where an overdot denotes differentiation along the
flow lines and 0~~ are the components of the rate-
of-expansion tensor O~t) in its eigenframe. The
overall length scale l is defined by

1 =(ltlpl, )
~ or —=—8,l

l

where 8 is the rate-of-expansion scalar. The singu-
larities can be classified according to the behavior
of the l~ as 1~0, i.e., as one approaches the singu-
larity along a fluid WL. The following terminology
is standard: A scalar polynomial curvature singu-
larity in a solution of the Einstein field equations
with a perfect fluid (dust) as source is said to be

(a) a pointlike singularity if all three 1 ~0,
(b) a cigar singularity if two of the 1~ ~0 and the

other approaches infinity,
(c) a pancake singularity if two of the l~ ap-

proach finite numbers and the other tends to zero,
as the singularity is approached.

For the Szekeres solutions with M &0, we obtain,
after rescaling,

1 t ——12 ——S,13 SH =S(A p+f+——p f ) . — —

(3.3)
This implies that all H=O singularities are neces-

sarily pancake singularities. On the other hand, we

—n 0

I
I

I
I

I

I

I

I

I

I

I

n
I

I

I

I

I
I

I

I

I

FIG. 1. Graphs of the increasing (f+) and decreasing

(f ) solutions of the differential equation (2.5) in the
three cases k =0, —1, + 1.

shall show that S=O singularities are either point-
like or cigar singularities Fo.r all values of k and
both classes of solutions we have

Mg
li ——l2-

2 (3 4)

M
13 — A —24

. 2. .

1

10

when g -0+, where M = —, if k=0, and the expres-

sions are exact in both classes when k=0. It fol-
lows from (3.4) that an S=O initial singularity,
which will arise when P &0, is a pointlike singu-
larity if P =0, and a cigar singularity if P &0.
On the other hand, the function P+ has no effect
on the classification of the initial singularity. The
above results are summarized in the following.

Theorem 3.1 (initial singularities) The i. nitial
singularity in a Szekeres solution with M&0 and
positive density is (a) pointlike if and only if P =0
(S=O necessarily), (b) cigar if and only if P &0
(S=O necessarily), (c) pancake if and only if P & 0
(H=0 necessarily).

We now discuss the nature of the pointlike singu-
larity, i.e., case (a) of theorem 3.1, in more detail. It
is important to note that in this case the function T
is a constant. This is always true for class II, and
holds in class I on account of (2.15) and the fact
that P =0. This means that the singularity, which
occurs when t =T, is simultaneous for all comoving
observers, as in the FRW solutions. Indeed, we can
redefine the origin of t so that T=0, and the singu-
larity occurs when t=O. It follows from Eqs. (2.8),
(2.9), and (3.4) that to first order in t, the line ele-

ment can be written in the form

ds = dt +t [g t)dx dx—~+0(t )]

(3.5)

where gott, a,P=1,2,3 has only spatial dependence
Thus in this case, the singularity is said to be
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0'
lim —=0 .

0+ 8
(3.6)

Another manifestation of this limiting isotropy is

that the three length scales l~ tend to zero at the

same rate, as t —+0+, i.e.,

l
lim —=1, n =1,2,3,

t 0+l

as follows from (3.4), after rescaling lq. Likewise

the Weyl tensor does become negligible in the sense

that it diverges less rapidly than the Ricci tensor
(which is determined algebraically by the matter

density p), i.e.,
(abed

abed

p
(3.7)

A property which these Friedmann-like singulari-
ties do have in common with the initial singularity
in an exact FRW dust model is the behavior of the
matter density relative to the expansion scalar,
viz. ,

"
lim "--=1.3

20+ ~
(3.8)

The limits (3.6)—(3.8) are a consequence of the for-
n1ulas of Sec. II and the fact that

1S-—,Mg, S-2g
(3.9)

as q~O+. Indeed it follows that any one of the
limits (3.6)—(3.8) is equivalent to the vanishing of
P . To summarize we have establishedM theorem
3.2.

Friedmann-like, and in the terminology of Eard-
ley, Ljang, and Sachs, g & js the metric of the
singularity, defined to be the three-manifold t=0.

