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The QCD-motivated integral equation for the qq pair is derived taking into account
Reggeization of quarks and asymptotic freedom. This equation is shown to generate an
infinite number of Regge poles accumulating at j=0. It is expected that this short-range
effect constraining the intercept of leading Regge singularities to be at least near zero in-

dependently of the flavors involved should not be affected by confinement. The
phenomenological relevance of this constraint for charm production is pointed out.

The high-energy behavior of scattering ampli-
tudes in non-Abelian gauge theories corresponds to
the Reggeon calculus of Reggeized gauge bo-
sons. ' In the leading 1ns approximation this cal-
culus gives multiperipheral equations with Reg-
geized gauge-boson exchange in the ladder. For
amplitudes corresponding to singlet of the underly-

ing gauge group those equations are free from in-

frared divergences and are meaningful for genuine

QCD with massless gluons. '

Multiple-gluon exchange, although asymptotical-

ly dominant, only contributes to the Aavor-singlet
channel and the purpose of this note is to discuss
leading Regge singularities corresponding to the
flavor-nonsinglet channel. In the leading lns ap-
proximation which we adopt, this reduces to a
multiperipheral equation with Reggeized quarks in

the ladder.
The quark Regge trajectories —, +a(«t) and ef-

fective double-Regge vertices I
&

with two Regge-
ized fermions (see Fig. 1) were calculated in Ref. 4
for the group SU(N). For QCD the result is

a («t) =(M «t)ri(«t)—= (M qt)( ——,—)4 g d q

(M —«j.)[(ql lt +P

—(M —«z) ]
9'i 'Ps

PwI = —g [r" (M «»—)—
2

where M and p are the quark and gluon masses, respectively, the latter to be put equal to zero at the end,
and g is the coupling constant of the QCD Lagrangian. (Apart from trivial factors the same results also
hold for massive QED. ' A difference appears however in the negative-signature fermion channel due to
presence of "direct" forces coming from gluon exchange in addition to fermion exchange. In our case,
however, exchange of the negative-signature partner of a quark can be neglected in the leading 1ns approxi-
mation. ) The momenta q; and pz s are defined in Fig. 1. Using the expression (2) for the vertex I

&
and tak-

ing into account the identity

pA pB 2

('«2 pA)(qi ps) (qtt —q2J) +p
which is valid in the double-Regge region, we can obtain the kernel of the equation we are looking for. For
color singlets in the t channel this equation has the following form (see Fig. 2):

jFJ(q, ) FJ (q, )g («&)S '(q—,) S'(«, )rl(«, )FJ (q—,)

2=F"'+—,Jd'q I-, tr iS(«t)FJ(q t)S(«')r 7 [()(qt' —q t')+(qt'~q l')'~(q i' —qt') 1

+[(qt —q ~) +p ] '[S-'(q, )S(q')F;(q,')+F,(q,')S(q,')S '(«&)]] (4)
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FIG. 1. The double-Regge vertex with Reggeized
quarks.

and for simplicity we consider the forward config-
uration, i.e., Qi ——0. In Eq. (4) j is the t-channel
angular momentum, FJ.(qi) is the partial-wave ma-
trix with external Reggeized quark-antiquark pairs
and F' ' is the appropriate inhomogeneous term.

S(qi} is the fermion propagator, i.e.,
S(qi) =(M —qi) '. The part of the kernel contain-

ing the product of y matrices gives double lns

terms (i.e., powers of g2/j ) which are typical for
fermion exchange. ' The j-dependent factor is the
refiection of appropriate limits in the longitudinal-
momentum integration. '

The following properties of Eq. (4) should be
emphasized:

(i) There is a cancellation of infrared divergences
in the limit p ~0 between the divergent trajectory
function a(qi) and the singular part of the kernel
which is proportional to [(qi—qi) +p ]
Thanks to this cancellation, which is similar to
that for gluon amplitudes, ' 3 this equation is well
defined for genuine QCD with massless gluons.