The terminology "Friedmann-like singularity"

may appear inappropriate when one notes that the
rate of shear tensor and the Weyl conformal curva-
ture tensor, both of which are zero in the FR%
solutions, diverge as the singularity is approached:

lin1 o.=+~,
t~o+

11m Cgbcd =+ {x)

t ~0+

where the shear scalar o. is defined by o = —,o.,bo' .
However, the matter flow does approach isotropy at
the singularity in the sense that the shear scalar

diverges less rapidly than the expansion scalar, i.e.,

Theorem 3.2 (Friedmann lik-e singularities) .The
initial singularity in a Szekeres solution with M&0
and positive density is Friedmann-like if and only if
P =0, and this situation is characterized by the

validity of any one of the limits (3.6)—(3.8).

IV. EVOLUTION OF THE SOLUTIONS

A =Hp+P+,
H =Hp P+(f+ —1) —P f—(4.1)

(4.2)

where H p denotes the value of H when P+ ——0. The

explicit form of Hp can be obtained from Eqs.
(2.14) and (2.17). Although H and A are required to
be positive, H0 can be zero or negative, and in fact
the sign of H0 plays a significant role as regards the
evolution (when k = —1). It follows from (4.1) and

A &0 that

Hp (0 implies P+ & 0 .

The analysis when k = —1 again depends on the
behavior of f+. It follows from Fig. 1 that f de-

creases monotonically to zero, and f+ is positive
and increases rponotonically to approach 1, as

rt ~+ co. Thus if Hp &0, it follows from (4.2) that
H will never equal zero, and thus there will be no fi-
nal singularity. s' On the other hand, if Hp & 0 (and

In this section we analyze the evolution of the
solutions as one follows a fluid world line into the
future, starting at a time t =tp & T(z). The main
result is as follows. If the parameter k equals 1, a
final singularity inevitably occurs, as in the corre-

sponding FRW model. This final singularity will

occur either when S=O at t =T+2~M, or when
H=O at an earlier time. On the other hand, if
k =0, —1, the model may expand indefinitely, as in
the corresponding FRW models, or one may en-

counter a final singularity, if H=O for some value
of t & t0. In the cases where a final singularity does

not occur, we wi11 discuss to what extent the solu-
tion approaches an FRW solution as t~+ oo. The
detailed analysis follows.

In the case k=O, since f decreases monotoni-

cally to zero, and f+ is positive and increases

monotonically without bound (see Fig. 1), it follows

from the expression (2.2) for H, viz. ,

H =3 P+f+ P —f—
and the fact that H & 0 and A & 0, that H will reach
zero for a finite t & tp if and only if P+ & 0. When

k = —1, it is convenient to write the expressions for
A and H in the form
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p+ &0 necessarily), it follows from (4.2) that H will
equal zero for some finite t, and a final singularity
occurs.

Finally, consider the case k= + 1. It follows
from Eqs. (2.10) and (2.11) that we can write

0
lim —=0

f —++co 0
(4.4)

is valid if and only if (a) Ho &0, when k = —1, or
(b) P+ ——0, when k=0; and

P+f+(g)+P f (q)=P+f+(~) C, , C'b

t~+ Oo P
(4.5)

+(mp+ —p )f (r),
(4.3)

in terms of ~ =2m —q. Thus, the possible singulari-

ty types as g increases can be inferred from the ini-

tial singularity types if we replace p by

mP+ —P . Thus, H will reach zero for some posi-
tive value of g &2m [i.e., before S=O at v=0
(ri =2m )] if and only if m p+ —p & 0. Further, the
expressions for the length scales 1 as g +2nc—an b.e
obtained from (3.3) by replacing g by r and P by
m p+ —p . It follows that an S=O final singularity
is pointlike if and only if nP+ —P =0.

The above discussion is summarized in the fol-

lowing theorem.
Theorem 4.1 (final singularities).
(i) k=0: There is a final singularity if and only

if P+ &0. The singularity is a pancake (H=O
necessarily).

(ii) k= —1: There is a final singularity if and

only if and only if Ho &0. The singularity is a pan-

cake (H=0 necessarily).
(iii) k=+1: The final singularity is (a) pointlike

if and only if mP+ —P =0 (S=O necessarily), (b)

cigar if and only if mP+ —P &0 (S=O necessari-

ly), (c) pancake if n.P+ —P & 0 (H=O necessarily).

Remark. As with the initial singularity, a point-

like final singularity is Friedmann-like. It follows
from theorems 3.1 and 4.1, however, that a fluid
WL can begin and terminate at a Friedmann-like

singularity if and only if p+ ——O=p, i.e., if and

only if the solution is an FRW solution.
%e now discuss the cases where the solution

evolves indefinitely into the future, along a particu-

lar fluid world line. According to theorem 4.1, this

occurs when k=O and P+ &0, and when k = —1

and Ho&0. %e ask whether or not the solutions

become close to an FR% solution as t~+Do, in

the sense that the limits (3.6) and (3.7) hold. In oth-

er words, does the shear become negligible com-

pared to the expansion, and does the %eyl tensor

become negligible compared to the Ricci tensor?

The answer is provided by the following theorem.
Theorem 4.2 (asymptotic euolution) If a Szeker. es

solution with M & 0 and positive density expands in-

definitely, then

is valid if and only if P+ ——0, when k =—1 or 0.
Proof. This is a straightforward calculation using

the formulas of Sec. II.
Remark. If condition (4 4) holds, we say that the

solution is asymptotically isotropic as t~+ ao. In
this case, the asymptotic form of the line element as
t~+ 00, is the FRW form, as can be verified using
the formulas of Se:. II. If the stronger condition
(4.5) holds, then in addition, the asymptotic form of
the energy density as t~+ ao is homogeneous and
of the FRW form. In this case, we say that the
solution is asymptotically FR 8' as t~+ oo.

V. THE ROLE OF THE SPATIAL CURVATURE

In this section we discuss the influence of the
spatial curvature (i.e., curvature of the slices
t=const) on the dynamics of the solutions near the
singularities,

Near a singularity in an FRW model, the dynam-
ics is unaffected by the spatial curvature, i.e., it is
independent of whether the constant curvature of
the slices is positive, negative, or zero. This is a
consequence of the following first integral for irro-
tational perfect fluids

R~=2(p, ——,8 +o ), (5.1)

which reduces to the Friedmann equation in an
FRW model (cr =0). On account of the limit (3.8),
it follows that

11m
2

=0,
~-0+ ~' (5.2)

i.e., that R~ does not affect the dynamics as the
singularity is approached in an FR% model. This
phenomena is also found in many (though not all)
irrotational spatially homogeneous cosmologies, and
in spherically symmetric and plane-symmetric spa-
tially inhomogeneous cosmologies. In these
models, the spatial curvature is not necessarily iso-
tropic so that S'p+0, and (5.2) is augmented by
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lim =0 .
~~0+ ~' (5.3) 2P+

R(0) =6 k +

This type of singularity, in which the spatial curva-
ture of the slices orthogonal to the fluid flow be-
comes dynamically negligible as the singularity is
approached, is referred to as a velocity dom-inated

singularity
One of the results of this section is that the singu-

larities in the Szekeres solutions with M ~0 are
velocity dominated. In order to include all the
types of singularities, we replace t~0+ in (5.2) and
(5.3) by l~O, where l denotes the overall length
scale, as defined in Sec. III.

Theorem 5.1. All initial and final singularities in
the Szekeres solutions with M gO and positive den-
sity are velocity dominated, in the sense that

lim =0, lim =0 .
I 0+ ~ I 0+

Proof. For an H=O singularity, the results fol-
low immediately from Eqs. (2.19), (2.22), and (2.23),
since R* and S*p have a factor of H in the denomi-
nator, while 0 has a factor of 02 in the denomina-
tor. On the other hand, for an S=O initial singular-
ity a more detailed calculation is required. It fol-
lows from Eqs. (2.8)—(2.11), (2.19), (2.22), and
(2.23) that in all cases the leading g dependence in
0 as g —+0+ is g, while in R~ and S~p it is g
except in class II with k=O and P @0, in which
case it is q '. On account of (4.3), an S=O final
singularity with k =+- 1 has the same behavior, and
the theorem is proved.

Although all the singularities are velocity dom-
inated, the spatial curvature does play an important
role in the case of a Friedmann-like singularity. As
one approaches such a singularity, both cr and R*
become negligible compared to p and 0, in the
dynamical equation (5.1) [cf. (3.6)]. However, R ~ is
significant compared to o. in the sense that

0
lim — — =0 .