(ii) For large qi the leading lnqi terms come
from the first part of the kernel. Logarithmic
terms coming from the quark trajectory

[a(gi) -lnqi ] cancel with logarithmic terms gen-

FIG. 2. Multiperipheral integral equation with Reg-
geized quark and antiquark exchange.

crated by the singular part of the kernel. To
achieve this cancellation it is essential that the log-
arithmic behavior of the fermion trajectory for
large values of qi comes only from ihe gluon
propagator in the loop [i.e., from the region

(q
' —q) «q ] while the fermion propagator (i.e.,

the region M « q' «q ) does not contribute to
this behavior. Notice the difference of a factor of
2 in comparison with the asymptotic behavior of
the gluon trajectory which is defined by the two-
gluon loop. ' After taking into account asymp-
totic-freedom corrections Eq. (4) reduces in the
leading lnqj approximation to the evolution equa-
tion with anomalous dimension approximated by
its pole at j =0.

(iii) The double lns terms (i.e., powers of g /j }
are entirely generated by the first part of the ker-
nel. Including reggeization of quarks together with
additional terms in the kernel neither cancels nor
alters the logarithmic divergence of the transverse-
momentum integrals responsible for this double lns
behavior. Similar equations with gluons' give
the single-logarithmic terms only.

In the leading double lns approximation Eq. (4)
simplifies and apart from trivial factors becomes
equivalent to the equation derived in Ref. 7 for
QED. It takes the following form:

2

jfj(5)=f' '+ — I d5'fj(5')+ I d5'expj(5 —5')fj(5'}

where

5=lnq P/q02

J
2 g
3 (2m. )

' 1/2

and

Fj 1 ifj'Y l

The solution of this equation has a fixed branch
point at j=jo.

This fixed branch point comes entirely from the
ultraviolet part. It can therefore be expected that
asymptotic-freedom corrections should convert this
singularity into Regge poles. ' These corrections
amount to replacing g by the running coupling
constant g (5'). Equation (5) takes then the fol-
lowing form:
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f'" c s d5 d5fj(5)= . + —. f, fj(5')+I, expj(5 —5')fj(5')j j 0 5'+1 h s 5'+1/Ii (9)

f(0) cfJ.(5)= U( ——,1;j/Ii }
J J

U( ——,0;j(5+1/h )},
J

(10)

where c =8/(33 —2n~) and h = [(33—2nf)/48m ]g (5'=0) (nF denotes the number of flavors).
Solution of this equation can easily be obtained by reducing it to Kummer's differential equation" and

taking into account boundary conditions implied by the integral equation itself. For a constant inhomogene-
ous term f' ' the solution is

1

where U(a, b;z) is the Kummer function. " This
solution contains an infinite number of Regge
poles j„which correspond to zeros of the function
U( —c/j, 1;j/b) appearing in the denominator in

formula (11). They accumulate at j=0 according
to the following rule:

j„=c/n+0(lln ) .

Let us notice that the leading term c/n in the for-

mula (11) is independent of h but depends only

upon the parameter c controlling behavior of the
running coupling constant for large momenta.

The existence of an infinite number of flavor
nonsinglet Regge poles accumulating at j=0 was

assumed in Ref. 12 and Eqs. (9)—(11) indicate the
possible origin of those poles. This singularity
structure can however be modified by absorptive
corrections (i.e., Pomeron-Regge pole cuts) but this

type of correction goes beyond the leading lns ap-
proximation adopted in our paper.

Physically, Regge poles j„correspond to the
short-range part of the interaction alone. One can,
however, expect that the implicit bound on the in-

tercept of the leading Regge singularities implied

by (11) (i.e., j(0)& 0) should not be affected by
long-range confining forces. Although this can-

straint is of little importance for Regge trajectories
of mesons "built up" from light quarks, it becomes
relevant when heavy quarks are involved. In par-
ticular, it should invalidate straightforward linear
extrapolations of D* or 1( trajectories which give
very low, negative intercepts.

This possibility that the intercept of Regge
singularities cannot be arbitrarily low independent-
ly of the flavors involved should be important for
the phenomenology of high-energy reactions pro-
ceeding through charm exchange. The high inter-
cept (i.e.,=0) of the D' trajectory could, in particu-
lar, be relevant for the explanation of the presence
of leading A, particles produced at pp collisions at
the CERN ISR.'