~-0+ R*
In addition the anisotropic spatial curvature S'p
has the same rate of growth as R*, when t~O+.
This means that as one approaches a Friedmann-
like singularity, the spatial geometry does not ap-
proach isotropy (unless the solution is an FRW
solution). This is reflected in the fact that the
three-metric g~p' of the Friedmann-like singularity
[cf. (3.5)], is not a metric of constant curvature (un-
less the solution is FRW). Indeed, one can show
that the curvature of the three-metric g'~' is given
by

»+
2S(0)) ) =2S(0)22

—S(0)33 =—
3A

Thus the three-metric of the Friedmann-like singu-

larity plays an important role in determining the fu-
ture evolution of the solutions, since it contains the
functions g+ and Ho.

The final point concerns the sign of the spatial
curvature scalar R*. For k =0, the expression
(2.22) simplifies to

so that R~ has the sign of P+. It thus follows from
theorem 4.1 that recollapse occurs (along a particu-
lar fluid world line) if and only if R*&0 on that
world line. For k =+1, the expression (2.22) can be
written in the form

R~= (H+2HO) .2k

SH
Thus if Ho )0, R* has the sign of k. On the other
hand, it follows from theorem 4.1 that if a future
singularity occurs in a k = —1 model (i.e., Ho &0),
then R*& 0 sufficiently near the singularity.

VI. CONCLUDING REMARKS

Partial results on the singularities and evolution
of the Szekeres solutions have been given previously
for the class-II solutions. " Our new formulation
of the Szekeres solutions enabled us to discuss both
classes of solutions simultaneously, and our main
results hold without modification for both classes.
We have given a complete description of the scalar
polynomial curvature singularities in both classes
and have established that they are velocity dominat-
ed. In addition, we have analyzed the asymptotic
behavior in the distant future.

The key to the Szekeres solution lies in the fact
that their evolution in time is governed by the dif-
ferential equations (2.4) and (2.5). For fixed z, Eq.
(2.4) is simply the well-known Friedmann equation,
while the linear differential equation (2.5) is the
equation which determines the two modes of densi-
ty fluctuations in linear perturbations of the FRW
solutions, as discussed in Sec. II. The role of this
differential equation in the Szekeres solutions had
not previously been recognized. This differential
equation in fact arises directly from the well-known
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Raychaudhuri equation for irrotational dust":

6I+ —9 +20. + —p=O, (6.1)

as can easily be verified using (2.4), (2.6), (2.19), and
(2.20). What is surprising is that even for these ex-
act solutions the nonlinearities in (6.1) are eliminat-
ed by use of the Friedmann equation (2.4), and can-
cellation of terms. The term P+f++P f which
appears in the line element and density represents
the general solution of (2.5) with P+(z) being the
constants of integration. These two functions of z
are the second key feature of the Szekeres solutions.
Their vanishing is necessary and sufficient for the
Szekeres solutions to specialize to FRW solutions,
and we have shown that they play a dominant role
in determining the nature of the singularities and
the evolution of the solutions. For example, the
vanishing of P is necessary and sufficient for the
initial singularity to be Friedmann-like, while in
those solutions that do not recollapse, the vanishing
of P+ is necessary and sufficient in order that the
solution be asymptotically FRW in the distant fu-
ture.

In a subsequent paper we will show that the Szek-
eres solutions are of interest as realistic inhomo-
geneous cosmological models, since they can ap-
proximate the FRW dust models arbitrarily closely,
at least over a finite time interval, when the arbi-
trary functions are suitably restricted. Again, the
functions P+ and P play a key role in that they
determine the magnitude and sign of the increasing
and decreasing modes, respectively, of the density
fluctuations in the resulting "perturbed" FRW
models. Although one might anticipate this on the
basis of our earlier remarks concerning the linear
differential equation (2.5) and the form (2.6) of the
energy density, a full justification of this is quite in-
volved, particularly in class I.

This interpretation of P+ gives some physical in-
sight into theorems 4.1 arid 4.2. For example,
theorem 4.1(i) states that a k=O model has a final
singularity if and only if the increasing mode of the
density fluctuation is positive (i.e., 13+ & 0). This is
plausible, since in the k=O FRW model the density
is just small enough for the model to avoid recol-
lapse, so that any local enhancement of the density
would lead to recollapse, at least locally. On the
other hand, in a k = —1 model, a positive density
fluctuation does not necessarily lead to recollapse.
The condition for recollapse [theorem 4.1(ii)] is
HQ &0, and we will show in a subsequent paper that
this condition prevents the model from being close
to an FRW model at any time. In other words,

those k = —1 Szekeres solutions which are suffi-
ciently close to an FRW model, expand indefinitely,
and indeed, by theorem 4.2, also approach isotropy,
However these models are asymptotically FRW as
t~+ oo, in the sense of (4.5) if and only if the in-
creasing density perturbation is zero (i.e., P+ ——0).
The k =0 solutions also differ from the k = —1

solutions as regards asymptotic isotropy. Even if a
k =0 solution is close to an FRW solution at some
time, the presence of the increasing density pertur-
bation (i.e., P++0, which is only possible in class
II, when k =0) will inevitably lead to an anisotropic
solution in the future, as follows from theorem 4.2.

Despite many similarities, however, the class-I
and class-II solutions do differ as regards the role of
the functions P+(z). In class II, the functions M
and T, which determine the solution S of the Fried-
mann equation, are constants, and P+ are arbitrary
functions. On the other hand, in class I, additional
constraints arise from the field equations, which re-
late P+ and P to M and T according to Eq. (2.15).
The functions M and T determine whether or not
the S=O singularities, which occur when t = T(z)
or when t =T(z)+ 2aM(z), are simultaneous for all
comoving observers, i.e., are given by t=const.
Thus in class-II solutions, all S=O singularities are
simultaneous, while in class-I solutions, the density
perturbation functions P+ determine, via (2.15),
whether or not an S=O singularity is simultaneous.
For example if P+ ——0 in class I, an S=O initial
singularity is nonsimultaneous (unless the solution
is an FRW solution). An example of this
phenomenon in a spherically symmetric model has
previously been noted by Silk.

The restrictive feature of our analysis in this pa-
per is that our results apply only to the behavior of
the solutions along the world line of a particular
comoving observer, or in some neighborhood of
such a world line. In other words we have studied
the solutions from a local point of view. In a subse-

quent paper, we will discuss the extent to which the
Szekeres solutions are globally defined in the sense
of admitting a slice t =t0 on which the metric is
regular, and the density positive and finite. This
will enable us to investigate under what conditions
the Szekeres solutions approximate an exact FRW
solution over a finite time interval.
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APPENDIX A

Equations (A2) and (A3) become, respectively,

2M
S

and

p= (3Mfv, +fM, ) .2

SH

(A6)

(A7)

2
dz2

8'

where

P =a (z)(x +y )+2b (z)x +2c (z)y +d (z)

In this appendix, we establish the relationship be-

tween the form the Szekeres solutions given in Sec.
II, and the form given in the literature. For the
class-I solutions, we start with the form given by
Bonnor et al. The line element is given by

'2

ds = dt+ —+ (dx+dy)P

8
(A 1)

az

From Eq. (A7) we see that M—:0 implies p,
—=0, and

since we are interested in nonvacuum spacetimes we

assume M(z)+0. Thus we can write (A7) in the
form

fM,
S'H ' 3M

(A8)

so that

For M )0, the solution to (A6) can be written

parametrically in the form (2.8) and (2.9). From
Eq. (2.8) we obtain

, (T,+M,h),1

and

ad —b —c = 4e, a=+1,0.2 2 1

S 1 ~, hh"

S S ' h'

The only remaining field equation, assuming /+0,
1s

Since M, =O when k=O, we can use (2.15) to
write the previous expression as

=W —e+z Q(z)
(A2) S,

S
6M ik h, hh" h"
Sf ' h' + h'

Q(z) being an arbitrary function of z. The density
is given by

(A9)

PQ, —3QP,

We change notation as follows:

W =e kf—
Q =2Mf

P= e

It then follows that (Al) assumes the form

(A3)

S,f S
= (P+(fi+k)+—13 f ]--(Alo)

where f+ are given by Eqs. (2.10) and (2.11). Sub-
stitution of Eq. (A10) into (A5) yields the desired
expression (2.2) for H. The density (AS) also as-
sumes the desired form (2.7).