The author is much indebted to Takeo Inami,
Tomasz Jaroszewicz, Seiji Ono, Olivier Pine, Gor-
don Ringland, D. P. Roy, and Shigeo Yazaki for
several useful discussions. He is also grateful to
Roger Phllllps and Chan Hong-Mo for hospltallty
at the Theory Division of Rutherford Laboratory
where part of this work was done and to K. Cha-
dan for the hospitality of Laboratoire de Physique
Theorique at Orsay.

'On leave from the Institute of Nuclear Physics,
Cracow, Poland (present address).

Laboratoire associe au Centre National de la Recherche
Scientifique.

'L. N. Lipatov, Yad. Fiz. 23, 642 (1976) [Sov. J. Nucl.
Phys. 23, 338 (1976)];E. A. Kuraev, L. N. Lipatov,
and V. S. Fadin, Zh. Eksp. Teor. Fiz. 71, 840 (1976)
[Sov. Phys. JETP 44, 443 (1976)];B. M. McCoy and
T. T. Wu, Phys. Rev. 0 12, 3257 (1976); 13, 1076

(1976); H. Cheng and C. Lo, ibid. 15, 2959 (1977); J.
8. Bronzan and R. L. Sugar, ibid. 17, 585 (1978); 17,
2813 (1978); M. T. Grisaru and H. J. Schnitzer, ibid.

20, 784 (1979);J. Bartels, Nucl. Phys. 8151, 293
(1979); 8175, 365 (1980); A. White, ibid. 8159, 77
(1979); L. Pukaszuk and L. Szymanowski, ibid. 8159,
316 (1979);J. Kwiecinski and M. Praszalowicz, Acta
Phys. Pol. B12, 103 (1981);J. Bartels, ibid. 811, 281
(1980) and other references therein.

Ya. Ya. Balitzkij and L. N. Lipatov, Yad. Fiz. 28,
1597 (1978) [Sov. J. Nucl. Phys. 28, 822 11978)); T.
Jaroszewicz, Acta Phys. Pol. , 811, 965 (1980); Trieste
Report No. IC/80/175 (unpublished); J. Kwiecinski
and M. Praszafowicz, Phys. Lett. 894, 413 (1980); M.
Cicuta, G. Marchesini, and E. Mataldi, ibid. B96,



3296 BRIEF REPORTS 26

141 (1980).
3A. White, CERN Reports Nos. TH-2976, TH-3078,

and TH-3115.
4V. S. Fadin and V. E. Sherman, Zh. Eksp. Teor. Fiz.

72, 1640 (1977) [Sov. Phys. JETP 45, 861 (1977)].
58. M. McCoy and T. T. Wu, Phys. Rev. D 13, 369

(1976).
M. Gell-Mann, M. L. Goldberger, F. E. Low, G. E.

Marx, and F. Zachariasen, Phys. Rev. B 133, 145
(1964).

7V. G. Gorshkov, V. N. Gribov, L. N. Lipatov, and G.
V. Frolov, Yad Fiz. 6, 129 (1967) [Sov. J. Nucl.
Phys. 6, 95 (1968)].

L. N. Lipatov, Zh. Eksp. Teor. Fiz., 54, 1520 (1968)
[Sov. Phys. JETP 27, 814 (1968)].

9Yu. L. Dokshitzer, D. I. Dyakonov, and S. I. Troyan,
Phys. Rep. 58, 269 (1980}.
J. L. Cardy, Phys. Lett. B53, 355 (1974); Nucl. Phys.
B93, 525 (1975); C. Lovelace, Phys. Lett. B55, 187
(1975); Nucl. Phys. B95, 12 (1975); D. Heckatorn,
Phys. Rev. 18, 1286 (1978); L. N. Lipatov and L.
Szymanowski, Warsaw Report No. IBJ 11/VII/80
{unpublished).

t tHandbook of Mathematical Functions, upwith Formulas,
Graphs, and Mathematical Tables, edited by M.
Abramowitz and I. A. Stegun (Dover, New York,
1965}.

C. Lopez and F. J. Yndurain, Nucl. Phys. 8183, 157
(1981).
M. Basile et al. , Lett. Nuovo Cimento 30, 487 {1981).