Equation (A10) is, in fact, also valid when M &0
(with k = —1 necessarily), and for completeness we
give the expressions for h and f~ in this case, viz. ,

Then, using the explicit form (2.9) for h, it follows,
somewhat surprisingly, that this expression can be
written in the form

ds = dt +S e —'(dx +dy )+ 2dz
e —kf

(A4)

with

h = —(sinhrl + ri ),

f = I —+ tanh+ +1,6M
S 2 2

S,
H =fv, +f S

(A5) f = tanh+ .6M
S
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For the class-II solutions we refer to Bonnor and
Tomimura. The models with M &0 correspond to
those labeled PI (k =0), HI (k = —1), and EI
(k =+1) by Bonnor and Tomimura. The present
form of the Szekeres solutions corresponds to that
given in the previous reference, provided that we
make the following identifications:

R=S,
TA+ —=H
R

k=M,
1P= ——P+, p= —P, when k =0,

geodesics, and the e~ ~
are Fermi propagated along

e~o~. These conditions are satisfied by the frame

(2.18), which is a shear eigenframe. Since

e~o~
——agent, the differential operator Bo is simply

azat.
It follows, using (2.19}and (2.20) that

2 2S~a=
3H P+ f++ ~ f+

+P f +sf
2 3S

~33 3H ~+ f++ S f+

P=6MP+, p= —6MP, when k =+1 .

A possible point of confusion is that the function A

in Ref. 9 corresponds to A +kP+ in our notation.
The difference in presentation of the two forms of
the solutions now reduces to the use of two dif-
ferent systems of coordinates to describe a two-

space of constant curvature, e '(dx +dy ) in our
notation, and (dy +h dz ) in Ref. 9. Note that the
arbitrary functions depend on x in Ref. 9 but on z
in our presentation.

We note that the Szekeres solutions with M—:0
are not included in our new formulation since in
this case f+ do not satisfy Eq. (2.5}. There are no
nonvacuum solutions with M=0 in class I, and the
class II solutions with M =—0 correspond to those la-
beled PII (k =0) and HIII (k = —1) in Ref. 9.

APPENDIX B

We outline the derivation of the expressions
(2.19)—(2.23). We assume that the reader is fami-
liar with the orthonormal-frame formalism as
described by MacCallum. ' The expressions (2.19)
and (2.20) are obtained by applying the commuta-
tors to the orthonormal basis defined by (2.18).
Equation (2.22) can then be obtained directly from
the first integral (5.1).

The expressions for E~p and S~p are derived us-

ing the following formulas:

p = ~o~~p o~ ~rp —,Oa~p+ —', 0'5~pr

S*p———Boo.~p
—Ho p .

The first of these is given by Ellis. s The second is
obtained by taking the trace-free part of the equa-
tion for R~p given by MacCallum, ' and specializ-
ing it to the case where e~o~ is tangent to irrotational

+P f +sf
Since f+ satisfy (2.5), the first of these immediately

yields (2.21). To verify that the second reduces to
(2.23), we need the fact that (2.4) and (2.5) admit a
first integral of the form

SSP A- P —ot
S

where a=1 when F=f+ and a=0 when F=f
as is easily verified.

APPENDIX C

We establish that there are only two independent

polynomial curvature scalars in the Szekeres solu-

tions. In Ref. 36, the standard set of 14 indepen-

dent polynomial curvature scalars I& —I&4 is ex-

pressed in terms of the Newman-Penrose complex

tetrad components of the Weyl and Ricci tensors,
which are denoted by gq, Pzz, A. For the Szekeres

solutions, relative to a null tetrad based on the re-

peated principal null directions, the only nonzero

Weyl tensor component is $2 and the only nonzero

Ricci components satisfy

(too=2/ii ——f22 ——6A .

It is easily verified, using the formulas in Ref. 36,
that in this case, a set of independent scalars is pro-
vied by I& and I&, the rest being either zero or alge-

braically dependent on these two. The scalar I5 is a
constant multiple of the energy density p, and I& is

a constant multiple of (g2) . Finally, it follows us-

ing the relationship between the gz and the elec-

tric and magnetic components E~p, H~p thai E~~ is

a constant multiple of g2.
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